Interval exchange transformations
 Teichmüller theory through the eyes of word combinatorics

Vincent Delecroix

February 2018, Salzburg

Lecture 1: Interval exchange maps

- Rauzy induction: a particular case of S-adic system (. . . to be continued in Lecture 2)
- coding of translation flows (and billiards)

A rotation is a 2-interval exchange transformation

A rotation is a 2-interval exchange transformation

The rotation of angle α is the map $T_{\alpha}:[0,1] \rightarrow[0,1]$ defined by

$$
T_{\alpha}(x)=x+\alpha \quad \bmod 1
$$

A rotation is a 2-interval exchange transformation

The rotation of angle α is the map $T_{\alpha}:[0,1] \rightarrow[0,1]$ defined by

$$
T_{\alpha}(x)=x+\alpha \quad \bmod 1
$$

It can be seen as a 2-interval exchange transformation

A rotation is a 2-interval exchange transformation

The rotation of angle α is the map $T_{\alpha}:[0,1] \rightarrow[0,1]$ defined by

$$
T_{\alpha}(x)=x+\alpha \quad \bmod 1
$$

It can be seen as a 2-interval exchange transformation

A rotation is a 2-interval exchange transformation

The rotation of angle α is the map $T_{\alpha}:[0,1] \rightarrow[0,1]$ defined by

$$
T_{\alpha}(x)=x+\alpha \quad \bmod 1
$$

It can be seen as a 2-interval exchange transformation

A rotation is a 2-interval exchange transformation

The rotation of angle α is the map $T_{\alpha}:[0,1] \rightarrow[0,1]$ defined by

$$
T_{\alpha}(x)=x+\alpha \quad \bmod 1
$$

It can be seen as a 2-interval exchange transformation

We aim to study the dynamics of such map.

A rotation is a 2-interval exchange transformation

We will study the dynamics of interval exchange transformations from both the topological and measurable viewpoints.

A rotation is a 2-interval exchange transformation

We will study the dynamics of interval exchange transformations from both the topological and measurable viewpoints.

- A rotation preserves the Lebesgue measure.

A rotation is a 2-interval exchange transformation

We will study the dynamics of interval exchange transformations from both the topological and measurable viewpoints.

- A rotation preserves the Lebesgue measure.
- Warning: T_{α} is not continuous on $[0,1)$.

A rotation is a 2-interval exchange transformation

We will study the dynamics of interval exchange transformations from both the topological and measurable viewpoints.

- A rotation preserves the Lebesgue measure.
- Warning: T_{α} is not continuous on $[0,1)$.

To consider the topological side, we consider a the associated coding $\widehat{T}: X_{\alpha} \rightarrow X_{\alpha}$ where $X_{\alpha} \subset\{A, B\}(\widehat{T}$ is the shift map on sequences).

Coding

Coding

A

Coding

AA

Coding

AAB

Coding

AABA

Coding

AABAB

Coding

AABABA

Coding

AABABAA

Coding

AABABAAB...

Coding

. $A A B A B A A B .$.

Coding

Coding

AB. $A A B A B A A B .$.

Coding

Coding

... ABAB. AABABAAB...

Coding

ABAB. AABABAAB...

To each point $x_{0} \in[0,1]$ that is not singular we associate a biinfinite sequence called the coding of x_{0}.

Coding

... ABAB. AABABAAB...

To each point $x_{0} \in[0,1]$ that is not singular we associate a biinfinite sequence called the coding of x_{0}. For rotations, such biinfinite words are called Sturmian sequences.

Coding

... ABAB.AABABAAB...

To each point $x_{0} \in[0,1]$ that is not singular we associate a biinfinite sequence called the coding of x_{0}. For rotations, such biinfinite words are called Sturmian sequences.
From here two options to construct $X_{\alpha} \subset\{A, B\}^{\mathbb{Z}}$:

- take the closure of the set of codings of regular sequences,
- define the codings of singular sequences ("Keane construction").

