Families of labyrinth fractals and their magic

Ligia Loretta Cristea

FWF stand-alone project P27050-N26 and F5508-N26, part of the Special Research Program "Quasi-Monte Carlo Methods: Theory and Applications"

joint work with Bertran Steinsky and Gunther Leobacher

Universität Graz, Institut für Mathematik und wissenschaftliches Rechnen ÖMG-DMV, Salzburg, September 11-15, 2017

- LLC, B. Steinsky, **Paths of infinite length in** 4 × 4 **labyrinth fractals**, *Geometriae Dedicata (2009)*
- LLC, B. Steinsky, Curves of Infinite Length in Labyrinth Fractals, Proceedings of the Edinburgh Math. Soc. (2010)
- LLC, B. Steinsky, Mixed labyrinth fractals, J. Topology and its Applications (2017)
- LLC, G. Leobacher, A note on lengths of arcs in mixed labyrinth fractals, *Monatshefte f. Mathematik* (2017)

(Labyrinth) patterns. The graph of a (labyrinth) pattern

A 4 \times 4 (labyrinth) pattern and its graph

What is a labyrinth pattern?

Property 1 (The Tree Property)

Property

The graph of the labyrinth pattern is a tree. (the Tree Property)

Property 2 (The Exits Property)

Property

There is exactly one horizontal and exactly one vertical exit pair in the labyrinth pattern. (the Exits Property)

Property 3 (The Corner Property)

Property

If there is a white square at a corner of the labyrinth pattern, then there is no white square at the diagonally opposite corner of the labyrinth pattern. (the Corner Property)

Construction of a labyrinth fractal

A 4 \times 4-labyrinth pattern/set.

.. labyrinth fractal

Dendrites

Theorem

For all $m \times m$ labyrinth patterns, the constructed self-similar fractal L is a dendrite.

Dendrite

A *dendrite* is a connected and locally connected compact Hausdorff space that contains no simple closed curve.

A Fourth Property

Horizontally Blocked

A labyrinth pattern is called *horizontally blocked* if the row (of squares) from the left exit to the right exit contains at least one black square.

Vertically Blocked

A labyrinth pattern is called *vertically blocked* if the column (of squares) from the top exit to the bottom exit contains at least one black square.

Self-similar labyrinth fractals. Main Result

Theorem

Let L_{∞} be the (self-similar) labyrinth fractal generated by a horizontally and vertically blocked $m \times m$ -labyrinth pattern.

- (a) Between any two points in L_{∞} there is a unique arc a.
- (b) The length of a is infinite and dim_B(a) = $\frac{\log r}{\log m}$.
- (c) The set of all points, at which no tangent to a exists, is dense in a.

Mixed labyrinth fractals

Figure: Two labyrinth patterns, A_1 (a 4-pattern) and A_2 (a 5-pattern)

Figure: The mixed (labyrinth) set W_2 , constructed based on the above patterns A_1 and A_2 , that can also be viewed as a 20-pattern

Figure: Labyrinth patterns: A_1 , A_2 (as before), and A_3 (4 × 4)

Figure: The mixed (labyrinth) set of level 4 defined by a sequence $\{A_k\}_{k\geq 1}$ where the first three patterns are A_1, A_2, A_3 , respectively, shown above, and the fourth is A_1

Topological properties of mixed labyrinth fractals

Lemma

Let $\{A_k\}_{k=1}^{\infty}$ be a sequence of non-empty patterns, $m_k \ge 3$, and $n \ge 1$. If $A_1, \ldots A_n$ are labyrinth patterns, then W_n is an $m(n) \times m(n)$ -labyrinth set (i.e., it has the Tree Property, Exits Property, Corner property), for all $n \ge 1$, where $m(n) = \prod_{k=1}^{n} m_k$.

We call the limit set
$$L_{\infty} = \bigcap_{\substack{n \ge 1 \\ W \in W_n}} \bigcup_{W \in W_n} W$$
 the mixed labyrinth fractal generated by $\{\mathcal{A}_k\}_{k=1}^{\infty}$.

Theorem

Let $\{A_k\}_{k=1}^{\infty}$ be a sequence of labyrinth patterns, $m_k \ge 3$, for all $k \ge 1$. Then L_{∞} is a dendrite.

The construction of the path between exits

Example: The path between the bottom exit and the right exit

Figure: The set W_2 constructed with the patterns A_1 and A_2 shown before, and the path from the bottom exit to the right exit of W_2 (in lighter gray).

One can check that $\square(2) = 48$.

The idea of the construction described in the following works for all mixed labyrinth fractals.

