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INTRODUCTION

This report presents some results of kinetic tranport equations and their
application to the particular case of Metall-Oxide-Semiconductor Field-Effect
Transistors, that is to say MOSFETs.
The behaviour of a system of electrons in an electric potential can be de-
scribed by the Quantum Vlasov Equation, that takes long range interactions
between particles and quantum effects into account.
Solutions of this equation can be approximated by solutions of a classical
equation obtained by the use of asymptotical developments.
Considering collisions, asymptotics also allows the derivation of a Drift Dif-
fusion model that is usually adopted to describe the current created by
charged particles in semiconductors.
In a cristal lattice, the mobile electrons initially come from the atoms of
the lattice; in semi-conductors, such electrons appear at room tempera-
ture. When the electrons get free of the atoms, they leave holes (”missing
electrons”) in the underlying structure; these holes also contribute to the
current. Free carriers doping can be realized to increase the conductivity.
Transistors are solids where the flow of current can be controlled, that
means it can be switched off or amplified. In MOSFETs the conductiv-
ity of the semi-conductor is modulated by the voltage (hence ”Field-Effect-
Transistor”) applied at the so-called gate.
Application of the previous considerations to the MOSFETs allows to com-
pute the current circulating in the device.
An example of recent considerations of partially quantized systems com-
bined to the drift diffusion model in semi-conductors is eventually given for
MOSFETs. In fact, we show in our model that the quantum effects have no
impact on the macroscopical current.
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Chapter 1

Kinetic transport equations

We refer to [1] for the results of this section.

Introduction

We are interested in describing the behaviour of interacting particles (for
example electrons) moving in the whole space and confronted to a potential.
In order to take the quantum effects into account, we start from the Schrödinger
equation and use a partial Wigner transformation in order to derive the
quantum transport equations that describe the system. We omit the short
range interactions (collisions) between particles, this will be introduced in
chapter 3.
The equation for the whole system of particles (the so-called Quantum Liou-
ville Equation) is not computer friendly, and we show that it can be reduced
to a one particle equation (the Quantum Vlasov Equation) in an effective
potential, which is itself solution of a Poisson Equation.

1.1 Quantum transport equations for N particles

Hamiltonian and density matrix

For a system of N electrons of mass m and charge −q in a potential V (x, t),
where x = (x1, ..., xN ) ∈ R3N is the position of the ensemble, xi is the po-
sition of the i-th electron, the Hamiltonian takes the form

H = − h̄2

2m

N∑

l=1

△xi
− qV (x, t)

and the Shrödinger equation for the wave function Ψ(x1, ..., xn, t) reads

ih̄∂tΨ = HΨ .

We introduce the density matrix ρ defined by

ρ(r, s, t) = Ψ(r, t)Ψ(s, t)
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(so ρ(r, r, t) = |Ψ(r, t)|2 = n(r, t) is the density of probability of finding the
ensemble of particles at the position r).
Hence ρ satisfies the Heisenberg equation :

ih̄∂tρ = − h̄2

2m
(△sρ − △rρ) − q(V (s, t) − V (r, t))ρ.

Wigner transformation

We set

r = x +
h̄

2m
η , s = x − h̄

2m
η ,

and note

u(x, η, t) = ρ

(
x +

h̄

2m
η, x − h̄

2m
η

)
.

We use the following definitions for the Fourier transformation F with re-
spect to v :

Fg (η) :=

∫

R3N

g(v)e−iv.η dv ,

F−1h (v) :=
1

(2π)3N

∫

R3N

h(η)eiv.η dη .

Then the Wigner function w is defined as the inverse Fourier tranform of u
with respect to η :

w(x, v, t) =
1

(2π)3N

∫

R3N

ρ

(
x +

h̄

2m
η, x − h̄

2m
η

)
eiv.ηdη .

Remark that v has the dimension of velocity.

Quantum Transport Equations

Having done this, we come to the following equations for u and w :

∂tu + i∇η.∇xu + iq
V (x + h̄

2mη, t) − V (x − h̄
2mη, t)

h̄
u = 0 (1.1)

∂tw + v.∇xw +
q

m
θh̄[V ]w = 0 (1.2)

In these equations, x, v, η ∈ R3N.
The second equation is just the Fourier transform of the first one and is
called Wigner equation. The operator θh̄[V ] is a linear pseudo differential
operator, this means that its Fourier transform acts like a multiplication
operator, the multiplication function or symbol being here :

(δV )h̄(x, η, t) = im
V (x + h̄

2mη, t) − V (x − h̄
2mη, t)

h̄
.

Solving the equation (1.2), we do not necessarily come to a nice Wigner
function w : for example it does not necessarily stay negative for all t ≥ 0 :
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this is the fact iff the potential V is quadratic (see [1]). Then the function
w can be interpreted as a microscopic density.

Particle and current densities

From the definition of the Fourier transformation we have :

n(x, t) =

∫

R3N

w(x, v, t) dv

We also define the current density :

J(x, t) = −q

∫

R3N

v w(x, v, t) dv

1.2 Reduction to a one particle problem : the

Quantum Vlasov Equation

The previous equations are not easily solvable because of the high number
of particles that are usually involved and the difficulty to get a good model
for the many-body potential.
We show in this section how to reduce the problem with N particles in a po-
tential V to a problem with one particle in an effective potential Veff , that
contains the long range interactions and is solution of a Poisson Equation.

Subensembles

We will deal with subensembles of the given ensemble of N electrons. Being
Fermions, the electrons obey
the Pauli principle and the function Ψ is antisymmetric :

Ψ(x1, ..., xN ) = 0 if xi = xj for a couple (i, j) with i 6= j .

This corresponds to the fact that electrons are indistinguishable, which
means the invariance under permutations of the density matrix ρ of the
system. So if π is a permutation of {1, ..., n}, then the symmetry property
yields :

ρ(rπ(1), ..., rπ(N), sπ(1), ..., sπ(N), t) = ρ(r1, ..., rN , s1, ..., sN , t)

Because of the Schrödinger equation, the potential V has to be symmetric
too whenever Fermions are considered. It has the form :

V (x, t) =
N∑

l=1

Vext(xl, t) +
1

2

N∑

i,j=1

Vint(xi, xj)

where Vint(xi, xj) = Vint(xj , xi) is the internal and Vext the external poten-
tial.
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We define the density matrix of a subensemble of d ≤ N − 1 electrons as :

ρ(d)(r1, ..., rd, s1, ..., sd, t)

:=

∫

R3(N−d)
ρ(r1, ...rd, ud+1, ..., uN , s1, ..., sd, ud+1, ..., uN , t) dud+1...duN

We see that the trace of ρ(d) now represents the electron position density of
the d-particle subensemble :

n(d)(x1, ...xd, t) = ρ(d)(x1, ..., xd, x1, ..., xd, t)

This subensemble has still got the indistinguishability property.

Assumptions

We will suppose in the following that :

• ρ decays sufficiently fast to zero as rl, sl → ∞

• Vint is of the order of magnitude 1/N as N → ∞, so that the total
potential on each particle l :

Vl(x1, ..., xN ) =
N∑

j=1

Vint(xl, xj) + Vext(xl, t)

remains finite as N → ∞.