Coding

Theorem
If α is irrational, there is a unique continuous surjective map $p: X_{\alpha} \rightarrow[0,1]$ so that the coding of $p(w)$ is w. All points have exactly one preimage except the singular orbits that have two.

Coding

Theorem
If α is irrational, there is a unique continuous surjective map $p: X_{\alpha} \rightarrow[0,1]$ so that the coding of $p(w)$ is w. All points have exactly one preimage except the singular orbits that have two.
α is the only singular point of T^{-1}, it has a well defined future orbit with coding $\omega_{+} \in\{A, B\}^{\mathbb{Z}_{\geq 0}}$.

Coding

Theorem
If α is irrational, there is a unique continuous surjective map $p: X_{\alpha} \rightarrow[0,1]$ so that the coding of $p(w)$ is w. All points have exactly one preimage except the singular orbits that have two.
α is the only singular point of T^{-1}, it has a well defined future orbit with coding $\omega_{+} \in\{A, B\}^{\mathbb{Z}_{\geq 0}}$.
$1-\alpha$ is the only singularity of T, it has a well defined past orbit with coding $\omega_{-} \in\{A, B\}^{\mathbb{Z}_{<0}}$.

Coding

Theorem
If α is irrational, there is a unique continuous surjective map $p: X_{\alpha} \rightarrow[0,1]$ so that the coding of $p(w)$ is w. All points have exactly one preimage except the singular orbits that have two.
α is the only singular point of T^{-1}, it has a well defined future orbit with coding $\omega_{+} \in\{A, B\}^{\mathbb{Z}_{\geq 0}}$.
$1-\alpha$ is the only singularity of T, it has a well defined past orbit with coding $\omega_{-} \in\{A, B\}^{\mathbb{Z}_{<0}}$.
The singular orbits have codings $\omega_{-} A B \omega_{+}$and $\omega_{-} B A \omega_{+}$.

Dynamical results

Theorem
Let α be irrational, and X_{α} be the Sturmian shift associated to the rotation T_{α}. Then:

- $p_{X_{\alpha}}(n)=n+1$, in particular X_{α} has 0 entropy;

Dynamical results

Theorem
Let α be irrational, and X_{α} be the Sturmian shift associated to the rotation T_{α}. Then:

- $p_{X_{\alpha}}(n)=n+1$, in particular X_{α} has 0 entropy;
- the shift X_{α} is minimal (all orbits are dense);

Dynamical results

Theorem

Let α be irrational, and X_{α} be the Sturmian shift associated to the rotation T_{α}. Then:

- $p_{X_{\alpha}}(n)=n+1$, in particular X_{α} has 0 entropy;
- the shift X_{α} is minimal (all orbits are dense);
- (Hecke (1922), Ostrowski (1922)) any clopen $Y \subset X_{\alpha}$ has bounded remainder: there exists μ_{Y} and C_{Y} so that

$$
\forall x \in X_{\alpha}, \forall n \geq 0, \quad\left|\sum_{k=0}^{n}\left(\chi_{Y}\left(T_{\alpha}^{k} x\right)-\mu_{Y}\right)\right| \leq C_{Y}
$$

In particular, the shift X_{α} is uniquely ergodic.

Dynamical results

Theorem

Let α be irrational, and X_{α} be the Sturmian shift associated to the rotation T_{α}. Then:

- $p_{X_{\alpha}}(n)=n+1$, in particular X_{α} has 0 entropy;
- the shift X_{α} is minimal (all orbits are dense);
- (Hecke (1922), Ostrowski (1922)) any clopen $Y \subset X_{\alpha}$ has bounded remainder: there exists μ_{Y} and C_{Y} so that

$$
\forall x \in X_{\alpha}, \forall n \geq 0, \quad\left|\sum_{k=0}^{n}\left(\chi_{Y}\left(T_{\alpha}^{k} x\right)-\mu_{Y}\right)\right| \leq C_{Y}
$$

In particular, the shift X_{α} is uniquely ergodic.
remark: for the clopens $Y=[A]$ or $Y=[B]$ we can pick $C_{Y}=1$ (1-balancedness).

