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Lecture 1: Interval exchange maps

I Rauzy induction: a particular case of S-adic
system (. . . to be continued in Lecture 2)

I coding of translation flows (and billiards)



A rotation is a 2-interval exchange transformation

The rotation of angle α is the map Tα : [0, 1]→ [0, 1] defined by

Tα(x) = x + α mod 1.

It can be seen as a 2-interval exchange transformation

1− α α

+α +α− 1

We aim to study the dynamics of such map.
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A rotation is a 2-interval exchange transformation

We will study the dynamics of interval exchange transformations
from both the topological and measurable viewpoints.

I A rotation preserves the Lebesgue measure.

I Warning: Tα is not continuous on [0, 1).

To consider the topological side, we consider a the associated
coding T̂ : Xα → Xα where Xα ⊂ {A,B} (T̂ is the shift map on
sequences).
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Coding

A B

x0 x1x1 x2x2x3x3 x4x4x5x5 x6x6 x7x7

aba

x−1x−2 x−3x−4

To each point x0 ∈ [0, 1] that is not singular we associate a
biinfinite sequence called the coding of x0. For rotations, such
biinfinite words are called Sturmian sequences.
From here two options to construct Xα ⊂ {A,B}Z:

I take the closure of the set of codings of regular sequences,

I define the codings of singular sequences (”Keane
construction”).
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Coding

Theorem
If α is irrational, there is a unique continuous surjective map
p : Xα → [0, 1] so that the coding of p(w) is w . All points have
exactly one preimage except the singular orbits that have two.

α is the only singular point of T−1, it has a well defined future
orbit with coding ω+ ∈ {A,B}Z≥0 .

1− α is the only singularity of T , it has a well defined past orbit
with coding ω− ∈ {A,B}Z<0 .

The singular orbits have codings ω−ABω+ and ω−BAω+.
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Dynamical results

Theorem
Let α be irrational, and Xα be the Sturmian shift associated to the
rotation Tα. Then:

I pXα(n) = n + 1, in particular Xα has 0 entropy;

I the shift Xα is minimal (all orbits are dense);

I (Hecke (1922), Ostrowski (1922)) any clopen Y ⊂ Xα has
bounded remainder: there exists µY and CY so that

∀x ∈ Xα,∀n ≥ 0,

∣∣∣∣∣
n∑

k=0

(
χY (T k

αx)− µY
)∣∣∣∣∣ ≤ CY .

In particular, the shift Xα is uniquely ergodic.

remark: for the clopens Y = [A] or Y = [B] we can pick CY = 1
(1-balancedness).
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Rauzy induction, continued fractions

For a pair of positive real numbers λ = (λA, λB) we consider the
map Tλ : [0, |λ|]→ [0, |λ|] given by

Tλ(x) = x 7→ (x + λB) mod (λA + λB).

The map Tλ is a rescaling of the rotation with α = λB/(λA + λB).

The Rauzy induction is the procedure which associates to the map
Tλ the induced map on [0,max(λA, λB)].
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Rauzy induction and continued fractions

top induction
case λB > λA

A B

B A

bot induction
case λB < λA

A B

B A

A B

B A

(λA, λB) 7→ (λA, λB − λA)

A 7→ AB,B 7→ B

A B

B A

(λA, λB) 7→ (λA − λB , λB)

A 7→ A,B 7→ AB
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Rauzy induction, continued fractions

Theorem
The Rauzy induction (or Farey map) associates to a rotation T
with lengths (λA, λB) the new rotation T ′ with either lengths
(λA, λB − λA) (”top type”) or (λA − λB , λB) (”bot type”).

The codings for T are recovered from the coding of T ′ by applying
one of the substitution

σtop :

{
A 7→ AB
B 7→ B

or σbot
{

A 7→ A
B 7→ AB

.
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Rauzy induction, continued fractions

Let

A(λ) =

{
Atop if λA < λB ,
Abot if λA > λB .

where

Atop =

(
1 0
1 1

)
Abot =

(
1 1
0 1

)
.

Then the Rauzy induction can be written R(λ) = A(λ)−1λ: Rauzy
induction is a piecewise linear map. And its powers is a matrix
product: Rn(λ) = (An(λ))−1 λ where

An(λ) = A(λ)A(Rλ) . . .A(Rn−1λ).

Note that A (and Rauzy induction R) commutes with scalar
multiplication A(esλ) = esA(λ).
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we can write
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= a0 +
1
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a2 +
1

. . .

.

This is called the continued fraction of λB/λA.
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Interval exchange transformations

An interval exchange transformation T is a piecewise translation of
an interval

A B C D

D C B A

ξtop0

ξbot0

ξtop1

ξbot1
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ξbot2
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ξbot3

ξtop4

ξbot4

T : I\{ξtop1 , . . . , ξtopd−1} → I\{ξbot1 , . . . , ξbotd−1}.

The above interval exchange transformation can be defined from:

I a ”permutation” π =

(
πtop

πbot

)
=

(
A B C D
D C B A

)
,

I a length vector λ = (λA, λB , λC , λD).

We call {ξtop1 , . . . , ξtopd−1} (respectively {ξbot1 , . . . , ξbotd−1}) the top
singularities (resp. bot singularities) of T .
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From translation surfaces to interval exchanges

Theorem
Let S be a translation surface with s conical singularities. Let
I ⊂ S be an horizontal segment so that

I each leaf of the vertical flow meets I ,

I both endpoints of I have the property that either in the past
or the future, they bump into a singularity of the surface
before coming back to the interval.

Then the Poincaré map of the vertical flow on I is an interval
exchange map on 2g + s − 1 intervals.



Coding
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As we did for rotations, given the interval exchange transformation
T above, we could code orbits in {A,B,C ,D}Z (except the
singular ones). We obtain a shift T̂ : Xπ,λ → Xπ,λ and a factor
map p : Xπ,λ → I .

Each regular orbit of the iet Tπ,λ has one preimage in Xπ,λ except
the singular ones that have two.
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