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Dedicated to Shigeki Akiyama on the occasion of his 50th birthday.

Abstract. We introduce the notion of crystallographic number sys-
tems, generalizing matrix number systems. Let Γ be a group of isome-
tries of Rd, g an expanding affine mapping of Rd with g◦Γ◦g−1 ⊂ Γ and
D ⊂ Γ. We say that (Γ, g,D) is a Γ-number system if every isometry
γ ∈ Γ has a unique expansion

γ = gnδng
−n gn−1δn−1g

−(n−1) . . . gδ1g
−1 δ0,

for some n ∈ N and δ0, . . . , δn ∈ D. A tile can be attached to a Γ-number
system. We show fundamental topological properties of this tile: they
admit the fixed point of g as interior point and tesselate the space by the
whole group Γ. Moreover, we give several examples, among them a class
of p2-number systems, where p2 is the crystallographic group generated
by the π-rotation and two independent translations.

1. Introduction

Let b ≥ 2 be an integral base. It is a well-known fact that every positive
integer n has a unique expansion n = d0 + d1b + · · · + dmb

m for some
m ≥ 0 and d0, . . . , dm ∈ {0, . . . , b − 1}. Such numeration systems gave
rise to several generalizations in the last forty years. Rather than the set
of integers, authors considered successively Gaussian integers [13], more
generally quadratic fields [11, 12] and finally rings of polynomials [14, 21]
as representation spaces. Algorithms were developped to decide whether a
given system is a number system or not [5, 24]. However, it is usually a
hard task to determine whole classes of number systems (see [1, 2] for recent
criteria in this direction).

All these number systems have well-known connections to fractals [8, 10].
Important developments to investigate these connections were carried out by
Gröchenig and Haas as well as Lagarias and Wang [9, 15]. They considered
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2 BENOÎT LORIDANT

matrix systems (M,N ) and the corresponding self-similar sets T defined
by the equation MT = T +N . Here, the d × d matrix M is the base and
N ⊂ R

d a finite digit set. Fundamental topological results on self-similar
tiles were proved in [9, 15].

In the present paper we generalize matrix systems. Let us first give some
definitions. A crystallographic group Γ is a discrete cocompact subgroup
of the group of isometries of Rd. By a theorem of Bieberbach [6], it can
be seen as a group of isometries containing a maximal abelian subgroup Λ
isomorphic to Z

d such that the point group Γ/Λ is finite.

Let Γ be a crystallographic group and g(x) = Ax+ b an expanding affine
mapping of Rd that conjugates Γ into itself (g ◦Γ ◦ g−1 ⊂ Γ). Furthermore,
let D ⊂ Γ be a complete set of right coset representatives of Γ/g ◦ Γ ◦
g−1. Gelbrich [7] shows in 1994 that the unique non-empty compact set T
satisfying

g(T ) =
⋃

δ∈D

δ(T )

tiles the Euclidean space by some subset J of Γ. T is called a crystallo-
graphic replication tile. In the case of matrix systems, i.e., if Γ is isomorphic
to Z

d, J is isomorphic to a sublattice of Zd [15]. In the general case of a
crystallographic group, nothing is known on the algebraic structure of J .
Gelbrich conjectured it to be a subgroup of Γ.

We will generate classes of crystallographic replication tiles for which
J = Γ. To this matter, we introduce the notion of crystallographic number
system, analogously to the lattice case. (Γ, g,D) will be called a Γ-number
system if every isometry γ ∈ Γ has a unique expansion

γ = gnδng
−n gn−1δn−1g

−(n−1) . . . gδ1g
−1 δ0,

for some n ∈ N and δ0, . . . , δn ∈ D. This property has topological conse-
quences for the associated tile T . We will assume that the identity mapping
id belongs to D. Let Fix(g) denote the fixed point of the expansion g. Then
we show that the data (Γ, g,D) gives rise to a crystallographic number sys-
tem if and only if Fix(g) is an exclusive inner point of T . In this case,
J = Γ, that is, T tiles the space by the whole group. If Γ is a lattice,
g is assumed to be linear, thus the fixed point is 0 and these results are
well-known [10].