Paths in mixed labyrinth sets. Paths in patterns

Figure: The path from the bottom exit to the right exit of \mathcal{A}_1

- first, we find the path between the bottom and the right exit of \mathcal{W}_1
- then we denote each white square in the path according to its neighbours within the path: there are 6 possible types of squares: □, □, □, □, □, and □-square

Paths in mixed labyrinth sets. Paths in patterns

In order to obtain the \square -path in $\mathcal{G}(\mathcal{W}_2)$, we replace each \square -square of the path in $\mathcal{G}(\mathcal{W}_1)$ with the \square -path in $\mathcal{G}(\mathcal{A}_2)$. Analogously, we do this for the other marked white squares.

Figure: Paths from bottom to top and from left to right exit of A_2

Paths in mixed labyrinth sets

In general, for any pair of exits and $n \ge 1$, we replace each marked white square in the path of $\mathcal{G}(\mathcal{W}_n)$ by its corresponding path in $\mathcal{G}(\mathcal{A}_{n+1})$ and obtain the path of $\mathcal{G}(\mathcal{W}_{n+1})$.

Paths in mixed labyrinth sets

Let $\{A_k\}_{k\geq 1}$ be a sequence of labyrinth patterns, that defines the sequence $\{W_n\}_{n\geq 1}$ of mixed labyrinth sets.

Proposition

There exist non-negative 6×6 -matrices M_k , k = 1, 2, ..., such that for all $n \ge 1$, and for $M(n) = M_1 \cdot M_2 \cdot \cdots \cdot M_n$, the element in row x and column y of M(n) is the number of y-squares in the x-path in $\mathcal{G}(\mathcal{W}_n)$, for $x, y \in \{\square, \square, \square, \square, \square\}$. Furthermore,

$$\begin{pmatrix} \Pi(n) \\ \exists (n) \end{pmatrix} = M(n) \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Paths in mixed labyrinth sets

Sketch of the proof

For $k \ge 1$, we define the matrix M_k (the path matrix of \mathcal{A}_k):

- the columns of *M_k* from left to right and the rows of *M_k* from top to bottom correspond to □, =, □, □, □, and □, (ordered set of indices)
- the element in row x and column y of M_k is the number of y-squares in the x-path in $\mathcal{G}(\mathcal{A}_k)$.

One can easily check that the matrix multiplication reflects the substitution of paths.

(Proof by induction)

Remark. The proposition yields

- in the self-similar case $M(n) = M^n$
- in the mixed case $M(n+1) = M(n) \cdot M_{n+1}$

Mixed labyrinth fractals generated by special cross patterns

Figure: Example: the first five elements of a sequence of special cross patterns, where $m_k = 2k + 9$, and $a_k = k + 4$

Theorem

There **exist** sequences $\{A_k\}_{k=1}^{\infty}$ of both horizontally and vertically blocked labyrinth patterns, such that the limit set L_{∞} has the property that for any two points in L_{∞} the length of the arc $a \subset L_{\infty}$ that connects them is **finite**. For almost all points $x_0 \in a$ (with respect to the length) there exists the tangent at x_0 to the arc a.

Proposition

There exist sequences $\{\mathcal{A}_k\}_{k=1}^{\infty}$ of (both horizontally and vertically) blocked labyrinth patterns, such that the limit set L_{∞} has the property that for any two points in L_{∞} the length of the arc $a \subset L_{\infty}$ that connects them is infinite.

Wild labyrinth patterns/Wild labyrinth fractals

Figure: Examples: wild labyrinth patterns, both *vertically* and *horizontally blocked*

- tree \longleftrightarrow connected graph
- uniqueness of v/h exit pair \longleftrightarrow existence of v/h exit pair
- corner property

Paths in wild labyrinth fractals. Example

For wild labyrinth fractals the Lemma about the path construction does not hold in general: the squares in the shortest path from the top exit to the bottom exit in $\mathcal{G}(\mathcal{W}_2)$ do not lie whithin the shortest path from the top exit to the bottom exit in $\mathcal{G}(\mathcal{W}_1)$

- in $\mathcal{G}(\mathcal{W}_1)$: $\square_1^{left} = 15$, $\square_1^{right} = 13$, $\square_1 = 15$, $\square_1 = \square_1 = \square_1 = \square_1 = 9$
- the length of the "right" \square -path in $\mathcal{G}(\mathcal{W}_2)$ is $7\square_1 + 2\square_1 + \square_1 + \square_1 + \square_1 = 7 \cdot 13 + 2 \cdot 15 + 4 \cdot 9 = 157$
- the length of the "left" \square -path in $\mathcal{G}(\mathcal{W}_2)$ is $3\square_1 + 0 \cdot \square_1 + 3\square_1 + 3\square_1 + 3\square_1 + 3\square_1 = 3 \cdot 13 + 4 \cdot 3 \cdot 9 = 147$

A. A. Potapov, W. Zhang, CIE International Conference on Radar (October 2016) : prototypes of ultra-wide band radar antennas based on labyrinth fractals

Thank you!