Rauzy induction, continued fractions

For a pair of positive real numbers $\lambda=\left(\lambda_{A}, \lambda_{B}\right)$ we consider the $\operatorname{map} T_{\lambda}:[0,|\lambda|] \rightarrow[0,|\lambda|]$ given by

$$
T_{\lambda}(x)=x \mapsto\left(x+\lambda_{B}\right) \quad \bmod \left(\lambda_{A}+\lambda_{B}\right)
$$

Rauzy induction, continued fractions

For a pair of positive real numbers $\lambda=\left(\lambda_{A}, \lambda_{B}\right)$ we consider the $\operatorname{map} T_{\lambda}:[0,|\lambda|] \rightarrow[0,|\lambda|]$ given by

$$
T_{\lambda}(x)=x \mapsto\left(x+\lambda_{B}\right) \quad \bmod \left(\lambda_{A}+\lambda_{B}\right)
$$

The map T_{λ} is a rescaling of the rotation with $\alpha=\lambda_{B} /\left(\lambda_{A}+\lambda_{B}\right)$.

Rauzy induction, continued fractions

For a pair of positive real numbers $\lambda=\left(\lambda_{A}, \lambda_{B}\right)$ we consider the map $T_{\lambda}:[0,|\lambda|] \rightarrow[0,|\lambda|]$ given by

$$
T_{\lambda}(x)=x \mapsto\left(x+\lambda_{B}\right) \quad \bmod \left(\lambda_{A}+\lambda_{B}\right)
$$

The map T_{λ} is a rescaling of the rotation with $\alpha=\lambda_{B} /\left(\lambda_{A}+\lambda_{B}\right)$.
The Rauzy induction is the procedure which associates to the map T_{λ} the induced map on $\left[0, \max \left(\lambda_{A}, \lambda_{B}\right)\right]$.

Rauzy induction and continued fractions

top induction
case $\lambda_{B}>\lambda_{A}$

bot induction
case $\lambda_{B}<\lambda_{A}$

Rauzy induction and continued fractions

top induction
case $\lambda_{B}>\lambda_{A}$

bot induction
case $\lambda_{B}<\lambda_{A}$

Rauzy induction and continued fractions

top induction
case $\lambda_{B}>\lambda_{A}$

bot induction
case $\lambda_{B}<\lambda_{A}$

Rauzy induction and continued fractions

top induction
case $\lambda_{B}>\lambda_{A}$

bot induction
case $\lambda_{B}<\lambda_{A}$

Rauzy induction and continued fractions

$\left(\lambda_{A}, \lambda_{B}\right) \mapsto\left(\lambda_{A}, \lambda_{B}-\lambda_{A}\right)$
bot induction
case $\lambda_{B}<\lambda_{A}$

$\left(\lambda_{A}, \lambda_{B}\right) \mapsto\left(\lambda_{A}-\lambda_{B}, \lambda_{B}\right)$

Rauzy induction and continued fractions

$\left(\lambda_{A}, \lambda_{B}\right) \mapsto\left(\lambda_{A}, \lambda_{B}-\lambda_{A}\right)$ $A \mapsto A B, B \mapsto B$
bot induction case $\lambda_{B}<\lambda_{A}$

$\left(\lambda_{A}, \lambda_{B}\right) \mapsto\left(\lambda_{A}-\lambda_{B}, \lambda_{B}\right)$
$A \mapsto A, B \mapsto A B$

Rauzy induction, continued fractions

Theorem
The Rauzy induction (or Farey map) associates to a rotation T with lengths $\left(\lambda_{A}, \lambda_{B}\right)$ the new rotation T^{\prime} with either lengths $\left(\lambda_{A}, \lambda_{B}-\lambda_{A}\right)$ ("top type") or $\left(\lambda_{A}-\lambda_{B}, \lambda_{B}\right)$ ("bot type").