We give several examples of crystallographic number systems. By our
results, it follows that the tiling set of the corresponding tiles is the whole
crystallographic group, and their Lebesgue measure is 1/|Γ/Λ|. As coun-
terexamples, we will see that the well-known Levy dragon and Heighway
dragon do not have the number system property. Restricting ourselves to
the case of p2, the group generated by two independent translations and a
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π-rotation, we will obtain a class of p2 number systems. Topological prop-
erties of the corresponding class of crystallographic replication tiles will be
investigated in a forthcoming paper. More precisely, we wish to characterize
the tiles among this class that are homeomorphic to a closed disk.

2. Topology and tiling criterion

Crystallographic replication tiles, or crystiles for short, generalize self-
affine tiles : the digit set is not restricted to translations. They were intro-
duced by Gelbrich in 1994 in [7], and further studied in [18, 19, 20]. In [7]
the following result can be found.

Theorem 2.1 (cf. [7]). Let Γ be a crystallographic group, g : Rd → R
d

an affine exapanding mapping such that gΓg−1 ⊂ Γ and D ⊂ Γ a complete
set of right coset representatives of gΓg−1 in Γ. Then there is a unique
non-empty compact set T satisfying

(2.1) g(T ) =
⋃

δ∈D

δ(T ),

and there is a subset Γ0 ⊂ Γ such that {γ(T ); γ ∈ Γ0} is a tiling of Rd.

Remark 2.2.

1. Iterating (2.1), one can write explicitly

T =
{

lim
n→∞

g−1δ1 . . . g
−1δn(a); (δn)n∈N ∈ DN

}

,

where a can be any point of Rd. Given an infinite sequence of digits
(δn)n, the limit point limn→∞ g−1δ1 . . . g

−1δn(a) does not depend on
the choice of a. Therefore we will frequently write the sequence of
digits to denote the corresponding point of T :

(2.2) lim
n→∞

g−1δ1 . . . g
−1δn(a) =: .(δ1, δ2, . . . , δn, . . .)g

for (δn)n∈N ∈ DN. Note that a given point may have several such
addresses. For the approximations, we will often choose a = Fix(g),
the fixed point of g.

2. Without loss of generality, id ∈ D. Indeed, if D = {δ1, . . . , δk}
and T is the solution of g(T ) =

⋃k

i=1 δi(T ), then let g′ := δ−1
1 g

and D′ = {id, δ−1
1 δ2, . . . , δ

−1
1 δk}. Then T is also the solution of

g′(T ) =
⋃

δ∈D′ δ(T ).
3. As for lattice self-affine tiles (Γ isomorphic to Z

d), every crystile T
fulfills the following properties.
(i)

⋃

γ∈Γ γ(T ) = R
d.

(ii) int(T ) 6= ∅.
(iii) T = int(T ).
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(iv) λd(∂T ) = 0, where λd is the d-dimensional Lebesgue measure.
Properties (i) − (iii) were proved by Gelbrich [7], whereas (iv) can
be shown as in the lattice case [15].

From now on Γ is a crystallographic group, g(x) = Ax+ b an expanding
affine mapping of Rd that conjugates Γ into itself (g◦Γ◦g−1 ⊂ Γ) and D ⊂ Γ
is a complete set of right coset representatives of Γ/gΓg−1 with id ∈ D.

We will use the following notations. For γ ∈ Γ, we write Mγ its linear
part and tγ its translation part. Thus for all x ∈ R

n, γ(x) = Mγx+ tγ. We
denote by P the set of linear parts of elements of Γ. Since the point group
is finite, P is also finite. Moreover, AP = PA, because gΓg−1 ⊂ Γ.

Proposition 2.3. Let T be the crystallographic replication tile satisfying
g(T ) =

⋃

δ∈D δ(T ). Then Γ(T ) := {γ(T ); γ ∈ Γ} is a multiple tiling of the
space, i.e., there is a p such that almost all points of the space are covered
by p sets of Γ(T ).

Proof. The proof runs as in the lattice case (see also [16]). By Remark 2.2.3.(i),
⋃

γ∈Γ γ(T ) = R
d. Suppose that there are two integers m1 < m2 and two

sets M1,M2 such that

• each x ∈ M1 is covered m1 times.
• each x ∈ M2 is covered at least m2 times.
• λd(M1) > 0, λd(M2) > 0.