• for d << N , we can consider that the particles in the subensemble
move independantly from each other, so that we can write :

ρ(d)(r1, ..., rd, s1, ..., sd, t) =
d∏

i=1

R(ri, si, t)

with R := ρ(1).
It is the so-called Hartree Ansatz.

The Quantum Vlasov Equation

We write the Heisenberg Equation

ih̄∂tρ = − h̄2

2m
(△sρ − △rρ) − q(V (s, t) − V (r, t))ρ

with the above potential :

ih̄∂tρ = − h̄2

2m

N∑

l=1

(△sl
ρ − △rl

ρ) − q
N∑

l=1

(Vext(sl, t) − Vext(rl, t))ρ

−q

2

N∑

i,j=1

(Vint(si, sj) − Vint(ri, rj))ρ
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We set ul = sl = rl for l ≥ d + 1 and integrate over R3(N−d), using the
first assumption above and the indistinguishability property :

ih̄∂tρ
(d) = − h̄2

2m

d∑

l=1

(△sl
ρ(d) − △rl

ρ(d))

−q
d∑

l=1

(Vext(sl, t) − Vext(rl, t))ρ
(d)

−q

2

d∑

i,j=1

(Vint(si, sj) − Vint(ri, rj))ρ
(d)

−q(N − d)
d∑

l=1

∫

R3

[Vint(sl, u∗) − Vint(rl, u∗)]ρ
(d+1)
∗ du∗

where
ρ
(d+1)
∗ = ρ(d+1)(r1, ...rd, u∗, s1, ...sd, u∗, t)

For N >> d and because of the second assumption, the third term of the
second member can be neglected for N → ∞, and the equation becomes :

ih̄∂tρ
(d) = − h̄2

2m

d∑

l=1

(△sl
ρ(d) − △rl

ρ(d))

−q
d∑

l=1

(Vext(sl, t) − Vext(rl, t))ρ
(d)

−q
d∑

l=1

∫

R3

[Vint(sl, u∗) − Vint(rl, u∗)] N ρ
(d+1)
∗ du∗

We now use the third assumption : we set d = 1, and employ the Hartree
Ansatz to obtain an equation for R :

ih̄∂tR = − h̄2

2m(△sR −△rR) − q(Veff (s, t) − Veff (r, t))R
r, s ∈ R3 , t > 0

The effective potential Veff stands for :

Veff (x, t) = Vext(x, t) +

∫

R3

N R(x∗, x∗, t)Vint(x, x∗) dx∗

and takes the external potential and the two-body interaction into account.
Multiplying the last equation by N and using the coordinate transformation
like in section 1.1 :

r = x +
h̄

2m
η , s = x − h̄

2m
η ,

if U(x, η, t) := N R(r, s, t), we come to :

0 = ∂tU + i∇η.∇xU + iq
Veff (x + h̄

2mη, t) − Veff (x − h̄
2mη, t)

h̄
U(1.3)

0 = ∂tW + v.∇xW +
q

m
θh̄[Veff ] W (1.4)
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The second equation is the inverse Fourier tranform of the first one,
we have set W := F−1U , the operator θh̄[Veff ] is defined in section 1.1
and has the symbol :

(δVeff )h̄(x, η, t) = im
Veff (x + h̄

2mη, t) − Veff (x − h̄
2mη, t)

h̄
.

These are the same equations as in 1.1 but written for one particle
(x, v, η ∈ R3) in an effective potential Veff instead of V .

Particle and current densities

We can as in the preceding section write the particle density,
equal to NR(x, x, t) = U(x, η = 0, t) or, by definition of the Fourier trans-
form :

n(x, t) =

∫

R3

W (x, v, t) dv , x ∈ R3, t > 0

The current density is also given by :

J(x, t) = −q

∫

R3

v W (x, v, t) dv , x ∈ R3, t > 0

The computation of the potential Veff as an integral :

Veff (x, t) = Vext(x, t) +

∫

R3

n(x∗, t)Vint(x, x∗) dx∗ (1.5)

seems to be difficult.
We now show that this integral expression can be written as a Poisson par-
tial differential equation as soon as the two-body interaction is the usual
Coulomb interaction, ie results from the Coulomb interaction field.

The Poisson Equation for the effective potential

For an interaction potential of the form :

Vint(x, y) = − q

4πǫs |x − y| , x, y ∈ R3, x 6= y

ǫs being the permittivity of the environment,
we obtain taking the Laplacian of (1.5) :

−ǫs △ Veff = −ǫs△ Vext − qn

and if the external potential is generated by ions of charge +/ − q, then
Veff is solution of :

ǫs △ Veff = q(n − C) (1.6)

where C = C(x, t) can have positive and negative values and is the density
of the background ions.
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Conclusion

As a consequence, we will in the following always consider a function w(x, v, t)
solution of the Wigner equation and describing one particle (for example one
electron) moving in an effective potential Veff , re-written V and solution of
a Poisson equation.
This constitutes the selfconsistent Vlasov Poisson problem, as the macro-
scopic electron density n(x, t) is related to the function w(x, v, t) :





∂tw + v.∇xw +
q

m
θh̄[V ]w = 0

−ǫs △ V = −ǫs△ Vext − qn

n(x, t) =

∫

R3

w(x, v, t) dv

(1.7)

where θh̄[V ] is defined in section 1.1 and Vext is the external potential sup-
posed to be given.

1.3 Quantum states and Wigner function

In section 1.1, we started from a state Ψ and derived the equation (1.2) for
the Wigner function associated to this state.
If now we start from the equation (1.2) with an initial data wI , we would
like to know if the solution w can be associated to any state Ψ.

We consider a particle in the effective potential V and a given initial con-

dition wI ∈ L2(R3 × R3). Let {Ψ(l)
I } be a complete basis of L2(R3) with

its usual norm, then {Ψ(l)
I (r).Ψ

(j)
I (s)} is a complete basis of L2(R3 × R3).

If we want w to be associated to a linear combination of states at any
time, we have to require this condition for wI .
As wI ∈ L2 iff F(wI) = ρI ∈ L2, we can write :

ρI(r, s) =
∑

l,j

ρl,jΨ
(l)
I (r).Ψ

(j)
I (s)

The ρl,j are the coordinates of ρI in the above basis, so they are obtained
by projecting ρI onto this base.
The solving scheme is then theoretically simple : we solve the system

{
ih̄∂tΨ

(l) = HΨ(l)

Ψ(l)(x, 0) = Ψ
(l)
I (x)

for every l, then define ρ by

ρ(r, s, t) =
∑

l,j

ρl,jΨ
(l)(r, t).Ψ(j)(s, t)

11



and come back to the Wigner function over the function u through Fourier
transformation (see page 6) :

w(x, v, t) =
1

(2π)3

∑

l,j

ρl,j

∫

R3

Ψ(l)(x +
h̄

2m
η, t).Ψ(j)(x − h̄

2m
η, t) eiv.η dη

The theoritical solution is thus very simple, w can be associated to a
pure (resp. to a mixed) state as soon as wI is a pure (resp. mixed) state.
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Chapter 2

From the Quantum Liouville

Equation to the Classical

Liouville Equation : the

classical limit

2.1 Introduction

We want to carrry out the classical limit (h̄ → 0) in the Quantum Liouville

Equation

∂t w + v.∇x w + θh̄[V ] w = 0, x ∈ Rd, v ∈ Rd, t > 0 (2.1)

and show that a solution of this equation can be approximated by the solu-
tion of a Classical Liouville Equation

∂t w + v.∇x w + ∇x V . ∇v w = 0 (2.2)

at zeroth order, while the first significant quantum corrections are of order
h̄2.
We have set q = m = 1.

