Freely Indecomposable Groups in Wild Topology

W. Herfort and W. Hojka

(Wien, University of Technology)

ÖMG-TAGUNG UNIVERSITY OF SALZBURG, SEPTEMBER 12th, 2017

A B K A B K

Motivation and History – Non Free Splitting

G. Higman in 1952: Ê := ↓ F(x₁,...,x_i) does not split nontrivially as a free product.

• K. Eda 1998: Any homomorphism

$$\phi: \varprojlim_{i\geq 1} G_i \to \circledast_{i\geq 1} \mathbb{Z}$$

either factors through a canonical projection p_n : $\hat{G} \to G_n$ or the image under ϕ belongs, up to conjugation, to one of the free factors \mathbb{Z} .

• Eda 2011: Any homomorphism

$$\phi: \circledast_{i\geq 1}G_i \to A*B:$$

either factors through a canonical projection onto $*_{1 \le i \le n} G_i$ or the image under ϕ is, up to conjugation, contained in a free factor.

Motivation and History - Non Free Splitting

- G. Higman in 1952: Ê := ↓ F(x₁,...,x_i) does not split nontrivially as a free product.
- K. Eda 1998: Any homomorphism

$$\phi: \varprojlim_{i\geq 1} G_i \to \circledast_{i\geq 1} \mathbb{Z}$$

either factors through a canonical projection $p_n : \hat{G} \to G_n$ or the image under ϕ belongs, up to conjugation, to one of the free factors \mathbb{Z} .

• Eda 2011: Any homomorphism

$$\phi: \circledast_{i\geq 1}G_i \to A * B:$$

either factors through a canonical projection onto $*_{1 \le i \le n} G_i$ or the image under ϕ is, up to conjugation, contained in a free factor.

Motivation and History – Non Free Splitting

- G. Higman in 1952: Ê := ↓ F(x₁,...,x_i) does not split nontrivially as a free product.
- K. Eda 1998: Any homomorphism

$$\phi: \varprojlim_{i\geq 1} G_i \to \circledast_{i\geq 1} \mathbb{Z}$$

either factors through a canonical projection $p_n : \hat{G} \to G_n$ or the image under ϕ belongs, up to conjugation, to one of the free factors \mathbb{Z} .

• Eda 2011: Any homomorphism

$$\phi: \circledast_{i\geq 1}G_i \to A \ast B:$$

either factors through a canonical projection onto $*_{1 \le i \le n} G_i$ or the image under ϕ is, up to conjugation, contained in a free factor.

• W. Hojka 2014: Let A and B be groups not containing involutions. Then any homomorphism

$$\phi: \hat{G} := \varprojlim_{i \ge 1} G_i \to A * B$$

either factors through a canonical projection $p_n : \hat{G} \to G_n$ or the image under ϕ is, up to conjugation, contained in a free factor.

 Word length estimates, K. Eda employs in his investigations, are subtle and contain a careful analysis when involutions are present.

向下 イヨト イヨト

• W. Hojka 2014: Let A and B be groups not containing involutions. Then any homomorphism

$$\phi: \hat{G} := \varprojlim_{i \ge 1} G_i \to A * B$$

either factors through a canonical projection $p_n : \hat{G} \to G_n$ or the image under ϕ is, up to conjugation, contained in a free factor.

 Word length estimates, K. Eda employs in his investigations, are subtle and contain a careful analysis when involutions are present.

向下 イヨト イヨト

Definition

Let G be a group and \mathcal{U} a nested sequence of subgroups. Then G is \mathcal{U} -Higman complete provided for every choice of elements $f_i \in H_i$, every bivariate word $w_i \in F(x, y)$, there is a solution sequence $(h_i)_{i\geq 0}$ of the infinite system of equations

$$h_{i-1} = w_i(f_i, h_i) \quad i \geq 1$$

with $h_i \in H_i$ for all $i \ge 1$.

< 🗇 > < 🖃 >

- If for all $i \ge 0$ one has $H_i = G$ and for $\mathcal{U} = (H_i)_{i\ge 0}$ the group G is \mathcal{U} -Higman complete then it is Higman complete. If it is in addition abelian then it is cotorsion.
- The inverse limit $\hat{G} = \lim_{i \ge 1} G_i$ is \mathcal{U} -Higman complete for $H_i := \ker(\hat{G} \to G_i)$ and $\mathcal{U} := (H_i)_{i \ge 1}$.
- The topologist's product G := ⊛_{i≥1}G_i is U-Higman complete for U the sequence of subgroups (⊛_{j≥i}G_j)_{i≥1}.

・ 同 ト ・ ヨ ト ・ ヨ ト

- If for all $i \ge 0$ one has $H_i = G$ and for $\mathcal{U} = (H_i)_{i\ge 0}$ the group G is \mathcal{U} -Higman complete then it is Higman complete. If it is in addition abelian then it is cotorsion.
- The inverse limit $\hat{G} = \varprojlim_{i \ge 1} G_i$ is \mathcal{U} -Higman complete for $H_i := \ker(\hat{G} \to G_i)$ and $\mathcal{U} := (H_i)_{i \ge 1}$.
- The topologist's product G := ⊛_{i≥1}G_i is U-Higman complete for U the sequence of subgroups (⊛_{j≥i}G_j)_{i≥1}.

・ 同 ト ・ ヨ ト ・ ヨ ト

- If for all $i \ge 0$ one has $H_i = G$ and for $\mathcal{U} = (H_i)_{i\ge 0}$ the group G is \mathcal{U} -Higman complete then it is Higman complete. If it is in addition abelian then it is cotorsion.
- The inverse limit $\hat{G} = \lim_{i \ge 1} G_i$ is \mathcal{U} -Higman complete for $H_i := \ker(\hat{G} \to G_i)$ and $\mathcal{U} := (H_i)_{i \ge 1}$.
- The topologist's product G := ⊛_{i≥1}G_i is U-Higman complete for U the sequence of subgroups (⊛_{j≥i}G_j)_{i≥1}.

伺 とう ヨン うちょう

Theorem (A)

Let the free product G = A * B be U-Higman complete. Then there exists $H \in U$ and $g \in G$ with

$$H^{g} \subseteq A$$
 or $H^{g} \subseteq B$.

Theorem (B)

Let G be U-Higman complete and $\phi : G \to A * B$ be a homomorphism. Then one of the following holds:

- (i) There is $H \in \mathcal{U}$ contained in the kernel of ϕ .
- (ii) Up to conjugacy the image of ϕ is a subgroup of either A or of B.

▲圖▶ ▲屋▶ ▲屋▶

Consequences / Remarks

- Eda's 2011 result can be recovered without making use of the concept of σ -words.
- The estimates of word length are less sensitive to the appearance of involutions.

Theorem

Every homomorphism

$$\phi: \hat{G} := \varprojlim_{i \ge 1} G_i \to \circledast_{i \ge 1} H_i$$

either factors through a canonical projection $p_n : \hat{G} \to G_n$ or the image under ϕ , up to conjugation, is contained in some free factor H_j .

This generalizes Eda's 1998 result.

・ロン ・回と ・ヨン・

THANK YOU FOR YOUR ATTENTION.

◆□> ◆□> ◆目> ◆目> ◆目 ● の Q @ >