Now by Remark 2.2.3.(iv) the boundaries have Lebesgue measure zero :

λd

(
⋃

γ∈Γ ∂γ(T )
)

= 0. Therefore, for each i = 1, 2, there is an xi ∈ Mi \
⋃

γ∈Γ ∂γ(T ). Consequently, one can find ǫ > 0 such that the balls of radius
ǫ around xi are contained in Mi. In particular,

⋃

γ∈Γ

γ(Bǫ(x1)) =
⋃

γ∈Γ

Bǫ(γ(x1)) ⊂ M1

and M1 is relatively dense.

On the other hand, the ball Bǫ(x2) is contained in M2. We show induc-
tively that the sets gn(Bǫ(x2)) remain in M2 for all n ≥ 0. Let x ∈ Bǫ(x2).
Then there are γ1, . . . , γm2

all distinct such that x ∈ Bǫ(x2) ⊂
⋂m2

j=1 γj(T ).
Hence

g(x) ∈
m2⋂

j=1

gγj(T ) =

m2⋂

j=1

gγjg
−1δij (T ),

where δij ∈ D. Here, all of the gγjg
−1δij are distinct. Indeed, if j 6= j′, then

gγjg
−1δij 6= gγj′g

−1δij′ , as D is a right residue system modulo gΓg−1 and

γj 6= γj′. Thus g(x) ∈ M2, and this holds for all x ∈ Bǫ(x2). Inductively,
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gn(Bǫ(x2)) ⊂ M2 for all n. This means that M2 contains arbitrarily large
sets, hence it must intersect M1, a contradiction. �

We will see that if (Γ, g,D) is a so-called crystallographic number system,
then the value of p in Proposition 2.3 is 1.

We define a dynamical system on Γ. Since D is a complete right residue
system of Γ/gΓg−1, each γ ∈ Γ has a unique decomposition γ = gγ′g−1δ
with δ ∈ D and γ′ ∈ Γ. We set

φ : Γ → Γ
γ 7→ γ′.

Therefore every γ ∈ Γ expands in γ = gφ(γ)g−1δ for some δ ∈ D. We
denote by P the set of periodic points of the dynamical system (Γ, φ):

P = {γ ∈ Γ ; ∃ n ≥ 1, φn(γ) = γ}.
Lemma 2.4. For each γ ∈ Γ, there is an n ∈ N such that φn(γ) ∈ P.
Moreover, P is finite.

Proof. We will show that for an element γ ∈ Γ the translation parts of the
iterates φn(γ) end up in a uniformly bounded region of the lattice Λ. Thus
there are finitely many possible translation parts, and combining with the
finitely many possible linear parts in the crystallographic group, we see that
the iterates φn(γ) eventually remain inside a finite set of isometries, proving
the assertions of the lemma.

The mapping g−1 need not be a uniform contraction for the Euclidean
norm || · ||. Thus we will make use of the norm introduced by Lind in [17].
Let

max{1/λ;λ ∈ sp(A)} < ρ < 1

be larger than all eigenvalues of A−1. Then g−1 is a uniform contraction
with respect to the norm

||x||′ :=
∑

k≥0

ρk||A−kx||.

Moreover, for any linear part O ∈ P,

||Ox||′ =
∑

k≥0 ρ
k||A−kOx||

=
∑

k≥0 ρ
k||OkA

−kx||
=

∑

k≥0 ρ
k||A−kx||

= ||x||′

where Ok is such that A−kO = OkA
−k. Such an Ok exists because AP =

PA.
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From φ(γ) = g−1γδ−1g we deduce that

tφ(γ) = A−1 (MγMδ−1b + Mγtδ−1 + tγ − b) .

Let C1 := max {2||b||′ + ||tδ−1 ||′; δ ∈ D}. Then
||tφ(γ)||′ ≤ ρ(C1 + ||tγ||′).

By iteration,

||tφn(γ)||′ ≤ ρC1

∑n−1
k=0 ρ

k + ρn||tγ||′.
Let C2 := ρC1

∑∞
k=0 ρ

k. Then for each γ ∈ Γ, there is a nγ such that

n ≥ nγ ⇒ ||tφn(γ)||′ ≤ 2C2.

Therefore, the translation parts of the iterates φn(γ) end up in a finite
subset of Λ. Combining with the finitely many possible linear parts, we
obtain that the iterates themselves end up in a finite set Γ1 ⊂ Γ. Therefore,
φn(γ) = φm(γ) for some m > n ≥ nγ , meaning that φn(γ) eventually
belongs to P. Finally, we see that P ⊂ Γ1, thus P is finite. �

It follows from this lemma that each γ ∈ Γ has an expansion

γ = gnγn g−1δn−1 g
−1δn−2 . . . g−1δ0

= gnγng
−n

︸ ︷︷ ︸

∈Γ

gn−1δn−1g
−(n−1)

︸ ︷︷ ︸

∈Γ

. . . gδ1g
−1

︸ ︷︷ ︸

∈Γ

δ0,

where γn = φn(γ) ∈ P for some n ∈ N.

