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INTERVAL EXCHANGES

A k-interval exchange or k-iet I with probability vector pα1, α2, . . . , αkq, and permutation
π is defined by

Ix “ x `
ÿ

π´1pjqăπ´1piq
αj ´

ÿ

jăi

αj.

when x is in the interval

∆i “

»

–

ÿ

jăi

αj,
ÿ

jďi

αj

»
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THE QUESTION OF RIGIDITY

Veech (1982) : almost all iet are rigid = there exists a sequence qn Ñ 8 such that for any

measurable set

µpT qnA∆Aq Ñ 0.

Examples of non-rigid iet were known only for 3 intervals. Until Robertson (2017) and F-H.
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SQUARE TILED SURFACES

It is generated by d squares, whose sides are glued according to two permutations σ along

the vertical and τ along the horizontal.

In this example τp1,2,3q “ p2,1,3q and σp1,2,3q “ p3,2,1q.
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SQUARE-TILED IET

We take the directional flow of angle θ on a square tiled surface and its first return map on

the union of negative diagonals. Let α “ 1
1`tan θ

.
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OUR FIRST FAMILY

Iet T where the departure intervals are

ri, i ` 1 ´ αr, denoted by il, sent to rj ` α, j ` 1r, j “ τi,

ri ` 1 ´ α, i ` 1r, denoted by ir, sent to rj, j ` αr, j “ σi.

0

α

1 ´ α 1

0 1 ` α

2 ´ α

1

2 3 ´ α 3

2 2 ` α 3

3r 2l 2r 1l 1r 3l

1l 1r 2l 2r 3l 3r
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SECOND TYPE OF EXAMPLE : VEECH 1969

0

α

β 1 ´ α

0 1

1

α ` β

2 ´ α1 ` β 2

1 ` α 1 ` α ` β 2

1r 2l 1m 2r 1l 2m

1l 1m 1r 2l 2m 2r

1
2

β

1
2

β

Glue two tori by the dotted edge. Take the directional flow of angle θ, going from one torus

to the other when crossing this line, and its first return map on the union of verticals.
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GRAND UNIFICATION

We take α irrational, βi not in Zpαq, 0 “ β0 ă β1 ă ...βi ă 1´α ă .βi`1 ă ...βr ă
βr`1 “ 1, σ0, ..., σi, τi, σi`1, ..., σr permutations of t1, ...du.

Rx “ x ` α modulo 1.

T px, sq “ px, σjsq if βj ď x ă βj`1, j ‰ i,

T px, sq “ px, σisq if βi ď x ă 1 ´ α,

T px, sq “ px, τisq if 1 ´ α ď x ă βi`1.

If no strict subset of t1 . . . du is invariant by all the σi and τi, the iet is minimal.

Theorem 1. If σl ‰ σl`1, 0 ď l ď i ´ 1 and i ` 1 ď l ď r ´ 1, τi ‰ σi`1, and

σiσr ‰ τiσ0, then T is rigid (for any ergodic invariant measure) if α has unbounded partial

quotients, T is uniquely ergodic and non-rigid if the coding of R by the partition determined

by β1, ..., βi,1 ´ α, βi`1, ..., βr is linearly recurrent.
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SYMBOLIC SYSTEMS

Symbolic system = the shift on infinite sequences on a finite alphabet.

Trajectories = yn “ jl if T
ny falls into the j-th interval in the l-th copy of r0,1r.

A trajectory of T gives a trajectory of R : u Ñ φpuq by jl Ñ j, for all j, l.

Linear recurrence of the coding = in the language of trajectories of R, every word of length

n occurs in every word of length Kn.
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THE GREY ZONE

(work in progress)

Case where α has bounded partial quotients but the coding of R is NOT linearly recurrent.

This happens when there are βi, under conditions on Ostrowski approximations of the βi

by α.

WE DON’T KNOW if T is rigid.

But we have examples where T is non-rigid and not linearly recurrent.
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HOW TO PROVE RIGIDITY

When α has unbounded partial quotients,

— the trajectories of R are mainly made of words repeated many times, A
qn
n ,

— the trajectories of T are mainly made of cycles repeated many times pAn,1...An,kqq1
n.

Thus rigidity.
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d̄ - SEPARATION

For two words of equal length w “ w1 . . . wq and w1 “ w1
1 . . . w

1
q, Hamming distance =

d̄pw,w1q “ 1
q
#ti;wi ‰ w1

iu.

For a uniquely ergodic symbolic system, rigidity implies that for any infinite sequence

x0x1x2... in the system, for a given ǫ, n ą n0, N ą n1,

d̄px0...xN , xqn...xqn`Nq ă ǫ.

d̄-separated = there exists C such that for any two words w and w1 of length q produced

by the system, if d̄pw,w1q ă C, then t1, . . . qu “ I Y J Y K, intervals in increasing

order, wJ “ w1
J , d̄pwI , w

1
Iq “ d̄pwK, w1

Kq “ 1 except for empty I or K.

d̄-separation was introduced by del Junco (1977) for the Thue - Morse sequence.

d̄-separation and aperiodicity imply non-rigidity ; for primitive substitutions of constant length,

d̄-separation is equivalent to non-rigidity (Lemanczyk - Mentzen, 1988).
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AVERAGE d̄ - SEPARATION

Average d̄-separated = there exists C such that for d pairs of words of length q, if

—
řd

i“1 d̄pvi, v1
iq ă C,

— φpviq is the same word u for all i,

— φpv1
iq is the same word u1 for all i,

— vi ‰ vj for i ‰ j,

then t1, . . . qu “ I Y J Y K, intervals in increasing order

— vi,J “ v1
i,J for all i,

—
řd

i“1 d̄pvi,I, v1
i,Iq ě 1 if I is nonempty,

—
řd

i“1 d̄pvi,K, v1
i,Kq ě 1 if K is nonempty,
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HOW TO PROVE NON - RIGIDITY

Our iet is d̄-separated if and only if for all t, σlptq ‰ σl`1ptq, 0 ď l ď i ´ 1 and

i ` 1 ď l ď r ´ 1, τiptq ‰ σi`1ptq, and σiσrptq ‰ τiσ0ptq, In general, our iet is

average d̄-separated.

Average d̄-separation implies non-rigidity, which proves the hard part of Theorem 1.

Counter-example Square-tiled iet with 4 squares and α golden ratio : non-rigidity is not

equivalent to d̄-separation for primitive substitutions.
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CODINGS OF ROTATIONS

The bispecial words wn,i and their return words Mn,i, Pn,i are built from the Euclid conti-

nued fraction expansion of α or its generalizations by Ferenczi - Holton - Zamboni.

For n large enough, wn,i has exactly two extensions of length |wn,i| ` p|Pn,i| ^ |Mn,i|q,
and these are of the form wn,iV

1
n,iVn,i and wn,iV ”n,iVn,i for the same word Vn,i and

two words V 1
n,i and V ”n,i of (common) length 1 or 2.

If the coding is linearly recurrent, there exists a constant K1 such that for all n

|Pn,i| ^ |Mn,i| ą K1|wn,i|.
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