Pseudodifferential operator

The pseudodifferential operator θh̄[V ] (see section 1.1) has the symbol

(δV )h̄(x, η, t) = i
V (x + h̄

2η, t) − V (x − h̄
2η, t)

h̄
.

It tends formally to ∇xV.∇v as h̄ → 0, so we will use an expansion of a
solution of (2.1) with respect to h̄.
Indeed, the symbol applied to the function u, Fourier transform of w, tends
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formally to i∇xV.η u, which is the Fourier transform of ∇xV.∇v w.

We consider the Fourier transform of (2.1) with a smooth potential V in
a one-dimensional case (d = 1) :






∂t u + i∂η∂x u + i
V (x + h̄

2η , t) − V (x − h̄
2η , t)

h̄
u = 0

x ∈ R, v ∈ R, t > 0
u(x, v, 0) = uI(x, v) independant of h̄

(2.3)

We are going to expand V and derive an Ansatz for u.

2.2 Expression of the potential term and Ansatz

Potential

For a 2N + 1-times differentiable potential V , we write as in [2] the Taylor
equality of order 2N as follows :

V (x +
h̄

2
η , t) =

2N−1∑

j=0

V (j)(x, t)

2j j!
h̄jηj

+
h̄2N

22N (2N − 1)!

∫ η

0
V (2N)(x +

h̄

2
ξ , t) (η − ξ)2N−1 dξ

In the computation of the potential term of (2.3) the terms of magnitude
h̄2k+1 are cancelled, and after a partial integration on the rest integral we
get :

V (x + h̄
2η , t) − V (x − h̄

2η , t)

h̄
=

N−1∑

j=0

V (2j+1)(x, t)

22j (2j + 1)!
h̄2jη2j+1 +

+ h̄2N 1

22N+1 (2N)!

∫ η

0
[V (2N+1)(x +

h̄

2
ξ , t) + V (2N+1)(x − h̄

2
ξ , t)] (η − ξ)2N dξ

︸ ︷︷ ︸
=: IN

Ansatz

As a consequence, we make the Ansatz

uh̄
N (x, η, t) =

N−1∑

k=0

h̄2kuk(x, η, t) that we put in equation (2.3).

Equations

Equalling the powers of h̄2, we obtain the following equations respectively
for k = 0 and k ≥ 1 :

∂tu0 + i∂η∂xu0 + iηV ′(x, t)u0 = 0 (2.4)

∂tuk + i∂η∂xuk + iηV ′(x, t)uk = −i
k∑

j=1

V (2j+1)(x, t)

22j (2j + 1)!
η2j+1uk−j(2.5)
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together with the initial conditions :

u0(x, v, 0) = uI(x, v)
uk(x, v, 0) = 0

We have written (2.5) so that the second member of the equation only
depends on the first k − 1 functions uj of the expansion. In the following
paragraphs we inverse Fourier transform these equations.

2.3 Zeroth order equation

After inverse Fourier transformation of (2.4), we see that w0 satisfies the
Classical Liouville equation (see (2.2)) :

∂tw0 + v∂xw0 + V ′(x, t)∂vw0 = 0

with the initial condition (wI is the inverse Fourier transform of uI) :

w0(x, v, 0) = wI(x, v)

We can ”solve” it using the characteristic method :
Denoting F by
F (a, b) = (b, V ′(a)), let us define X as the map :

X : (x, v) 7−→ X(x, v) : t 7→ (x(t), v(t))

where X(x, v) solution of

{
Ẋ(t) = F (X(t))
X(0) = (x, v)

If w0 is solution of the equation above, then for all (x, v), for all t, we have :

d

dt
w0(X(t), t) = 0

ie w0 is constant along the characteristics, and thus :

∀t, w0(x(t), v(t), t) = wI(x, v)

Solution w0

Reciprocally, such a function is a solution, hence we can write the solution
w0 :

∀ x, v, t, w0(x, v, t) = wI(X(x, v)(−t))

This result requires some assumptions on the potential V : the characteris-
tics should exist at any time t ! We have from [3] the following result :

Justification of the characteristics method

Let V be a potential satisfying the inequality :

|V ′(x)| ≤ C
√

1 + x2
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for some constant C (= 1 below), then for every initial condition (x0, v0),
the characteristics defined above exist for any time t.
Indeed, as F (x, v) = (v, V ′(x)) is locally Lipschitz, there is a solution defined
on a maximal interval (−T0, T1). This solution (t,X(t)) leaves every compact
subset. Let us assume T1 < ∞, we come to a contradiction by showing that
the solution is then bounded : let be

∀ t, N(t) = x(t)2 + v(t)2 + 1 > 0 ,

then
Ṅ(t) = 2xẋ + 2vv̇

= 2xv + 2vV ′

≤ 2|x||v| + 2|v||V ′|
≤ 2|v|

√
1 + x2 + 2|v|

√
1 + x2

≤ 4|v|
√

1 + x2

≤ 2(|v|2 + (
√

1 + x2)2)

⇒ Ṅ(t) ≤ 2N(t)
⇒ N(t) ≤ N(0) e2t ≤ N(0) e2T1

This is a contradiction and T1 has to be infinite. Similarly we show T0 = ∞.

2.4 Iterative computation of the k-th order terms

The inverse Fourier transform of (2.5) gives :

∂twk + v∂xwk + V ′(x, t)∂vwk = −
k∑

j=1

V (2j+1)(x, t)

22j (2j + 1)!
∂2j+1

v wk−j

and the initial condition reads :

wk(x, v, 0) = 0

Solution wk

Writing rk−1 for the second member of the equation, supposed to be known
from the last k − 1 equations, we thus have to solve the equation

{
∂twk + v∂xwk + V ′(x, t)∂vwk = rk−1

wk(x, v, 0) = 0

which solution is given by :

wk(x, v, t) =

∫ t

0
rk−1(X(x, v)(s − t), s) ds (2.6)

where X is defined as in the zeroth order case.
Indeed, introducing the characteristics as in the zeroth order, wk(X(x, v)(t), t)
is now solution of

d

dt
wk(X(x, v)(t), t) = rk−1(X(x, v)(t), t)

16



This gives an iterative computation of the terms of the expansion.

2.5 Conservation laws

We show that the Quantum Liouville and the classical Liouville equations
preserve the L2-norm of the solutions.