Definition 2.5. We call (Γ, g,D) a crystallographic number system (or crys-
tem for short) if the set P of periodic points of φ is trivial, that is, P = {id}.

By definition, (Γ, g,D) is a crystem if and only if every element γ ∈ Γ
has a unique finite expansion

(2.3) γ = gnδng
−n gn−1δn−1 g

−(n−1) . . . gδ1g
−1 δ0

for some n ≥ 0, δj ∈ D and δn 6= id as soon as γ 6= id. We call n =: l(γ)
the length of γ and simply write

(2.4) γ = (δn, . . . , δ0)g.

This notation can be combined with the notation (2.2) to write points of a
tile γ(T ) :

γ(z) = (δn, . . . , δ0)g.(δ
′
1, δ

′
2, . . .)g

for γ ∈ Γ and z = limn→∞ g−1δ′1 . . . g
−1δ′n(a) ∈ T .

The following lemma shows that g acts as a shift on the set of strings
{
(δn, . . . , δ0)g.(δ

′
1, δ

′
2, . . .)g; (δj)0≤j≤n ∈ Dn+1, (δ′j)n∈N ∈ DN

}
.
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Lemma 2.6. Let δ0, . . . , δn, δ
′
1, δ

′
2, . . . ∈ D. Then

(2.5) g(δn, . . . , δ0)g.(δ
′
1, δ

′
2, . . .)g = (δn, . . . , δ0, δ

′
1)g.(δ

′
2, δ

′
3, . . .)g.

Proof. By definition,

g(δn, . . . , δ0)g.(δ
′
1, δ

′
2, . . .)g

= limk→∞ ggnδng
−n gn−1δn−1 g

−(n−1) . . . gδ1g
−1 δ0g

−1δ′1 . . . g
−1δ′k(a)

= limk→∞ gn+1δng
−(n+1) gnδn−1 g

−(n) . . . g2δ1g
−2 gδ0g

−1δ′1g
−1δ′2 . . . g

−1δ′k(a)
= (δn, . . . , δ0, δ

′
1)g.(δ

′
2, δ

′
3, . . .)g.

�

Theorem 2.7. Let (Γ, g,D) be a crystallographic number system and T be
the associated crystallographic reptile. Then {γ(T ); γ ∈ Γ} is a tiling of Rd.

Proof. We already know from Remark 2.2.3 that {γ(T ); γ ∈ Γ} is a cover-
ing of Rd. Suppose that (Γ, g,D) is a crystem but that two tiles overlap.
Without loss of generality, this means that

int(T ) ∩ γ(int(T )) 6= ∅
for some γ 6= id. In particular, one can find a point with two addresses:

lim
n→∞

g−1δ1 . . . g
−1δn(Fix(g)) = γ lim

n→∞
g−1δ′1 . . . g

−1δ′n(Fix(g))

for some sequences (δn), (δ
′
n) of digits. This can be written in the short form

.(δ1, δ2, . . .)g = (ǫm, . . . , ǫ0)g.(δ
′
1, δ

′
2, . . .)g,

where (ǫm, . . . , ǫ0)g is the unique representation of γ. In particular, ǫm 6= id.
By Remark 2.2.1., it is not restrictive to require that (δn)n∈N is eventually
id:

.(δ1, . . . , δp, id, . . . , id, . . .)g = (ǫm, . . . , ǫ0)g.(δ
′
1, δ

′
2, . . .)g.

Taking the image of the above equality by gp and using Lemma 2.6 we have

(δ1, . . . , δp)g
︸ ︷︷ ︸

=: γ1

.(id, id, . . .)g = (ǫm, . . . , ǫ0, δ
′
1, . . . , δ

′
p)g

︸ ︷︷ ︸

=: γ2

.(δ′p+1, . . .)g.

