(NON-) RIGIDITY OF INTERVAL EXCHANGES

S. Ferenczi, P. Hubert

INTERVAL EXCHANGES

A <u>k-interval exchange</u> or <u>k-iet</u> \mathcal{I} with probability vector $(\alpha_1, \alpha_2, \ldots, \alpha_k)$, and permutation π is defined by

$$\mathcal{I}x = x + \sum_{\pi^{-1}(j) < \pi^{-1}(i)} \alpha_j - \sum_{j < i} \alpha_j.$$

when \boldsymbol{x} is in the interval

$$\Delta_i = \left[\sum_{j < i} \alpha_j, \sum_{j \leq i} \alpha_j\right].$$

THE QUESTION OF RIGIDITY

Veech (1982) : almost all iet are <u>rigid</u> = there exists a sequence $q_n \rightarrow \infty$ such that for any measurable set

 $\mu(T^{q_n}A\Delta A)\to \mathbf{0}.$

Examples of non-rigid iet were known only for 3 intervals. Until Robertson (2017) and F-H.

SQUARE TILED SURFACES

It is generated by d squares, whose sides are glued according to two permutations σ along the vertical and τ along the horizontal.

In this example $\tau(1, 2, 3) = (2, 1, 3)$ and $\sigma(1, 2, 3) = (3, 2, 1)$.

SQUARE-TILED IET

We take the directional flow of angle θ on a square tiled surface and its first return map on the union of negative diagonals. Let $\alpha = \frac{1}{1 + \tan \theta}$.

OUR FIRST FAMILY

let T where the departure intervals are $[i, i + 1 - \alpha[$, denoted by i_l , sent to $[j + \alpha, j + 1[$, $j = \tau i$, $[i + 1 - \alpha, i + 1[$, denoted by i_r , sent to $[j, j + \alpha[$, $j = \sigma i$.

SECOND TYPE OF EXAMPLE : VEECH 1969

Glue two tori by the dotted edge. Take the directional flow of angle θ , going from one torus to the other when crossing this line, and its first return map on the union of verticals.

GRAND UNIFICATION

We take α irrational, β_i not in $\mathbb{Z}(\alpha)$, $0 = \beta_0 < \beta_1 < ... \\ \beta_i < 1 - \alpha < .\beta_{i+1} < ... \\ \beta_{r+1} = 1, \sigma_0, ..., \sigma_i, \tau_i, \sigma_{i+1}, ..., \sigma_r$ permutations of $\{1, ... d\}$.

 $Rx = x + \alpha$ modulo 1.

$$\begin{split} T(x,s) &= (x,\sigma_j s) \text{ if } \beta_j \leqslant x < \beta_{j+1}, \ j \neq i \\ T(x,s) &= (x,\sigma_i s) \text{ if } \beta_i \leqslant x < 1 - \alpha, \\ T(x,s) &= (x,\tau_i s) \text{ if } 1 - \alpha \leqslant x < \beta_{i+1}. \end{split}$$

If no strict subset of $\{1 \dots d\}$ is invariant by all the σ_i and τ_i , the iet is minimal.

Theorem 1. If $\sigma_l \neq \sigma_{l+1}$, $0 \leq l \leq i-1$ and $i+1 \leq l \leq r-1$, $\tau_i \neq \sigma_{i+1}$, and $\sigma_i \sigma_r \neq \tau_i \sigma_0$, then T is rigid (for any ergodic invariant measure) if α has unbounded partial quotients, T is uniquely ergodic and non-rigid if the coding of R by the partition determined by $\beta_1, ..., \beta_i, 1-\alpha, \beta_{i+1}, ..., \beta_r$ is linearly recurrent.

SYMBOLIC SYSTEMS

Symbolic system = the shift on infinite sequences on a finite alphabet.

Trajectories = $y_n = j_l$ if $T^n y$ falls into the *j*-th interval in the *l*-th copy of [0, 1[.

A trajectory of T gives a trajectory of $R : u \to \phi(u)$ by $j_l \to j$, for all j, l.

Linear recurrence of the coding = in the language of trajectories of R, every word of length n occurs in every word of length Kn.

THE GREY ZONE

(work in progress)

Case where α has bounded partial quotients but the coding of R is <u>NOT</u> linearly recurrent.

