Families of labyrinth fractals and their magic

Ligia Loretta Cristea

FWF stand-alone project P27050-N26
and F5508-N26, part of the Special Research Program "Quasi-Monte Carlo Methods: Theory and Applications"

joint work with Bertran Steinsky and Gunther Leobacher

Universität Graz,
Institut für Mathematik und wissenschaftliches Rechnen
ÖMG-DMV, Salzburg, September 11-15, 2017

- LLC, B. Steinsky, Paths of infinite length in 4×4 labyrinth fractals, Geometriae Dedicata (2009)
- LLC, B. Steinsky, Curves of Infinite Length in Labyrinth Fractals, Proceedings of the Edinburgh Math. Soc. (2010)
- LLC, B. Steinsky, Mixed labyrinth fractals, J. Topology and its Applications (2017)
- LLC, G. Leobacher, A note on lengths of arcs in mixed labyrinth fractals, Monatshefte f. Mathematik (2017)

(Labyrinth) patterns. The graph of a (labyrinth) pattern

What is a labyrinth pattern?

Property 1 (The Tree Property)

The graph of the labyrinth pattern

Property

The graph of the labyrinth pattern is a tree. (the Tree Property)

Property 2 (The Exits Property)

Property

There is exactly one horizontal and exactly one vertical exit pair in the labyrinth pattern. (the Exits Property)

Property 3 (The Corner Property)

Property

If there is a white square at a corner of the labyrinth pattern, then there is no white square at the diagonally opposite corner of the labyrinth pattern. (the Corner Property)

Construction of a labyrinth fractal

A 4×4-labyrinth pattern/set.

.. labyrinth fractal

Dendrites

Theorem
For all $m \times m$ labyrinth patterns, the constructed self-similar fractal L is a dendrite.

Dendrite

A dendrite is a connected and locally connected compact Hausdorff space that contains no simple closed curve.

A Fourth Property

Horizontally Blocked

A labyrinth pattern is called horizontally blocked if the row (of squares) from the left exit to the right exit contains at least one black square.

Vertically Blocked

A labyrinth pattern is called vertically blocked if the column (of squares) from the top exit to the bottom exit contains at least one black square.

Self-similar labyrinth fractals. Main Result

Theorem

Let L_{∞} be the (self-similar) labyrinth fractal generated by a horizontally and vertically blocked $m \times m$-labyrinth pattern.
(a) Between any two points in L_{∞} there is a unique arc a.
(b) The length of a is infinite and $\operatorname{dim}_{B}(a)=\frac{\log r}{\log m}$.
(c) The set of all points, at which no tangent to a exists, is dense in a.

Mixed labyrinth fractals

Figure: Two labyrinth patterns, \mathcal{A}_{1} (a 4-pattern) and \mathcal{A}_{2} (a 5-pattern)

Figure: The mixed (labyrinth) set \mathcal{W}_{2}, constructed based on the above patterns \mathcal{A}_{1} and \mathcal{A}_{2}, that can also be viewed as a 20 -pattern

Figure: Labyrinth patterns: $\mathcal{A}_{1}, \mathcal{A}_{2}$ (as before), and $\mathcal{A}_{3}(4 \times 4)$

Figure: The mixed (labyrinth) set of level 4 defined by a sequence $\left\{\mathcal{A}_{k}\right\}_{k \geq 1}$ where the first three patterns are $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}$, respectively, shown above, and the fourth is \mathcal{A}_{1}

Topological properties of mixed labyrinth fractals

Lemma

Let $\left\{\mathcal{A}_{k}\right\}_{k=1}^{\infty}$ be a sequence of non-empty patterns, $m_{k} \geq 3$, and $n \geq 1$. If $\mathcal{A}_{1}, \ldots \mathcal{A}_{n}$ are labyrinth patterns, then \mathcal{W}_{n} is an $m(n) \times m(n)$-labyrinth set (i.e., it has the Tree Property, Exits Property, Corner property), for all $n \geq 1$, where $m(n)=\prod_{k=1}^{n} m_{k}$.