Note that γ1 6= γ2, since these elements have different lengths. Let (ǫ′q, . . . , ǫ
′
0)g

be the representation of γ−1
1 γ2. Then ǫ′q 6= id and

Fix(g) = (ǫ′q, . . . , ǫ
′
0)g.(δ

′
p+1, . . .)g

Now, applying gk, k = 0, 1, 2, . . . to this equality, we obtain that the point
Fix(g) belongs to the tiles α0(T ), α1(T ), α2(T ), . . ., where the elements αk ∈
Γ are all distinct, since they have strictly increasing length q+ k. However,
by compactness of the tiles and discreteness of Γ, the covering {γ(T ); γ ∈ Γ}
is locally finite, thus only finitely many tiles can meet at Fix(g), which is a
contradiction. �
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Definition 2.8. Let {γ(T ); γ ∈ J } (J ⊂ Γ) be a covering of the space.
Then x ∈ γ0(T ) (γ0 ∈ J ) is exclusive inner point of γ0(T ) with respect to
J if it belongs only to γ0(T ), that is,

x ∈ γ0(T ) \
⋃

γ∈J ,γ 6=γ0

γ(T ).

Theorem 2.9. Let T be a crystallographic replication tile with respect to
the data (Γ, g,D). Then (Γ, g,D) is a crystallographic number system if and
only if Fix(g) is an exclusive inner point of T with respect to the group Γ.

Proof. Assuming that (Γ, g,D) is a crystallographic number system, suppose
that Fix(g) is not an inner point of T , that is,

Fix(g) = (ǫm . . . , ǫ0)g.(δ1, δ2, . . .)g.

with ǫm 6= id. As in the proof of Theorem 2.7, applying successively gk

to this equality for k = 0, 1, 2, . . ., it follows that Fix(g) belongs to infin-
itely many tiles γ(T ), in contradiction with the local finiteness of the tiling
{γ(T ); γ ∈ Γ}. Therefore, Fix(g) belongs to no other tile and is an exclusive
inner point of T .

Suppose now that (Γ, g,D) is not a crystallographic number system, that
is, there is a periodic point γ 6= id. Then there is a m ∈ N and digits
ǫ0, . . . , ǫm with ǫm such that

γ = gm+1γg−1ǫm . . . g−1ǫ0.

Iterating this p times leads to

γ = gp(m+1)γ(g−1ǫm . . . g−1ǫ0)
p,

thus for all p, at the point a ∈ R
d,

g−p(m+1)γ(a) = γ(g−1ǫm . . . g−1ǫ0)
p(a).

At the limit, we obtain a point in two distinct tiles

lim
p→∞

g−p(m+1)(γ(a)) = Fix(g) = γ lim
p→∞

(g−1ǫm . . . g−1ǫ0)
p(a) ∈ T ∩ γ(T ),

and Fix(g) is not an exclusive interior point of T . �

3. Number systems and counting automata

We introduce the counting automaton as a tool to check whether a given
(Γ, g,D) gives rise to a crystallographic number system. This automaton
informs us about the residue class and the carry of the composition δγ for
each γ ∈ Γ and each δ ∈ D. This is similar to the lattice case [23, 24].

Definition 3.1. Let (Γ, g,D) be the data for a crystallographic reptile. The
associated counting automaton A has:
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• states : the elements γ ∈ Γ;

• edges : γ
δ|δ′−−→ γ′ iff δγ = gγ′g−1δ′, where γ, γ′ ∈ Γ and δ, δ′ ∈ D.

Remark 3.2.

1. In the edges above, the pair (γ′, δ′) is uniquely defined by the pair
(γ, δ), because D is a complete residue system of gΓg−1 in Γ.

2. By definition, the following edges always belong to A :

γ
id|δ′−−→ φ(γ),

with γ = gφ(γ)g−1δ′.

For a set S ⊂ Γ we define A(S) as the subautomaton of A generated by
S. This is the smallest subautomaton of A whose set of states S ′ contains
S and which is stable by left composition by any digit δ: for all γ ∈ S ′ and

δ ∈ D, the edge γ
δ|δ′−−→ γ′ remains in A(S).

Proposition 3.3. Let (Γ, g,D) be the data for a crystallographic reptile and
S = S−1 ⊂ Γ generating the whole group Γ, that is, 〈S〉 = Γ. Then (Γ, g,D)
is a crystallographic number system if and only if for every state γ of A(S)
there is the walk

(3.1) γ
id|δ0−−→ γ1

id|δ1−−→ . . .
id|δm−−−→ id

in the counting automaton for some δ0, . . . , δm ∈ D.

