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Abstract. If A is a 2 × 2 expanding matrix with integral coefficients, and
D ⊂ Z2 a complete set of coset representatives of Z2/AZ2 with |det(A)|
elements, then the set T defined by AT = T + D is a self-affine plane tile of
R2, provided that its two-dimensional Lebesgue measure is positive.

It was shown by Luo and Thuswaldner that the fundamental group of such
a tile is either trivial or uncountable.

To a quadratic polynomial x2 + Ax + B, A, B ∈ Z such that B ≥ 2 and
−1 ≤ A ≤ B, one can attach a tile T . Akiyama and Thuswaldner proved the
triviality of the fundamental group of this tile for 2A < B +3, by showing that
a tile of this class is homeomorphic to a closed disk. The case 2A ≥ B + 3 is
treated here by using the criterion given by Luo and Thuswaldner.

1. Introduction

This paper is devoted to the fundamental group of tiles related to quadratic
canonical number systems.
To an iterated function system (IFS ) {fi}m

i=1 of injective contractions on a complete
metric space (Rn throughout this paper), there corresponds a unique nonempty
compact set T with the self-similarity property T =

⋃m
i=1 fi(T ) (see [8]). This set

is called the attractor of the IFS.
We say that the IFS (or its attractor) satisfies the open set condition whenever
there exists a bounded open set U with

⋃m
i=1 fi(U) ⊂ U and fi(U) ∩ fj(U) = ∅ for

all i $= j.
We are interested in self-affine tiles, attractors having nonempty interior, satisfying
the open set condition and corresponding to IFS of the form

{fd(x) = A−1(x + d), x ∈ Rn}d∈D,

where A is a real n × n matrix with eigenvalues greater than 1 and D ⊂ Rn with
|D| = | detA| is supposed to be an integer.
More precisely, we will be concerned with integral self-affine tiles with standard
digit set : this means that A is an integer matrix and D ⊂ Zn is a complete set of
coset representatives of Zn/AZn. Moreover the set T + Zn will be assumed to be
a tiling of Rn, i.e.,

Rn = T + Zn

and
(int(T + d1)) ∩ (T + d2) = ∅ for d1 $= d2 (d1, d2 ∈ Zn).

We also say that T is a Zn-tile in Rn.

There is a vast literature on topological properties of attractors and tiles. Hata
showed in [7] that a connected attractor is even a locally connected continuum.
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Concerning plane attractors (n = 2), Luo, Rao and Tan obtained in [10] the disk-
likeness of self-similar connected tiles with connected interior. Bandt and Wang
characterized self-affine plane tiles that are homeomorphic to a disk by the number
of their neighbors in the tiling (see [4]). The structure of the interior components
of self-similar tiles with disconnected interior is studied by Ngai and Tang in [12].

In this paper we will deal with a class of self-affine tiles associated to canonical
number systems (CNS). For n ≥ 1, let P = xn + bn−1xn−1 + ... + b0 ∈ Z[x],
N = {0, 1, ...|b0|− 1} and R = Z[x] / P Z[x]. Let us denote the projection of x into
R by [x]. Then the pair (P,N ) is called CNS with digit set N if each element γ of
R can be written in the form

γ = a0 + a1[x] + . . . + al(γ)[x]l(γ)

with ai ∈ N and l(γ) ∈ N. Note that if P is irreducible and α is a root of P , then R
is isomorphic to Z[α], thus [x] can be replaced by α in the above expansion. Char-
acterizations of CNS have been studied for example by Scheicher and Thuswaldner
in [13], Akiyama and Rao in [1] and Brunotte in [5].
In the case of quadratic CNS, we write P = x2 + Ax + B ∈ Z[x]. Then it is known
([5], [9]) that

(P,N ) is a CNS iff B ≥ 2 and − 1 ≤ A ≤ B.

To each quadratic CNS, a tile T is attached in the following way: let

A =
(

0 −B
1 −A

)
and D =

{(
0
0

)
, . . . ,

(
B − 1

0

)}
,

then the set defined by

AT =
⋃

d∈D
(T + d)

is a self-affine plane tile of R2 satisfying

T =





∑

i≥1

A−idi, di ∈ D




 .

