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Motivation and History – Non Free Splitting

G. Higman in 1952: F̂ := lim←−i≥1
F (x1, . . . , xi ) does not split

nontrivially as a free product.

K. Eda 1998: Any homomorphism

φ : lim←−
i≥1

Gi → ~i≥1Z

either factors through a canonical projection pn : Ĝ → Gn or the
image under φ belongs, up to conjugation, to one of the free factors
Z.

Eda 2011: Any homomorphism

φ : ~i≥1Gi → A ∗ B :

either factors through a canonical projection onto ∗1≤i≤nGi or the
image under φ is, up to conjugation, contained in a free factor.
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From where to go?

W. Hojka 2014: Let A and B be groups not containing involutions.
Then any homomorphism

φ : Ĝ := lim←−
i≥1

Gi → A ∗ B

either factors through a canonical projection pn : Ĝ → Gn or the
image under φ is, up to conjugation, contained in a free factor.

Word length estimates, K. Eda employs in his investigations, are
subtle and contain a careful analysis when involutions are present.
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Where to go? A Generalization of Higman Completeness

Definition

Let G be a group and U a nested sequence of subgroups. Then G is
U-Higman complete provided for every choice of elements fi ∈ Hi , every
bivariate word wi ∈ F (x , y), there is a solution sequence (hi )i≥0 of the
infinite system of equations

hi−1 = wi (fi , hi ) i ≥ 1

with hi ∈ Hi for all i ≥ 1.
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Pertinent Examples

If for all i ≥ 0 one has Hi = G and for U = (Hi )i≥0 the group G is
U-Higman complete then it is Higman complete. If it is in addition
abelian then it is cotorsion.

The inverse limit Ĝ = lim←−i≥1
Gi is U-Higman complete for

Hi := ker(Ĝ → Gi ) and U := (Hi )i≥1.

The topologist’s product G := ~i≥1Gi is U-Higman complete for U
the sequence of subgroups (~j≥iGj)i≥1.
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Main Results

Theorem (A)

Let the free product G = A ∗ B be U-Higman complete. Then there exists
H ∈ U and g ∈ G with

Hg ⊆ A or Hg ⊆ B.

Theorem (B)

Let G be U-Higman complete and φ : G → A ∗ B be a homomorphism.
Then one of the following holds:

(i) There is H ∈ U contained in the kernel of φ.

(ii) Up to conjugacy the image of φ is a subgroup of either A or of B.
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Consequences / Remarks

1 Eda’s 2011 result can be recovered without making use of the
concept of σ-words.

2 The estimates of word length are less sensitive to the appearance of
involutions.

Theorem

Every homomorphism

φ : Ĝ := lim←−
i≥1

Gi → ~i≥1Hi

either factors through a canonical projection pn : Ĝ → Gn or the image
under φ, up to conjugation, is contained in some free factor Hj .

This generalizes Eda’s 1998 result.
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Thank you for your Attention.
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