Proof. By definition of the edges, (Γ, g,D) is a crystem if and only if a
walk (3.1) exists for every γ ∈ Γ. Suppose that this property is satisfied by
the set S ′ of states of A(S). Let γ, γ′ be two elements of S ′. Then γ has a
finite expansion

γ = (δm−1, . . . , δ0)g,

and

γγ′ = (δ′p, . . . , δ
′
m, δ

′
m−1, . . . , δ

′
0)g,

where the digits δ′k (0 ≤ k ≤ p) are defined via the walk

γ′ δ0|δ′0−−→ γ1
δ1|δ′1−−→ . . .

δm−1|δ′m−1−−−−−−→ γm
id|δ′m−−−→ . . .

id|δ′p−−→ γp+1 = id

in A(S). Thus γγ′ also has a finite expansion. Since S ⊂ S ′ generates Γ, we
can infer that every element of Γ has a finite expansion, that is, (Γ, g,D) is
a crystallographic number system. �
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4. Examples

In the first part of this section we treat six examples encountered in the
literature and decide whether they correspond to crystallographic number
systems or not. To this matter, we construct a finite automaton A(S) for
some generator S of the group Γ in question and use Proposition 3.3. In the
second part of the section we give a whole class of crystallographic number
systems. The topological study of the corresponding tiles will be part of a
forthcoming work.

Example 1. This example corresponds to Gelbrich’s picture [7, Fig. 6
(i)]. Γ is the crystallographic group p2 in R

2, i.e.,

Γ = {apbqcr : p, q ∈ Z , r ∈ {0, 1}}
where the isometries a, b are the canonical translations and c is the rotation
by π around the origin:

a(x, y) = (x+ 1, y), b(x, y) = (x, y + 1), c(x, y) = (−x,−y).

We consider

g(x, y) = (y,−3x− 1

2
), D = {id, b, c}.

Let S = {a−1c, b±1, c}. Then the counting subautomaton A(S) is depicted
on Figure 1. For simplicity, we wrote only the first digit on the label of each
edge. Then one can see on this automaton that there is a walk

(4.1) γ
id−→ γ1

id−→ . . .
id−→ id

starting from every state γ of this automaton. By Proposition 3.3, (Γ, g,D)
is a crystallographic number system.

Example 2. This example corresponds to Gelbrich’s picture [7, Fig. 6
(b)]. The crystallographic group is again p2, the mapping and the digits
are the following:

g(x, y) = (−y, 3x+ 1), D = {id, b, c}.
The digit tiles and a counting subautomaton are represented on Figure 2.
Similarly as for Example 1, one can show that (Γ, g,D) is a crystallographic
number system.

Example 3. For this example, we consider the planar crystallographic
group p3, generated by the translations

a(x, y) = (x+ 1, y), b(x, y) = (x+ 1/2, y +
√
3/2)

and the 2π/3-rotation d around the origin. Choosing

g(x, y) =
√
3(y,−x), D = {id, ad2, bd2},
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c
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Figure 1. Example 1. Digit tiles T, b(T ), c(T ) and counting
subautomaton.

id

b−1 c b

a−1c

bc

b
id, c

id

c

id, b

b

bc

id
id

c
id

c

b
c

–0.5

0.5

1

1.5

–0.4 –0.2 0.2 0.4

Figure 2. Example 2. Digit tiles T, b(T ), c(T ) and counting
subautomaton.
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id

ad2

ab−1d

bd2

ad

id
bd2

bd2

ad2

ad2

bd2

id, ad2, bd2

id
ad2

id

ad2

bc2

id

Figure 3. Example 3. Tiling by the terdragon and counting
subautomaton.

we obtain the terdragon of Figure 3 (see also [4, Fig. 15],[7, Fig. 9]). Using
the counting subautomaton depicted in this figure and Proposition 3.3, we
can prove that (Γ, g,D) is a crystallographic number system.

Remark 4.1. It follows from Theorem 2.7 that each tile T of these examples
tiles the plane by the whole crystallographic group Γ. In particular, their
Lebesgue measure is respectively 1/2, 1/2 and

√
3/8.

We now give counterexamples.

Example 4. The crystallographic group is p2 (see Example 1), the
example is taken from [7, Fig. 8 (c)]

g(x, y) = (−y,−3x− y), D = {id, b, a−1c}.