We call the limit set $L_{\infty}=\bigcap_{n>1} \bigcup_{W \in \mathcal{W}_{n}} W$ the mixed labyrinth
fractal generated by $\left\{\mathcal{A}_{k}\right\}_{k=1}^{\infty}$.
Theorem
Let $\left\{\mathcal{A}_{k}\right\}_{k=1}^{\infty}$ be a sequence of labyrinth patterns, $m_{k} \geq 3$, for all $k \geq 1$. Then L_{∞} is a dendrite.

The construction of the path between exits

Example: The path between the bottom exit and the right exit

Figure: The set \mathcal{W}_{2} constructed with the patterns \mathcal{A}_{1} and \mathcal{A}_{2} shown before, and the path from the bottom exit to the right exit of \mathcal{W}_{2} (in lighter gray).

One can check that $\boldsymbol{r}(2)=48$.
The idea of the construction described in the following works for all mixed labyrinth fractals.

Paths in mixed labyrinth sets. Paths in patterns

Figure: The path from the bottom exit to the right exit of \mathcal{A}_{1}

- first, we find the path between the bottom and the right exit of \mathcal{W}_{1}
- then we denote each white square in the path according to its neighbours within the path: there are 6 possible types of squares: $\boldsymbol{\Pi}, \boldsymbol{\Pi}, \boxed{\boxed{L}}, \mathbf{\Gamma}, \mathbf{\pi}$, and $\mathbf{\rrbracket}$-square

Paths in mixed labyrinth sets. Paths in patterns

In order to obtain the \boldsymbol{r}-path in $\mathcal{G}\left(\mathcal{W}_{2}\right)$, we replace each \llbracket-square of the path in $\mathcal{G}\left(\mathcal{W}_{1}\right)$ with the π-path in $\mathcal{G}\left(\mathcal{A}_{2}\right)$.
Analogously, we do this for the other marked white squares.

Figure: Paths from bottom to top and from left to right exit of \mathcal{A}_{2}

Paths in mixed labyrinth sets

In general, for any pair of exits and $n \geq 1$, we replace each marked white square in the path of $\mathcal{G}\left(\mathcal{W}_{n}\right)$ by its corresponding path in $\mathcal{G}\left(\mathcal{A}_{n+1}\right)$ and obtain the path of $\mathcal{G}\left(\mathcal{W}_{n+1}\right)$.

Paths in mixed labyrinth sets

Let $\left\{\mathcal{A}_{k}\right\}_{k \geq 1}$ be a sequence of labyrinth patterns, that defines the sequence $\left\{\mathcal{W}_{n}\right\}_{n \geq 1}$ of mixed labyrinth sets.

Proposition

There exist non-negative 6×6-matrices $M_{k}, k=1,2, \ldots$, such that for all $n \geq 1$, and for $M(n)=M_{1} \cdot M_{2} \cdots \cdot M_{n}$, the element in row x and column y of $M(n)$ is the number of y-squares in the x-path in $\mathcal{G}\left(\mathcal{W}_{n}\right)$, for $x, y \in\{\mathbb{\Pi}, \boldsymbol{\Xi}, \boldsymbol{\boxed { L }}, \mathbf{\Gamma}, \mathbf{\pi}, \boldsymbol{\Xi}\}$.
Furthermore,

$$
\left(\begin{array}{c}
\boldsymbol{T}(n) \\
\boldsymbol{\Pi}(n) \\
\boldsymbol{L}(n) \\
\boldsymbol{\Gamma}(n) \\
\boldsymbol{\Pi}(n) \\
\boldsymbol{\Xi}(n)
\end{array}\right)=M(n) \cdot\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

Paths in mixed labyrinth sets

Sketch of the proof
For $k \geq 1$, we define the matrix M_{k} (the path matrix of \mathcal{A}_{k}):