• Quantum Liouville Equation

Skew-symmetry of the operator θh̄[V ]
If V is a real potential and

(f, h)L2 :=

∫

R2

f ḡ dxdv ,

then we have :

(f, θh̄[V ]g)L2 = − (θh̄[V ]f, g)L2

Indeed, let us write F for the Fourier transform with respect to v (see
section 1.1), and design by h∗ the function

h∗ : u 7−→ h(−u)

for a given function h, remembering that for f and h two functions of
L2 we have :

F(f) ⋆ F(h) = (2π)d F(f.g)

where ⋆ stands for the convolution of two functions, we can write :

(2π)d
∫

R
f θh̄[V ]g dv = F(f θh̄[V ]g)(η = 0)

= F(f) ⋆ F(θh̄[V ]g)(η = 0)

= F(f) ⋆ F(θh̄[V ]g)∗(η = 0)

= F(f) ⋆ (i
V (x + h̄

2η , t) − V (x − h̄
2η , t)

h̄
F(g))∗(η = 0)

=

∫

R
F(f)(−τ).(−i)

V (x − h̄
2τ , t) − V (x + h̄

2 τ , t)

h̄
F(g)(−τ) dτ

=

∫

R
F(f)(−τ).i

V (x + h̄
2 τ , t) − V (x − h̄

2τ , t)

h̄
F(ḡ)(τ) dτ

(τ → −τ) = −
∫

R
i
V (x + h̄

2 τ , t) − V (x − h̄
2 τ , t)

h̄
F(f)(τ)F(ḡ)(−τ) dτ

= −
∫

R
F(θh̄[V ]f)(τ).F(ḡ)(−τ) dτ

= −F(θh̄[V ]f) ⋆ F(ḡ)(η = 0)

= −(2π)dF(θh̄[V ]f.ḡ)(η = 0)

= −(2π)d
∫

R
θh̄[V ]f.ḡ dv

17



and the proof is completed after an integration over x.

Conservation

As a consequence, multiplying (2.1) by w and integrating over the
position and velocity spaces, the gradient term vanishes after integra-
tion in x if w → 0 for x → ∞, and the term with the operator θh̄[V ]
vanishes because of its skew-symmetry property :

∂t
1

2
||w||2L2(R2) +

∫

R2

v ∂x
w2

2
dxdv

︸ ︷︷ ︸
=0

+

∫

R2

w θh̄[V ]w dxdv
︸ ︷︷ ︸

=0

= 0

⇒ ||w||L2(R2) = cste = ||wI ||L2(R2)

• Classical Liouville Equation

The conservation law for the equation (2.2) is easily seen by multiply-
ing this equation by w and integrating over R2, just supposing that
w → 0 as v → ∞.
This means for example that the L2-norm of the zeroth order term w0

of the expansion is preserved.

2.6 Justification of the expansion

We want to use the Taylor expansion of V introduced in section 2.2 to show
the validity of the expansion of w with respect to h̄ :
if wh̄ is solution of the Quantum Liouville Equation (2.1), then

||wh̄ − wh̄
N ||L2 = O(h̄2N )

The method below was found in [2].

2.6.1 Estimate

Fourier transform preserves the L2-norm, hence we look at the equations
satisfied by uh̄ and uh̄

N :

{
∂t uh̄ + i∂η∂x uh̄ + (δV )h̄ uh̄ = 0

∂t uh̄
N + i∂η∂x uh̄

N +
(
(δV )h̄ − ih̄2N IN

)
uh̄

N = 0

where (δV )h̄ and IN have been respectively defined in the introduction and
in section 2.2 of this chapter.
Thus we conclude that uh̄ − uh̄

N := ωN is solution of

∂t ωN + i∂η∂x ωN + (δV )h̄ ωN = ih̄2N IN uh̄
N

18



Successive integrations by parts on IN show that for all k :

IN =
1

h̄2k
IN−k ,

so that we can write the second member of the equation above :

h̄2NρN := h̄2N i
N−1∑

k=0

1

h̄2k
IN−k h̄2kuk = h̄2N i

N∑

k=1

Ik uN−k

We set L := ∂t + i∂η∂x + (δV )h̄. Supposing ρN ∈ L2, the equation for ωN

now reads (F stands for the Fourier transform) :

LωN = h̄2N ρN

⇒ F−1(LωN ) = h̄2N F−1(ρN )

⇒ F−1(ωN ).F−1(LωN ) = h̄2N F−1(ωN ).F−1(ρN )

⇒
∫

R2F−1(ωN ).F−1(LωN ) dxdv = h̄2N ∫
R2 F−1(ωN ).F−1(ρN ) dxdv

≤ h̄2N ||F−1(ωN )||L2︸ ︷︷ ︸
= ||ωN ||L2

. ||F−1(ρN )||L2︸ ︷︷ ︸
= ||ρN ||L2

The left side of the inequality was just computed on page 18, we obtain :

∂t
1
2 ||F−1(ωN )||2L2 ≤ h̄2N ||ωN ||L2 ||ρN ||L2

⇒ ||ωN ||L2∂t||ωN ||2L2 ≤ h̄2N ||ωN ||L2 ||ρN ||L2

which gives after simplification, integration and because ωN (x, η, t = 0) = 0 :

||ωN ||L2 ≤ h̄2N
∫ t

0
||ρN ||L2(s) ds

2.6.2 Validity of the estimate

The existence and the uniform boundedness of ||ρN ||L2 has now to be shown,
ie the existence of a constant M(t) (continuous in t) independent of h̄ so
that :

||ρN ||L2 ≤ M(t)

We write the definition of ρN :

ρN (x, η, t) = i
N∑

k=1

1

22k+1 (2k)!

∫ η

0
[V (2k+1)(x+

h̄

2
ξ , t)+V (2k+1)(x− h̄

2
ξ , t)] (η−ξ)2k dξ uN−k .

Assumption on the potential

We suppose :

• The potential V belongs to C3N+2
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• There is a constant c with

∀ k = 1 ... 3N + 1 , |V (k)| ≤ c (2.7)

We are now delivered from the dependence of h̄ :

|ρN (x, η, t)| ≤ 2c
N∑

k=1

η2k+1

22k+1(2k + 1)!
|uN−k(x, η, t)|

≤ 2c
N∑

k=1

η2k+1|uN−k(x, η, t)| .

Since η2k+1uN−k ∈ L2(R2) for ∂2k+1
v wN−k ∈ L2(R2) ,

we should just prove that ∂2k+1
v wN−k belongs to L2 and its L2-norm is

bounded through a continuous function MN−k(t) for k = 1...N .

In fact, it is even possible to prove a little bit more :

Let be
∂k+jwI

∂xk∂vj
∈ L2(R2) for k+j ≤ 3N, then

∂k+jwp

∂xk∂vj
∈ L2(R2) for k+j ≤ 3(N−p)

The boundedness through functions Mp,k,j(t) of the L2-norm of
∂k+jwp

∂xk∂vj
is

also obtained below in the proof of this assumption.

The assumption is proved iteratively :
We will use the following estimate for the characteristics (see justification
page 21) :

∀ k, j with k+j ≤ 3N , ∃ ck,j(t) (continuous) , ∀ x, v, || ∂
k+jX

∂xk∂vj
||∞ ≤ ck,j(t) .

Derivating the expression of w0

w0(x, v, t) = wI(X(x, v)(−t)) ,

using the estimate for the characteristics and the assumption on wI we ob-

tain that
∂k+jw0

∂xk∂vj
∈ L2(R2) for k + j ≤ 3N and the L2-norms of these func-

tions are bounded through (continuous) functions M0,k,j(t).