One reads off from the counting subautomaton that c is a periodic point of
the dynamical system (p2, φ), since φ(c) = c.

Example 5. The Heighway dragon is constructed as follows. Let p4 be
the planar crystallographic group generated by the canonical translations
a, b (see Example 1) and the rotation e by π/2 around the origin. The
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c

b−1 bc b

a−1c

a−1bc

id

id

id

a−1c

a−1c

b a−1c
id

b

b

a−1c b

id, b

b id
a−1c

id, a−1c

–1

–0.5

0.5

1

1.5

2

–1.2 –1 –0.8 –0.4 0.2

Figure 4. Example 4. Digit tiles T, b(T ), a−1c(T ) and count-
ing subautomaton.

expansion and the digit set are

g(x, y) = (x+ y, y − x), D = {id, δ = abe}.
A counting subautomaton is depicted in Figure 5. We see that e is a periodic
element. More precisely, φ(e) = e and e is a fixed point of the dynamical
system (p4, φ).

Example 6. The Levy dragon is also a p4 example that does not satisfy
the number system property. The data for the Levy dragon are

g(x, y) = (x+ y, y − x), D = {id, δ = be3}.
It is easily computed that e = geg−1, thus φ(e) = e and (p4, g,D) is not
a crystallographic number system. The counting subautomaton has more
than twenty states and is not depicted here.

Remark 4.2. The tiles in the last three examples seem to induce tilings by
the whole associated group Γ. This is already known for the Levy dragon
(see [22]).

The rest of this section is devoted to a class of examples. We consider
the planar crystallographic group p2, generated by the π-rotation c around
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id

ae be3

be2

e e3id

δ

id

δ

δ

id

id

id δ

id, δ

δ

Figure 5. Heighway dragon and counting subautomaton.

Figure 6. Levy dragon.

the origin and two translations a, b along the the lattice Z
2:

a(x, y) = (x+ 1, y) b(x, y) = (x, y + 1) c(x, y) = (−x,−y)

and Γ = {apbqcr; p, q ∈ Z, r ∈ {0, 1}}. We choose

(4.2) g(x, y) =

(
α β
ǫ δ

)

︸ ︷︷ ︸

M∈Z2×Z2

+

(
B−1
2
0

)

,
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where B := | det(M)|, and

(4.3)
D =

{
id, a, . . . , aB−2, c

}
if B ≥ 3

D = {id, c} if B = 2.

Then D is a complete right residue system of Γ/gΓg−1 if and only if ǫ = ±1.

We will characterize the number systems among this class as follows.

Theorem 4.3. Let (g,D) as in (4.2)-(4.3). Then (p2, g,D) is a crystallo-
graphic number system if and only if

−1 ≤ −Tr(M) ≤ det(M) ≥ 2.

In fact, the crystallographic data (p2, g,D) is very close to the lattice
data (Z2,M,N ), where

(4.4) N =

{(
0
0

)

,

(
1
0

)

, . . . ,

(
B − 1

0

)}

.

Note that in the lattice case, we consider the above translation vectors
rather than the translation mappings id, a, . . . , aB−1. (Z2,M,N ) is a so-
called canonical number system if and only if every integer vector t has a
unique representation

t = d0 +Md1 + . . .+M ldl

with l ∈ N and digits di ∈ N . For this lattice data, the following was proved
in [25].

Proposition 4.4 (cf. [25]). Let M :=

(
α β
ǫ δ

)

∈ Z
2 × Z

2 and

N =

{(
0
0

)

,

(
1
0

)

, . . . ,

(
B − 1

0

)}

,

where B := | det(M)|. Then N is a complete residue system of Z2/MZ
2 if

and only if ǫ = ±1. In this case, (Z2,M,N ) is a canonical number system
if and only if

−1 ≤ −Tr(M) ≤ det(M) ≥ 2.

Proof of Theorem 4.3. We first show that a translation γ of p2 has a finite
expansion in (Γ, g,D) if and only if the corresponding translation vector
tγ has a finite expansion in (Z2,M,N ). To this matter, we give the exact
correspondence between the two expansions. Let

γ = apbq = gmδmg
−m . . . gδ1g

−1δ0.

Then c appears an even number of times, because γ is a translation. Let
us consider the special case where c appears exactly twice in the following
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way : there are 1 < i1 < i2 + 1 = m with δi1+1 = δi2+1 = c and the other
digits are translations aki. Note that

gpcg−p(x) = −x+Mp−1

(
B − 1

0

)

+ . . .+M

(
B − 1

0

)

+

(
B − 1

0

)

,

and

gpakg−p(x) = x+Mp

(
k
0

)

.