We will use later the quantity

J = max
{

1,

⌊
B − 1

B − A + 1

⌋}
.

Note that

J > 1 iff 2A ≥ B + 3.

Some topological properties of quadratic CNS tiles have been studied by Akiyama
and Thuswaldner in [3]: depending on J , the tile is either homeomorphic to a disk
(J = 1) or it has a disconnected interior (J > 1). This means that the funda-
mental group π1(T ) of T is trivial in the former case. Another result by Luo and
Thuswaldner ([11]) states that the fundamental group of such tiles is either trivial
or uncountable. An overview of these results can be found in [2]. We will use
the criterion given in [11] to prove the uncountability of π1(T ) in the latter case
(J > 1).
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2. Quadratic Canonical Number Systems:
Graph of Neighbors and Set of Vertices

2.1. Adding graph. We define in Z2 the directed labelled graph G1(Z2) as follows:

• each s ∈ Z2 is a state of G1(Z2).

• for s, s′ ∈ G1(Z2) and d, d′ ∈ D, there exists an edge s
d|d′

−−→ s′ from s to s′

labelled by d|d′ if and only if s + d = As′ + d′.

As D is a complete set of coset representatives of Z2/AZ2, s′ and the output digit d′

are uniquely determined by s and the input digit d, and this addition is well-defined
for all s ∈ Z2 and all d ∈ D. Thus G1(Z2) is a so-called adding machine.
If d0, . . . , dn are digits (i.e., elements of D), then w = (dn . . . d0) is called a string.
If n is the maximal i for which di is non zero, the length of the string, written L(w),
is said to be equal to n + 1.
For s ∈ G1(Z2), one can associate an output string c = (d′n . . . d′0) to an input string
by “feeding” the graph with the input string from right to left as input digits,
starting at the sate s and collecting the corresponding output digits (see also [11]).

2.2. Graph of neighbors. We define the set of neighbors S by

S =
{
s ∈ Z2, s $= 0, T ∩ (T + s) $= ∅

}
.

The graph of neighbors G1(S) is the restriction of G1(Z2) to the subset S of Z2. It
is shown that the graph G1(S ∪ {0}) is stable by addition of any digit to any state.

Remark 1. This graph is called G1(S) in [3] and GT (S) in [11].

The graph of neighbors for quadratic CNS has been found in [3]: defining the
points

Pn =
(

n − (n − 1)A
−(n − 1)

)
, Qn =

(
−n + nA

n

)
, R =

(
−A
−1

)
, n ≥ 1,

then the set of neighbors consists of the 2 + 4J elements

±P1, . . . ,±PJ ,±Q1, . . . ,±QJ ,±R.

The states ±P1,±Q1,±R are said to be of first level, the states ±Pn,±Qn of level n
for 2 ≤ n ≤ J . The edges are given in [3, p.1471] and are reproduced in Table 1.
We obtain the graph of Figure 1, explicitely depicted there until J = 2, and where
we also wrote the point (0, 0) as an empty state and the corresponding edges. More-
over, if τ stands for the label d|d′, then −τ stands for d′|d. For the special case
J = 1 we have the graph of Figure 2, which is a subgraph of the general graph.

An infinite walk in the graph G1(S) ending in a state s0 is an infinite sequence
of the form s0 ← s1 ← s2 ← . . . with edges and states in G1(S).
Considering the graph in Figure 1, we get the following result (see [3]):

Proposition 2. Let W be an infinite walk ending in a state s0, then one of the
following possibilities occurs:

(1) All states of W belong to level 1.
(2) Going the walk W backwards from s0, one comes to one of the cycles

±Qn ← ∓Qn ← ±Qn, for some n with 2 ≤ n ≤ J .
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Figure 1. General neighbor graph G1(S).