The regularity of w1 is given by the formula (2.6) : it depends on the
function

r0 = −V (3)(x, t)

22 (3)!
∂3

v w0

so the V (k) being bounded, w1 satisfies

∂k+jw1

∂xk∂vj
∈ L2(R2) for k + j ≤ 3(N − 1)
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We go on this way for higher derivatives :

We show at every step that rp−1 satisfies
∂k+jrp−1

∂xk∂vj
∈ L2(R2) for k + j ≤ 3(N − p),

then we use the formula (2.6) to get the same property for wp.
We eventually come to the function wN−1 for which yields :

∂k+jwN−1

∂xk∂vj
∈ L2(R2) for k + j ≤ 3

Estimate of the characteristics

To show the regularity of wk, an estimate for the characteristics has been
used, ie the existence of ck,j(t) such as :

∀x, v, ∀k, j with k + j ≤ 3N , || ∂
k+jX

∂xk∂vj
||∞ ≤ ck,j(t)

This can be proved iteratively :
The equation of the characteristics is :

{
Ẋ(t) = (v(t), V ′(x(t)))
X(0) = (x, v)

So for example ∂xX is solution of

{
∂xẊ(t) = (∂xẋ, ∂xv̇) = (∂xv(t), ∂xx(t)V ′′(x(t)))

∂xX(0) = (1, 0)

In the assumption (2.7) on the potential V , and doing similarly for ∂vX,
this leads with similar computations to page 16 to :

||∂xX|| ≤ eat , ||∂vX|| ≤ eat

for some constant a.
Derivating the characteristics equation again we find ∂xxX solution of :

{
∂xxẊ(t) = (∂xxẋ, ∂xxv̇) = ( ∂xv(t), ∂xxx(t) V ′′(x(t)) + (∂xx(t))2 V (3)(x(t)) )

∂xxX(0) = (0, 0)

We can there use the ”variation of constant” and obtain a uniformly bounded
solution.
It can be similarly done for higher and crossed derivatives.

Conclusion

As a consequence, this method shows that the expansion is valid on every
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time-interval [0, T ], T > 0 :

||ρN ||L2 ≤ 2c
N∑

k=1

||∂2k+1
v wN−k||L2

≤ 2c
N∑

k=1

MN−k,0,2k+1(t)︸ ︷︷ ︸
=: MN−k(t)︸ ︷︷ ︸

=: M(t)

⇒
∫ t

0
||ρN ||L2(s) ds ≤

∫ t

0
M(s) ds =: C(t)

Hence the expansion satisfies :

||wh̄ − wh̄
N ||L2 ≤ h̄2N C(t)

where C(t) is independant of h̄, continuous in t, and consequently bounded
on every time-interval [0, T ], T > 0.
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Chapter 3

Introducing collisions

3.1 Boltzmann Equations

We refer to [1] for the results of this section.

3.1.1 Introduction

Previous equations take long range interactions between particles into ac-
count, but not the short range interactions, the so-called collisions.
As will be shown in the next section, collisions allow a system that is per-
turbated at initial time to get back to an equilibrium state.
In the classical case, the number density F (x, v, t) of particles is a positive
function and takes values between 0 and 1 if the particles are electrons (be-
cause of the Pauli principle).
The idea of Boltzmann was to consider that the classical transport equation
can be written as a conservation equation of the number density F (x, v, t)
along characteristics for particles (resp. one particle of charge q) having a
convective motion caused by a potential (resp. an effective potential) V as
long as collisions are neglected :

(
dF

dt
)conv = 0

along the caracteristics (x(t), v(t)) defined by :

{
ẋ = v

v̇ =
q

m
∇xV (x, t)

The effect of collisions is thus supposed to balance the effect of convection :

(
dF

dt
)conv = (

dF

dt
)coll

23



The purpose of this section is to write an expression of the collision operator

Q(F ) := (
dF

dt
)coll .

3.1.2 Collision operator

A collision is a phenomenon where particles stay at the same place but
instantaneously change their velocity.
As Fermions obey the Pauli principle, an electron comes to the state (x, v)
through a scattering event if it was in a state (x, v′) and if there is not
already an electron at the state (x, v), and it leaves its state (x, v) to go to
the state (x, v′) if this last state is free.
Consequently, the rate of a particle with position x at time t to change its
velocity v′ into v is assumed to have the form :

s(x, v′, v)F (x, v′, t)(1 − F (x, v, t))

where s(x, v′, v) is the scattering rate, and the total rate of change of F due
to collisions at (x, v) takes the form :

Q(F )(x, v, t) =

∫

R3

[s(x, v′, v)F ′(1 − F ) − s(x, v, v′)F (1 − F ′)] dv′

where F = F (x, v, t) and F ′ = F (x, v′, t).
This leads to the Classical Boltzmann Equation, obtained at the classical
limit (chapter 2) :

∂tF + v.∇xF +
q

m
∇xV.∇vF = Q(F )

with Q(F ) defined above. This collision operator is quadratic in F , nonlocal
in velocity.
We can check the conservation property :

∫

R3

Q(F )(x, v, t) dv = 0

which expresses that collisions do not destroy nor generate electrons.

3.1.3 Low densities : linear collision operator

When the particle density is very small (F << 1), we obtain a linear collision
operator given by :

QL(F )(x, v, t) =

∫

R3

[s(x, v′, v)F ′ − s(x, v, v′)F ] dv′
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This operator still satisfies the conservation property.
At thermal equilibrium (F = Fe), the so-called ”principle of detailed bal-
ance” states there is locally no scattering event. This assures the nullity of
the collision operator through the condition :

∀x, v, v′ , s(x, v′, v)F ′
e − s(x, v, v′)Fe = 0

At low densities the Maxwellian distribution at temperature T

M(v) = M exp

(
− mv2

2kBT

)
(M constant so that

∫

R3

M(v)dv = 1)

can be used to describe the velocity distribution of the ensemble at thermal
equilibrium; kB is the Boltzmann constant.
So one can write Fe = n(x, t)M(v) with the macroscopic density

n(x, t) =

∫

R3

F (x, v, t) dv

and obtain from the principle of detailed balance :

s(x, v′, v)n(x, t)M(v′) = s(x, v, v′)n(x, t)M(v) .

This implies the relation :

s(x, v′, v)M(v′) = s(x, v, v′)M(v)
⇒ s(x, v, v′) = Φ(x, v′, v)M(v′)

where Φ is symmetric in v, v′, and therefore :

QL(F ) =

∫

R3

Φ(x, v′, v) [M(v)F ′ − M(v′)F ] dv′ (3.1)

3.1.4 Kernel of the linear collision operator

Consequently, a function F belongs to the Kernel Ker(QL) of this linear
collision operator, ie satisfies

∀x, v, t , QL(F )(x, v, t) = 0 ,

iff the following relation holds :

M(v)F (x, v′, t) − M(v′)F (x, v, t) = 0

⇔ F (x, v′, t)

M(v′)
=

F (x, v, t)

M(v)

This means that F has the form :

F (x, v, t) = C(x, t)M(v) ,

the ”constant” C(x, t) (independent of v) being by definition exactly the
macroscopic density n(x, t).
So we have the relation :

F ∈ Ker(QL) ⇔ F (x, v, t) = n(x, t)M(v) .
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3.1.5 Relaxation time approximation

For low densities and moreover an initial data FI close to the equilibrium
distribution, ie to a multiple of the Maxwellian, we approximate F ′ by
n(x, v′)M(v′) and obtain using the linearized collision operator (3.1) the
relaxed collision operator :

QR(F )(x, v, t) = − 1

τ(x, v)
(F (x, v, t) − n(x, t)M(v)) (3.2)

where τ(x, t) stands for

(∫

R3

s(x, v, v′) dv′
)−1

=

(∫

R3

Φ(x, v′, v) M(v′) dv′
)−1

.