- the columns of M_{k} from left to right and the rows of M_{k} from top to bottom correspond to $\mathbf{\Pi}, \llbracket, \llbracket, \llbracket, \mathbf{a}$, and $\mathbb{\square}$, (ordered set of indices)
- the element in row x and column y of M_{k} is the number of y-squares in the x-path in $\mathcal{G}\left(\mathcal{A}_{k}\right)$.
One can easily check that the matrix multiplication reflects the substitution of paths.
(Proof by induction)
Remark. The proposition yields
- in the self-similar case $M(n)=M^{n}$
- in the mixed case $M(n+1)=M(n) \cdot M_{n+1}$

Mixed labyrinth fractals generated by special cross patterns

Figure: Example: the first five elements of a sequence of special cross patterns, where $m_{k}=2 k+9$, and $a_{k}=k+4$

Theorem
There exist sequences $\left\{\mathcal{A}_{k}\right\}_{k=1}^{\infty}$ of both horizontally and vertically blocked labyrinth patterns, such that the limit set L_{∞} has the property that for any two points in L_{∞} the length of the arc $a \subset L_{\infty}$ that connects them is finite. For almost all points $x_{0} \in a$ (with respect to the length) there exists the tangent at x_{0} to the arc a.

Proposition

There exist sequences $\left\{\mathcal{A}_{k}\right\}_{k=1}^{\infty}$ of (both horizontally and vertically) blocked labyrinth patterns, such that the limit set L_{∞} has the property that for any two points in L_{∞} the length of the arc $a \subset L_{\infty}$ that connects them is infinite.

Wild labyrinth patterns/Wild labyrinth fractals

Figure: Examples: wild labyrinth patterns, both vertically and horizontally blocked

- tree \longleftrightarrow connected graph
- uniqueness of v / h exit pair \longleftrightarrow existence of v / h exit pair
- corner property

Paths in wild labyrinth fractals. Example

For wild labyrinth fractals the Lemma about the path construction does not hold in general: the squares in the shortest path from the top exit to the bottom exit in $\mathcal{G}\left(\mathcal{W}_{2}\right)$ do not lie whithin the shortest path from the top exit to the bottom exit in $\mathcal{G}\left(\mathcal{W}_{1}\right)$

- in $\mathcal{G}\left(\mathcal{W}_{1}\right): \boldsymbol{\Pi}_{1}^{\text {left }}=15, \boldsymbol{\Pi}_{1}^{\text {right }}=13$,

$$
\boldsymbol{\square}_{1}=15, \boldsymbol{\llcorner}_{1}=\boldsymbol{r}_{1}=\boldsymbol{a}_{1}=\boldsymbol{\Xi}_{1}=9
$$

- the length of the "right" \mathbb{T}-path in $\mathcal{G}\left(\mathcal{W}_{2}\right)$ is $7 \boldsymbol{\Phi}_{1}+2 \boldsymbol{\Xi}_{1}+\boldsymbol{\Sigma}_{1}+\boldsymbol{\Gamma}_{1}+\boldsymbol{\Xi}_{1}+\boldsymbol{\Xi}_{1}=7 \cdot 13+2 \cdot 15+4 \cdot 9=157$
- the length of the "left" \mathbb{T}-path in $\mathcal{G}\left(\mathcal{W}_{2}\right)$ is $3 \boldsymbol{\Phi}_{1}+0 \cdot \boldsymbol{\Xi}_{1}+3 \boldsymbol{L}_{1}+3 \boldsymbol{r}_{1}+3 \mathbf{\Xi}_{1}+3 \boldsymbol{\Xi}_{1}=3 \cdot 13+4 \cdot 3 \cdot 9=147$
A. A. Potapov, W. Zhang, CIE International Conference on Radar (October 2016) : prototypes of ultra-wide band radar antennas based on labyrinth fractals

Th a nk

you!