P1 Q1

R −Q1

−R −P1

0 1
: :

B − 2 B − 1

B − 1 0

0 A − 1
: :

B − A B − 1 B − A + 1 0
: :

B − 1 A − 2

0 B − A + 1
: :

A − 2 B − 1

A − 1 0
: :

B − 1 B − A

0 B − A
: :

A − 1 B − 1

A 0
: :

B − 1 B − A − 1

B − A 0
: :

B − 1 A − 1

0 A
: :

B − A − 1 B − 1

0 B − 1 1 0
: :

B − 1 B − 2

Figure 2. First level neighbor graph.
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edge labels name

0 → 0
0
...

B − 1

0
...
B − 1

P1 → 0
0
...

B − 2

1
...
B − 1

β

P1 → R B − 1 0 γ

R → Q1

0
...

A − 1

B − A
...
B − 1

δ

R → −P1

A
...

B − 1

0
...
B − A − 1

ε

Pn+1 → Qn

(1 ≤ n < J)

0
...

A − 3 − (n − 1)(B − A + 1)

1 + n(B − A + 1)
...
B − 1

κn

Pn+1 → −Pn

(1 ≤ n < J)

A − 2 − (n − 1)(B − A + 1)
...

B − 1

0
...
n(B − A + 1)

λn

Qn → Pn

(1 ≤ n ≤ J)

0
...

n(B − A + 1) − 1

A − 1 − (n − 1)(B − A + 1)
...
B − 1

µn

Qn → −Qn

(1 ≤ n ≤ J)

n(B − A + 1)
...

B − 1

0
...
A − 2 − (n − 1)(B − A + 1)

νn

Table 1. Edges of the general neighbor graph G1(S).

2.3. L-vertices of a tile. An L-vertex of the tile T is a point of R2 where T
coincides with exactly L translates of the shape T + s, s ∈ S: if s1, . . . , sL are
distinct points of S, the set

VL(s1, . . . , sL) =




x ∈ R2, x ∈ T ∩
L⋂

j=1

(T + sj)






leads to the definition of the set of L-vertices

VL =
⋃

(s1,...,sL)∈Sn

VL(s1, . . . , sL).

One can obtain the L-vertices by finding infinite simple walks in the so-called
L-fold power of G1(S). This graph GL(S) is constructed as follows:

• The states of GL(S) are the L−subsets of S.
• There exists an edge

{s11, . . . , s1L}
d−→ {s21, . . . , s2L}
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−P1, Q1 P1,−R −P1, R P1,−Q1

−Q1, R P1, Q1 Q1,−Q1 −P1,−Q1 Q1,−R

0

B − 1A − 1 A − C

B − 1

0

B-A+1
:

A-2

B − 1 0
:

B-A

A-1
:

B-1

0

Figure 3. Graph G2(S) (restriction to the states of level 1).

in GL(S) if, after possible rearrangement of s21, . . . , s2L, there exist the
edges

s1l
d|dl−−→ s2l (1 ≤ l ≤ L)

in G1(S) for some d1, . . . , dL ∈ D.
• The states that are not the endpoints of infinite walks are removed, together

with the edges leading to them.
We have the following characterization of L-vertices:

Characterization 3. The following assertions are equivalent.
(1) The point x =

∑
j≥1 A−jdj belongs to VL(s01, . . . , s0L)

(2) In GL(S), there is an infinite walk

{s01, . . . , s0L}
d1←− {s11, . . . , s1L}

d2←− {s21, . . . , s2L}
d3←− . . . .

This follows from the fact that a point x belonging to T ∩ (T + s) admits the
two representations x =

∑
j≥1 A−jdj = s +

∑
j≥1 A−jd′j if and only if there is

an infinite walk
s

d1|d′
1←−−− s1

d2|d′
2←−−− s2

d3|d′
3←−−− . . .

in the graph G1(S).

Remark 4.
• For L = 2 we come to the subgraph of level 1 depicted in the figure above

(Figure 3). Note that the edge from {Q1,−Q1} to itself only exists for
2A ≥ B + 3.