It is the so-called relaxation-time and describes the average time between
two consecutive collisions at (x, t).

The resulting Boltzmann equation reads :

∂tF + v.∇xF +
q

m
∇xV.∇vF

= − 1

τ(x, v)
(F (x, v, t) − n(x, t)M(v))

(3.3)

In the next section we will use this equation QR and suppose the relaxation
time to be constant.
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3.2 Scaling

We use in this section the Boltzmann equation (3.3) established in the pre-
ceding section in the classical case.

3.2.1 Aria : The Boltzmann equation with relaxation time

For low densities, we have seen that we can use the linear collision operator
QR with relaxation time τ that we assume to be constant (see (3.2) of the
preceding section) :

QR(w)(x, v, t) = −1

τ
(w(x, v, t) − n(x, t)M(v)) ,

where M(v) is the Maxwellian distribution verifying
∫
Rd M(v)dv = 1 and

n(x, t) =

∫

Rd

w(x, v, t)dv .

Note that at any time t we have

∫

Rd

QR(w)dx = 0 ,

since no particle is created or annihilated by collisions.
So we consider the equations :

{
∂t w + v.∇x w + ∇x V . ∇v w = 1

τ (nM − w) , x ∈ Rd, v ∈ Rd, t > 0
w(x, v, 0) = wI(x, v) independant of τ

The initial data wI is supposed to belong to the Schwarz space S := S(Rd × Rd)

3.2.2 1st variation : 1D problem in classical case

We study in this section the limit for τ going to zero in the one dimensional
classical case. For a nearly close to the equilibrium initial condition, the
system should go back fast to the equilibrium.
We compute the first terms of an expansion of w, and give an iterative
method to compute the following terms.
We scale the time t by the relaxation time τ (s stands for ”scaled” and will
be immediately dropped) :

ts =
t

τ

and thus consider the 1-D resulting Boltzmann equation with relaxation
time :
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Equation

∂t w + τ( v∂x w + V ′(x) ∂v w ) = nM − w , x, v ∈ R, t > 0(3.4)

w(x, v, 0) = wI(x, v) (3.5)

Ansatz

We make the Ansatz

wN (x, v, t) =
N∑

k=0

wk(x, v, t) τk.

Density

Consequently, n takes the form

nN (x, t) =
N∑

k=0

nk(x, t) τk ,

where

nk(x, t) =

∫

R
wk(x, v, t)dv .

Current density

We also define the current density

JN = −
∫

R
v wN dv =

N∑

k=0

Jk τk

with

Jk(x, t) = −
∫

R
v wk(x, v, t) dv.

Analysis

Inserting wN in (3.4) and equalling the powers of τ , we get the following
results :

• 0th order term
The equations for w0 read :

{
∂tw0 = −w0 + n0 M
w0(w, v, 0) = wI(x, v)

Density n0

By integration over v, we get ∂tn0 = 0, so

n0(x, t) = n0(x) = nI(x) (=

∫
wIdv).

Solution w0

Hence we can solve the equation for w0 with the ”variation of the
constant” and find the solution :

w0(x, v, t) = nI(x)M(v) + e−t (wI(x, v) − nI(x)M(v)) .
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Asymptotical behaviour

It is a function of S for every t, and we have

||w0 − nIM ||L2 → 0 as t → ∞.

The zeroth order term returns to equilibrium.

• 1st order term
The equations for w1 read :

{
∂tw1 + v∂xw0 + V ′(x)∂vw0 = −w1 + n1M
w1(x, v, 0) = 0

Density n1

By integration over v and using that w0 ∈ S, we get for the first order
density ∂tn1 = ∂xJ0 = e−t∂xJI , and hence, because of n1(x, 0) = 0,

n1(x, t) = (1 − e−t)∂xJI(x).

Solution w1

Inserting this in the equation for w1, we obtain :

w1(x, v, t) = ∂xJIM + (v∂x + V ′∂v)n0M
+ e−t ((v∂x + V ′∂v)(t(n0M − wI) + n0M) − (1 + t)∂xJIM)

Asymptotical behaviour

We note that w1 still belongs to S for good potentials, and verifies

||w1 − ∂xJIM − (v∂x + V ′∂v)n0M ||L2 → 0 as t → ∞.

• k-th order term, k ≥ 2
We have for wk :
{

∂twk + wk = −v∂xwk−1 − V ′∂vwk−1 + nkM =: rk−1

wk(x, v, 0) = 0
(3.6)

Density nk

The notation rk−1 is justified by the fact that for the density nk, as
nk(x, 0) = 0, we have :

nk(x, t) =

∫ t

0
∂xJk−1(x, v, t)dt .

Solution wk

Putting this in the equation (3.6), we find wk as in the two first order
terms :

wk(x, v, t) = e−t
∫ t

0
esrk−1(x, v, s)ds

Conclusion This gives an iterative computation of the expansion, with
a leading term tending to the equilibrium distribution nI M .
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3.2.3 Variation 2 : Derivation of the Drift Diffusion Model

We still consider the (classical) Boltzmann equation :

∂t w + v.∇x w + E.∇v w =
1

τ
(nM − w) , x ∈ Rd, v ∈ Rd, t > 0

E(x) replaces ∇V .

Equation

We want to express that the collisions are leading the equation, hence we
scale the time by 1/ǫ, with for example ǫ := τ , and come to the equation :

ǫ2 ∂t w + ǫ (v.∇x w + E.∇v w) = nM − w , x ∈ Rd, v ∈ Rd, t > 0
(3.7)

with the initial condition w(x, v, 0) = wI(x, v) independent of ǫ.

Ansatz

We make the Ansatz w =
∑

ǫkfk,

Density

the density is thus n =
∫

fdv =
∑

ǫknk , nk =
∫

fkdv.

Other moments

We also need the first and second moments of the function w (and similarly
for wk) :

the current density J(x, t) = −
∫

Rd

vw dv

the moment of 2nd order σ = (σij(x, t))ij =

(∫

Rd

vivjw dv

)

ij
.

Concerning the isotropic Maxwellian Distribution M , we write 3D for∫

Rd

v2M(v)dv and recall that

∫

Rd

v.∇vM = −3.

Analysis

Insertion in (3.7) leads to :

• Oth Order

w0(x, v, t) = n0(x, t)M(v) with n0(x, 0) = nI(x)

So no big condition appears for n0 in the zeroth order equation. Cur-
rent of order 0 is zero :

J0(x, t) = 0 .
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• 1st Order
v.∇xw0 + E.∇vw0 = n1M − w1

Replacing w0 through n0M gives an expression of w1 :

w1 = n1M − Mv.∇xn0 − n0E.∇vM

Drift diffusion current

We get a trivial equation after integrating over v, but the following
current density of order 1 if we multiply by v before integrating :

J1(x, t) = D∇xn0 − n0E

The first order current is the drift-diffusion current created by E and
the density of order zero. The diffusion current is D∇xn0 : by defini-
tion, diffusion takes place for heterogeneous repartition of the particles
(which implies a gradient of density). The drift current is created by
the motion of the electrons due to the electric field.
We get an equation for the total current using the equation of :

• 2nd order

∂tw0 + v.∇xw1 + E.∇vw1 = n2M − w2

By integration over v, the drift term E.∇vw1 vanishes (see expression
of w1 for its behaviour at v = ∞), and we obtain using∫

v.∇xw1dv = ∇x.
∫

vw1dv = ∇x.J1 the

Drift diffusion equation

{
∂tn0 − ∇x.(D∇xn0 − n0E) = 0
n0(x, 0) = nI(x)

(3.8)

Conservation, evolution

We notice through integration of (3.8) the conservation in time of the
quantity

∫
Rd n0(x, t), number of particles at the 0th order and total

number of particles, since for k ≥ 1, nk(x, 0) = 0 holds.