This happens when there are β_i , under conditions on Ostrowski approximations of the β_i by α .

WE DON'T KNOW if T is rigid.

But we have examples where T is non-rigid and not linearly recurrent.

HOW TO PROVE RIGIDITY

When α has unbounded partial quotients,

- the trajectories of R are mainly made of words repeated many times, $A_n^{q_n}$,
- the trajectories of T are mainly made of cycles repeated many times $(A_{n,1}...A_{n,k})q'_n$.

Thus rigidity.

\overline{d} - SEPARATION

For two words of equal length $w = w_1 \dots w_q$ and $w' = w'_1 \dots w'_q$, Hamming distance $= \overline{d}(w, w') = \frac{1}{q} \#\{i; w_i \neq w'_i\}.$

For a uniquely ergodic symbolic system, rigidity implies that for any infinite sequence $x_0x_1x_2...$ in the system, for a given ϵ , $n > n_0$, $N > n_1$, $\overline{d}(x_0...x_N, x_{q_n}...x_{q_n+N}) < \epsilon$.

 \underline{d} -separated = there exists C such that for any two words w and w' of length q produced by the system, if $\overline{d}(w, w') < C$, then $\{1, \ldots q\} = I \cup J \cup K$, intervals in increasing order, $w_J = w'_J$, $\overline{d}(w_I, w'_I) = \overline{d}(w_K, w'_K) = 1$ except for empty I or K.

 \overline{d} -separation was introduced by del Junco (1977) for the Thue - Morse sequence.

 \overline{d} -separation and aperiodicity imply non-rigidity; for primitive substitutions of constant length, \overline{d} -separation is equivalent to non-rigidity (Lemanczyk - Mentzen, 1988).

AVERAGE \overline{d} - SEPARATION

<u>Average</u> \overline{d} -separated = there exists C such that for d pairs of words of length q, if $-\sum_{i=1}^{d} \overline{d}(v_i, v'_i) < C$,

- $-\phi(v_i)$ is the same word u for all i,
- $-\phi(v'_i)$ is the same word u' for all i,
- $v_i \neq v_j$ for $i \neq j$,

then $\{1, \ldots, q\} = I \cup J \cup K$, intervals in increasing order

$$\begin{array}{l} - v_{i,J} = v'_{i,J} \text{ for all } i, \\ - \sum_{i=1}^{d} \overline{d}(v_{i,I}, v'_{i,I}) \geqslant 1 \text{ if } I \text{ is nonempty,} \\ - \sum_{i=1}^{d} \overline{d}(v_{i,K}, v'_{i,K}) \geqslant 1 \text{ if } K \text{ is nonempty} \end{array}$$

HOW TO PROVE NON - RIGIDITY

Our iet is \overline{d} -separated if and only if for all t, $\sigma_l(t) \neq \sigma_{l+1}(t)$, $0 \leq l \leq i-1$ and $i+1 \leq l \leq r-1$, $\tau_i(t) \neq \sigma_{i+1}(t)$, and $\sigma_i \sigma_r(t) \neq \tau_i \sigma_0(t)$, In general, our iet is average \overline{d} -separated.

Average \overline{d} -separation implies non-rigidity, which proves the hard part of Theorem 1.

<u>Counter-example</u> Square-tiled iet with 4 squares and α golden ratio : non-rigidity is not equivalent to \overline{d} -separation for primitive substitutions.

CODINGS OF ROTATIONS

The bispecial words $w_{n,i}$ and their return words $M_{n,i}$, $P_{n,i}$ are built from the Euclid continued fraction expansion of α or its generalizations by Ferenczi - Holton - Zamboni.

For *n* large enough, $w_{n,i}$ has exactly two extensions of length $|w_{n,i}| + (|P_{n,i}| \wedge |M_{n,i}|)$, and these are of the form $w_{n,i}V'_{n,i}V_{n,i}$ and $w_{n,i}V''_{n,i}V_{n,i}$ for the same word $V_{n,i}$ and two words $V'_{n,i}$ and $V''_{n,i}$ of (common) length 1 or 2.

If the coding is linearly recurrent, there exists a constant K_1 such that for all n $|P_{n,i}| \wedge |M_{n,i}| > K_1 |w_{n,i}|.$