• For L = 3, it is mentioned in [3, p.1478] that the subgraph of level 1 is
empty. So there are no three infinite walks in level 1 of the graph G1(S)
with the same input digits that end in three different states of level 1. This
can be checked here directly using the graphs of Figures 2 and 3.

3. Fundamental Group of Quadratic CNS Tiles

3.1. Criterion. We recall the criterion for uncountability of the fundamental group
of a tile given by Luo and Thuswaldner in [11]:

Criterion 5. Let T be a connected Z2-tile in R2. Furthermore, suppose that there
exist s1, s2 ∈ S such that:

(1) #V2(s1, s2) ≥ 2 and V2(s1, s2) \ V3 $= ∅.
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(2) For each i ∈ {0, 1, 2}, there exists a string wi with the property:
using wi as input string in G1(S ∪{0}) starting at 0, s1, s2 yields the output
strings ci

0, c
i
1, c

i
2 satisfying:

max
{
L(ci

i),L(ci
i+1)

}
< L(ci

i+2) (indices are written modulo 3).

Then the fundamental group of T is uncountable.

Under the assumptions (1) and (2), the complement of the tile T in R2 is shown
to be disconnected: two subpieces of T can be found whose union has a bounded
complement component that also intersects the complement of T . Thus the comple-
ment of this tile is disconnected, it even has infinitely many components. Therefore
the tile T can not be locally simply connected, which is equivalent to the uncount-
ability of its fundamental group by a result of Conner and Lamoreaux ([6]).

3.2. Theorem.

Theorem 6. Let T be the quadratic CNS tile corresponding to the polynomial
x2 + Ax + B. Then the fundamental group of T is:

• trivial for 2A < B + 3,
• uncountable for 2A ≥ B + 3.

Proof. The first part has been proved in [3], we prove the second part by showing
that both items of the above criterion are true. Let s1 = P1, s2 = −Q1.

(1) Claim. The point

x =
∑

j≥1

A−jdj

with

d1+3k =
(

B − A
0

)
, d2+3k =

(
0
0

)
, d3+3k =

(
B − 1

0

)

belongs to V2(P1,−Q1) \ V3.
Indeed, looking at the first level subgraph of G2(S) (Figure 3), the infinite
cycle

{P1,−Q1}
B−A←−−− {Q1,−R} 0←− {−P1, R} B−1←−−− {P1,−Q1}

B−A←−−− ...

provides a point of V2(P1,−Q1) because of Characterization 3.
Then, as seen in the second item of Remark 4, an infinite walk in G1(S)
with the same input digits as the cycle above and ending in P /∈ {P1,−Q1}
could not have all states in level 1. Note that the levels would grow up going
this infinite walk in G1(S). Thus, one should come to a cycle in level n ≥ 2
(see Proposition 2): ±Qn ← ∓Qn ← ±Qn; this would imply the existence
of the edge −Qn

B−A←−−− Qn in the walk, which is not true (according to
Table 1 page 5). This proves the claim.
The point

y = A−1

(
B − A

0

)
+ A−3

(
A − 1

0

)
+

∑

j≥4

A−j

(
A − 2

0

)
is distinct

from x and also belongs to V2(P1,−Q1) (this set is even easily seen to
contain infinitely many elements, using Characterization 3 and the graph
of Figure 3).
Thus the first item of the criterion is proved.
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Figure 4. A CNS tile with uncountable fundamental group (limit
case, with A = 4, B = 5).

(2) The second part is obtained by looking at the graph in Figure 2.
With the input strings

w0 = (0000),
w1 = (01(A − 1)(B − 1)0(B − 1)),
w2 = (0000(B − 1)(B − 1)),

one gets

max
{
L(c0

0),L(c0
1)

}
= 1 < L(c0

2) = 3,
max

{
L(c1

1),L(c1
2)

}
= 3 < L(c1

0) = 5,
max

{
L(c2

2),L(c2
0)

}
= 2 < L(c2

1) = 5.

Thus the second item of the criterion is fulfilled and Theorem 6 is proved.
!

An example of CNS tile with uncountable fundamental group can be seen on
Figure 4.
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