The density n0 therefore satisfies the following equation, provided
E(x)n0(x, t) → 0 as x → ∞, ie for not too bad E(x) :

1

2

d

dt
||n0||2L2 + D||∇xn0||2L2 =

1

2

∫

Rd

∇x.E n2
0 dx (3.9)

This was obtained by multiplying (3.8) by n0 and integrating over x.
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• k-th order
Iteratively we get similar equations for the wk, but the current density
at order k will now depend on the fluctuations of the current of order
k − 1 :

∂twk + v∇xwk+1 + E.∇vwk+1 = nk+2M − wk+2

nk+1M − v.∇xwk − E.∇vwk − ∂twk−1 = wk+1

wk+2(x, v, 0) = 0

As we can show iteratively, the function wk+1 keeps a good behaviour
for infinite velocities, which leads to the equation for the density nk

and an expression of Jk+1 :

{
∂tnk = ∇x.Jk+1

Jk+1 = ∇xσk − nkE − ∂tJk−1
(3.10)

We used that

∫

Rd

vi∂vj
wkdv = 0 for i 6= j,

and ∇σ is the column vector (ci) with ci =
d∑

j=1

∂xj
σ j

i .

In quasi stationnary cases, we can drop the correction term due to fluc-
tuations in time of the current and get the same drift diffusion equations as
in the zero-th order. In fact, this term can also be neglected in many no
stationnary drift diffusion models where the fluctuation of the current occur
in characteristic times that are much bigger than the relaxation time.

Conclusion

In a stationnary case, and at first order approximation, we can consider that
the drift diffusion current satisfies :

{
J = τ(D∇xn0 − n0E)

∇x.J = 0
(3.11)
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3.2.4 Variation 3 : 2-D model with strong field in one direc-

tion

The aim of this section is to modelize a 2-dimensional case with strong
electric field in one small direction (say y-direction). This implies big accel-
erations of the electrons in this direction and hence many collisions.
We still use the classical Boltzmann-type equation :

∂t w + v.∇x w + E.∇v w =
1

τ
(nM − w)

x = (x, y) ∈ R2, v = (u, v) ∈ R2, t > 0

The field Ex along the x-direction is supposed to be of order of magnitude

1, whereas Ey is of order
1

ǫ2
, so we scale as follows, with ǫ := τ :

ts = ǫ t, Eys =
Ey

1/ǫ2
, ys =

y

ǫ2

and obtain by inserting in the equation above :

Equation

ǫ2∂tw + ǫ (u∂xw + Ex∂uw) +
1

ǫ
(Ey∂vw + v∂yw) = nM − w

with the initial condition

w(x, v, 0) = wI(x, v) independent of ǫ.

Analysis

Using the current density

J(x, y, t) = −
∫

R2

v w(x, y, u, v, t)dudv =
(
J1(x, y, t), J2(x, y, t)

)

and writing as usual w =
∑

ǫkwk, we come for the first order terms to :

• Oth Order

Ey∂vw0 + v∂yw0 = 0 and w0(x,v, 0) = wI(x,v)

Current density

Integration over the whole velocity space and just over v gives :

∂yJ
2
0 = 0

∂y

(∫

R
vw0 dv

)
= 0

Function w0

For the function w0 we conclude that it is a function of the variables
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v2

2
− V (x, y, t), x, u and t :

w0 = w0(
v2

2
− V (x, y, t), x, u, t)

Indeed, we can introduce the characteristic curves X(h) = (y(h), v(h))
defined by {

Ẋ(h) = F (X(h))
X(0) = (y0, v0)

where F (a, b) = (b,Ey(a)).
Then, for all x, u, t, the function w0(x, y(h), u, v(h), t) is constant along
the characteristics :

d

dh
(w0(y(h), v(h))) = 0

and, if we introduce the potential V such as E = ∇xV , the equation
of these caracteristics is :






ẏ = v

v̇ = ∂V
∂y (y(h))

y(0) = y0 v(0) = v0

which leads, after a short computation, to the energy conservation :

v2

2
− V (y) = cste =

v2
0

2
− V (y0)

This should be also true at t = 0, so we have to suppose that wI is of

the form wI(
v2

2
− V (x, y, t), x, u, t).

• 1st order
n0M − w0 = v∂yw1 + Ey∂vw1

Current density

Integration over the velocity space before multiplication by v gives a
similar result to the 0th order case :

∂y J2
1 = 0 .

Because of the form of w0, we have

∫

R
vw0 dv = 0
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so that :

J0 =

( ∫
R2 uw0 dudv

0

)

=

(
0
−n1 Ey

)
+ ∂y

( ∫
R2 uv w1dudv∫
R2 v2 w1dudv

)

• 2nd order

n1M − w1 = u∂xw0 + Ex∂uw0 + v∂yw2 + Ey∂vw2

We come after integration to :

∂yJ
2
2 = −∂xJ1

0

and

J1 = ∂x

( ∫
R2 u2w0dudv

0

)
+ ∂y

( ∫
R2 uvw2dudv∫
R2 v2w2dudv

)
−
(

n0Ex

n2Ey

)

• 3rd order
Time derivative is now present :

n2M − w2 = ∂tw0 + u∂xw1 + Ex∂uw1 + v∂yw3 + Ey∂vw3

which leads to :
∂tn0 − ∇x.J1 − ∂yJ

2
3 = 0

(we used that ∇x.J1 = ∂xJ1
1 + ∂yJ

2
1︸ ︷︷ ︸

=0

).

Remark

These results have been obtained supposing that
wk(x,v, t) and v wk(x,v, t) tend to zero as v tends to infinity.

An other method

The results of the first two items (∂yJ
2
0 = ∂yJ

2
1 = 0) also lead to the

following considerations, where we use a partial density g defined as a partial
integral of w :

g(x, u, t) =

∫

R
w(x, u, v, t)dv

If N(u) denotes
∫
R M(u, v)dv,

and I(x, u, t) the partial current in y-direction :

I = −
∫

R
v w dv so that

∫

R
I du = J2
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We have ∂yI0 = 0 and J2
1 does not depend on y.

The function g satisfies the :

Equation

ǫ2∂tg + ǫ (u∂xg + Ex∂ug) − 1

ǫ
∂y I = nN − g

Ansatz and assumption

We write an expansion of g =
∑

k≥0

ǫk gk,

analogously of I =
∑

k≥0

ǫk Ik.

Let us assume that ∂yI1 = 0, then

1

ǫ
∂y I =

∑

k≥1

ǫk∂yIk+1 .

Analysis

• 0th order term
This gives in our assumption a maxwellian distribution for the zeroth
order partial density :

g0 = n0 N .