Therefore, by a straightforward computation,

gi1δi1g
−i1 . . . gδ1g

−1δ0(x) = x+M i1

(
ki1
0

)

+ . . .+M

(
k1
0

)

+

(
k0
0

)

.

After the first occurrence of c, we have

gi1+1cg−i1−1gi1δi1g
−i1 . . . gδ1g

−1δ0(x)

= −x+M i1

(
B − 1− ki1

0

)

+ . . .+M

(
B − 1− k1

0

)

+

(
B − 1− k0

0

)

.

Now, from i1 + 2 to i2, again translations are considered:

gi2δi2g
−i2 . . . δ0(x)

= −x+M i2

(
ki2
0

)

+ . . .+M i1+2

(
ki1+2

0

)

+M i1

(
B − 1− ki1

0

)

+ . . .+

(
B − 1− k0

0

)

and finally after the second occurrence of c

gmcg−m . . . δ0(x) = x+ tγ

= x+Mm−1

(
B − 1− km−1

0

)

+ . . .+M i1+2

(
B − 1− ki1+2

0

)

+M i1+1

(
B − 1

0

)

+M i1

(
ki1
0

)

+ . . .+

(
k0
0

)

.

Since all

(
B − 1− d

0

)

above belong toN , the last lines contains the finite

expansion of tγ we are looking for.

For any γ translation of p2, the correspondence between crystallographic
and lattice expansions can be established in a similar way. For simplicity, we
depict this correspondence as an automaton on Figure 7. Let (δm, . . . , δ0)g
represent the translation γ. Then one obtains the string representing tγ by
feeding the automaton from the state P with the string of digits (δm, . . . , δ0)g
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P Q
c | B − 1

c | 0

id | 0
a | 1
... | ...

aB−2 | B − 2

id | B − 1
a | B − 2
... | ...

aB−2 | 1

Figure 7. From crystallographic data to lattice data.

from right to left. The corresponding digits (dm, . . . , d0)M are read off from
the edges.

In the same way, if t is an integer vector having a finite representa-
tion (dm, . . . , d0)M , the automaton of Figure 7 gives the representation
(δm, . . . , δ0)g of the corresponding translation γ(x) = x + t in p2. Hence
a translation γ has a finite representation in (p2, g,D) if and only if its
translation vector tγ has a finite representation in (Z2,M,N ).

Therefore, by Proposition 4.4, a necessary condition for (p2, g,D) to be
a crystallographic number system is that

−1 ≤ −Tr(M) ≤ det(M) ≥ 2.

Now we check that if this condition is fulfilled, then also the rotations
apbqc (p, q ∈ Z) have a finite representation in (p2, g,D). This follows
from the counting action of c. We depict in Figure 8 part of the counting
automaton involving the state c. Every translation apbq has a representa-
tion (δm, . . . , δ0)g, and the composition by c to obtain the representation of
apbqc is given by the automaton of Figure 8. The output string has the form
(δ′m, . . . , δ

′
0)g: in particular, it remains finite.

�

Eventually, we give a correspondence between the crystallographic tiles
and the associated lattice tiles of the above class. More precisely, let (g,D)
as in (4.2)-(4.3) and N as in (4.4). Furthermore, let T be the solution of

g(T ) = D(T )

and T l be the solution of

MT l = T l +N .
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c id

id c
c id

a aB−2

...
...

aB−2 a

id id
a a
...

...
aB−2 aB−2

c c

Figure 8. Counting automaton restricted to {id, c}.

Figure 9. T ∪ (−T ) for Tr(M) = −3, det(M) = 4.

Then, by unicity of the solutions of the above equations, it is easy to see
that

T l = T ∪ (−T ) + (M − I2)
−1

(
B−1
2
0

)

.

Here, I2 is the 2×2 identity matrix. Therefore, T l is a translate of T ∪(−T ).
The topological study for T l was investigated in [3]. However T and T l

may have a very different topological behaviour, as shown in Figure 9. We
postpone this study to a forthcoming paper.

Thanks. I am grateful to Jörg Thuswaldner for helpful discussions. I
also thank the anonymous referee for the careful reading and the precious
suggestions.
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