Rauzy induction, continued fractions

Theorem
The Rauzy induction (or Farey map) associates to a rotation T with lengths $\left(\lambda_{A}, \lambda_{B}\right)$ the new rotation T^{\prime} with either lengths $\left(\lambda_{A}, \lambda_{B}-\lambda_{A}\right)$ ("top type") or $\left(\lambda_{A}-\lambda_{B}, \lambda_{B}\right)$ ("bot type").

The codings for T are recovered from the coding of T^{\prime} by applying one of the substitution

$$
\sigma^{\text {top }}:\left\{\begin{array} { l }
{ A \mapsto A B } \\
{ B \mapsto B }
\end{array} \quad \text { or } \quad \sigma ^ { b o t } \left\{\begin{array}{l}
A \mapsto A \\
B \mapsto A B
\end{array} .\right.\right.
$$

Rauzy induction, continued fractions

Let

$$
A(\lambda)= \begin{cases}A^{\text {top }} & \text { if } \lambda_{A}<\lambda_{B} \\ A^{\text {bot }} & \text { if } \lambda_{A}>\lambda_{B} .\end{cases}
$$

where

$$
A^{t o p}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \quad A^{b o t}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

Rauzy induction, continued fractions

Let

$$
A(\lambda)= \begin{cases}A^{\text {top }} & \text { if } \lambda_{A}<\lambda_{B} \\ A^{\text {bot }} & \text { if } \lambda_{A}>\lambda_{B}\end{cases}
$$

where

$$
A^{t o p}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \quad A^{b o t}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

Then the Rauzy induction can be written $R(\lambda)=A(\lambda)^{-1} \lambda$: Rauzy induction is a piecewise linear map.

Rauzy induction, continued fractions

Let

$$
A(\lambda)= \begin{cases}A^{\text {top }} & \text { if } \lambda_{A}<\lambda_{B} \\ A^{\text {bot }} & \text { if } \lambda_{A}>\lambda_{B}\end{cases}
$$

where

$$
A^{t o p}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \quad A^{b o t}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

Then the Rauzy induction can be written $R(\lambda)=A(\lambda)^{-1} \lambda$: Rauzy induction is a piecewise linear map. And its powers is a matrix product: $R^{n}(\lambda)=\left(A_{n}(\lambda)\right)^{-1} \lambda$ where

$$
A_{n}(\lambda)=A(\lambda) A(R \lambda) \ldots A\left(R^{n-1} \lambda\right)
$$

Rauzy induction, continued fractions

Let

$$
A(\lambda)= \begin{cases}A^{\text {top }} & \text { if } \lambda_{A}<\lambda_{B} \\ A^{\text {bot }} & \text { if } \lambda_{A}>\lambda_{B}\end{cases}
$$

where

$$
A^{t o p}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \quad A^{b o t}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

Then the Rauzy induction can be written $R(\lambda)=A(\lambda)^{-1} \lambda$: Rauzy induction is a piecewise linear map. And its powers is a matrix product: $R^{n}(\lambda)=\left(A_{n}(\lambda)\right)^{-1} \lambda$ where

$$
A_{n}(\lambda)=A(\lambda) A(R \lambda) \ldots A\left(R^{n-1} \lambda\right)
$$

Note that A (and Rauzy induction R) commutes with scalar multiplication $A\left(e^{s} \lambda\right)=e^{s} A(\lambda)$.

Rauzy induction, continued fractions

Because

$$
A_{n}(\lambda)=A(\lambda) A(R \lambda) \ldots A\left(R^{n-1} \lambda\right)
$$

we can write

$$
\frac{\lambda_{B}}{\lambda_{A}}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ldots}}} .
$$

Rauzy induction, continued fractions

Because

$$
A_{n}(\lambda)=A(\lambda) A(R \lambda) \ldots A\left(R^{n-1} \lambda\right)
$$

we can write

$$
\frac{\lambda_{B}}{\lambda_{A}}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ldots}}} .
$$

This is called the continued fraction of $\lambda_{B} / \lambda_{A}$.

Interval exchange transformations

An interval exchange transformation T is a piecewise translation of an interval

$T: \Lambda\left\{\xi_{1}^{\text {top }}, \ldots, \xi_{d-1}^{\text {top }}\right\} \rightarrow \Lambda\left\{\xi_{1}^{\text {bot }}, \ldots, \xi_{d-1}^{\text {bot }}\right\}$.

Interval exchange transformations

An interval exchange transformation T is a piecewise translation of an interval

$T: \Lambda\left\{\xi_{1}^{\text {top }}, \ldots, \xi_{d-1}^{\text {top }}\right\} \rightarrow \Lambda\left\{\xi_{1}^{\text {bot }}, \ldots, \xi_{d-1}^{\text {bot }}\right\}$.
The above interval exchange transformation can be defined from:

- a "permutation" $\pi=\binom{\pi^{t o p}}{\pi^{b o t}}=\left(\begin{array}{cccc}A & B & C & D \\ D & C & B & A\end{array}\right)$,
- a length vector $\lambda=\left(\lambda_{A}, \lambda_{B}, \lambda_{C}, \lambda_{D}\right)$.

Interval exchange transformations

An interval exchange transformation T is a piecewise translation of an interval

$T: \Lambda\left\{\xi_{1}^{\text {top }}, \ldots, \xi_{d-1}^{\text {top }}\right\} \rightarrow \Lambda\left\{\xi_{1}^{\text {bot }}, \ldots, \xi_{d-1}^{\text {bot }}\right\}$.
The above interval exchange transformation can be defined from:

- a "permutation" $\pi=\binom{\pi^{t o p}}{\pi^{b o t}}=\left(\begin{array}{cccc}A & B & C & D \\ D & C & B & A\end{array}\right)$,
- a length vector $\lambda=\left(\lambda_{A}, \lambda_{B}, \lambda_{C}, \lambda_{D}\right)$.

We call $\left\{\xi_{1}^{\text {top }}, \ldots, \xi_{d-1}^{\text {top }}\right\}$ (respectively $\left\{\xi_{1}^{\text {bot }}, \ldots, \xi_{d-1}^{\text {bot }}\right\}$) the top singularities (resp. bot singularities) of T.

Translation surfaces

From translation surfaces to interval exchanges

Theorem

Let S be a translation surface with s conical singularities. Let
$I \subset S$ be an horizontal segment so that

- each leaf of the vertical flow meets I,
- both endpoints of I have the property that either in the past or the future, they bump into a singularity of the surface before coming back to the interval.
Then the Poincaré map of the vertical flow on I is an interval
exchange map on $2 g+s-1$ intervals.

Coding

As we did for rotations, given the interval exchange transformation T above, we could code orbits in $\{A, B, C, D\}^{\mathbb{Z}}$ (except the singular ones). We obtain a shift $\widehat{T}: X_{\pi, \lambda} \rightarrow X_{\pi, \lambda}$ and a factor $\operatorname{map} p: X_{\pi, \lambda} \rightarrow I$.

Coding

As we did for rotations, given the interval exchange transformation T above, we could code orbits in $\{A, B, C, D\}^{\mathbb{Z}}$ (except the singular ones). We obtain a shift $\widehat{T}: X_{\pi, \lambda} \rightarrow X_{\pi, \lambda}$ and a factor $\operatorname{map} p: X_{\pi, \lambda} \rightarrow I$.
Each regular orbit of the iet $T_{\pi, \lambda}$ has one preimage in $X_{\pi, \lambda}$ except the singular ones that have two.