• 1st order equation

u ∂x g0 + Ex ∂u g0 − ∂y I2 = n1N − g1

which implies

g1 = n1N − u ∂x g0 − Ex ∂u g0 + ∂y I2

Integration over u now gives, because of the form taken by g0 :

∂yJ
2
2 = 0

• 2nd order equation
It reads :

∂tg0 + u ∂x g1 + Ex ∂u g1 − ∂y I3 = n2 N − g2

and after integration over u, also using the expression of g1 we got in
the preceding item :

∂y J2
3 = ∂t n0 + ∂x (Ex n0 − D ∂x n0) + ∂x∂y

∫

R
u I2 du

︸ ︷︷ ︸
=0 if we assume ∂yI2=0
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We might compare this result to the preceding result of the third order
equation on page (35) and write :

∂xJ1
1 = ∂x




Ex n0 − D ∂x n0 + ∂y

∫

R
u I2 du

︸ ︷︷ ︸
=0 if ∂yI2=0




.
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Chapter 4

Semiconductors

Until now we have considered particles allowed to have every energy (every
velocity) and moving in a vacuum.
In fact, in a solid at room temperature, two kinds of eletrons may exist :
some with lower energy strongly hold to the nucleus, while others with higher
energy are free to move and allow the solid to conduct electricity. If the
conductivity of semi-conductors increases with temperature, pure semi con-
ductors will anyway not conduct enough electricity, and (technically rather
complicated ) methods consist in introducing free electrons : this is called
doping.
Purpose of this chapter is to understand this procedure of doping and how
the equations of the previous chapters can be used and adapted.

4.1 Cristal lattices

In an ideal solid exempt of impurities, atoms are periodically disposed in a
cristal lattice R with primitive vectors a1,a2,a3 that define the primitive
cell :

R = {n1a1 + n2a2 + n3a3, n1, n2, n3 ∈ Z}
A reciprocal lattice is defined :

R∗ = {n1â1 + n2â2 + n3â3, n1, n2, n3 ∈ Z}
where â1, â2, â3 satisfy :

ai . âj = 2πδi,j

The primitive cell B of the reciprocal lattice is called Brillouin zone.
Let VL be the potential generated by the ions located at the points of R,
then VL is periodic over the lattice, and the steady states Ψ of energies E
of the electron verify :

HLΨ = (− h̄2

2m
△ − qVL)Ψ = E Ψ .

38



A theorem (called Bloch Theorem) then assures that, because of the peri-
odicity of VL, Ψ has the form :

Ψ(r) = Ψk(r) = uk(r) eik.r

where r ∈ R3, k ∈ R3 and uk is periodic over the lattice.
Inserting the Bloch Ansatz into the wave equation gives :

− h̄2

2m
(△uk + 2ik.∇ uk) + (

h̄2

2m
|k|2 − qVL(r))uk = E uk .

The periodicity of uk and operator theory results now imply that for each
k, the eigenvalues E consitute an infinite sequence El(k).
In fact, since eik.r = 1 for k ∈ R∗ and r ∈ R, the wave vector k can be taken
in the cell B.
The function El is called the first energy band of the cristal, and for an
electron of the subband l, the velocity corresponding to the wave vector k

is :

vl(k) =
1

h̄
∇kEl(k) .

This is the way the equations written for v in the previous chapters can be
re-written for k : using vl(k), and using functions w of (x,k, t) instead of
(x, v, t). The principal difference is the appartenance of k to the bounded
Brillouin zone B and not to the unbounded domain R3.

4.2 Semi conductors and doping

Definition

These bands of energy El are here supposed to be distinct. The valence
band is the highest band of energy where the electrons are still held to the
nucleus, the next band is the conduction band.
A semi conductor (like Silicium, column IV of Mendeleiev’s classification,
ie four electrons in the valence band) is defined by the following property :
at zero Kelvin, the valence band (of maximal energy EV ) is full and the
conduction band (of minimal energy EC) is empty, but at room tempera-
ture, thermical energy (of order of magnitude kBT , with kB the Boltzmann
constant) allows electrons to jump from the valence band to the conduction
band.
The difference

Eg := EC − EV

is called the energy gap. So the condition reads Eg ≤ kBT .
We mention the two other cases : metal have already got electrons in the
conduction band at zero Kelvin, isolators have a too high energy gap and
no electron is in the conduction band at any T .
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Holes

The jump of an electron from the valence band to the conduction band lets
a hole in the valence band, that might be filled in by an electron of the
subband : to these moving holes a charge +q is attributed. Since they can
move, they contribute to the current.

Doping

In order to increase the number of conduction electrons in the semi-conductor,
new atoms (impurities) are introduced. Let us take for instance foreign
atoms that have one more electron (ie column +V of the classification) in
the valence band than the semiconductor atoms do. These atoms build a
covalent bond with the semi-conductor atoms (four electrons from the Sili-
cium together with four from the foreign atom), but there is one electron
left. The foreign atoms are chosen so that their valence electrons have an
energy lightly inferior to the minimal conduction energy EC , hence the left
electron can easily jump to the conduction band at room temperature. We
have obtained a n − doped semi-conductor : for each foreign atom, there is
one more conduction electron and the covalent bond is positive charged.
Similarly we can increase the number of conducting holes by using elements
of the III-rd column and create p − doped semiconductors.
In practice, the doping is large, so that almost all conduction electrons come
from this doping.

4.3 Drift Diffusion - Poisson Equations

Drift diffusion model for semi-conductors contains the same equations as
seen before (section 3.2.3 page 30), but written a second time for the holes.
They macroscopically describe the motion of the free particles (ie electrons
of the conduction band and holes of the valence band). In fact, interactions
exist between holes and electrons, the so-called combination-regenerations,
but they will be neglected in the next chapters.

Adding the Poisson Equation (see 1.6 page 10), we get the self consistent
model for semiconductors with doping concentration C :





∂tn − ∇x.Jn = 0
Jn = D∇xn − n∇xV

∂tp + ∇x.Jp = 0
Jp = D∇xp + p∇xV

ǫs △ V = n − p − C

(4.1)

where the indices n and p respectively stand for electrons and holes, n and
p for the electron and hole densities, ǫs the permittivity of the environment.
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Chapter 5

From Drift Diffusion to

MOSFETs Equations

In the coming two chapters, the Drift Diffusion model found in section
3.2.3 of chapter 3 is written for both holes and electrons, together with the
Poisson Equation (1.6) : this leads to the system (5.1).
Global aim is the expression of the current in a MOSFET. The results below
have been obtained in [1] through appropriate scaling and derivation of a
quasi one dimensionnal model.

The purpose of this chapter is the obtention of the MOSFET equations
through appropriate scaling from the stationary Drift Diffusion Model (with-
out recombination rate : see [1]).

5.1 Equations and boundary conditions

5.1.1 Equations

The stationary Drift Diffusion equations are given in a domain Ω ⊆ Rd, d =
1, 2, 3 by :

∇. (ǫ ∇ V ) = q(n − p − C)

∇. (Jn) = 0
Jn = q(Dn ∇ n − µn n ∇ V )

∇. (Jp) = 0
Jp = q(−Dp ∇ p − µp p ∇ V )

(5.1)

where ǫ stands for the permittivity, V for the potential n (p) for the
electron (hole) density, C for the doping concentration, Jn (Jp) for the
current density associated to the electrons (holes).
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Dn (Dp) and µn (µp) are the diffusion and mobility coefficients of electrons
(holes) and satisfy the Einstein relations

Dn = µnUT , Dp = µpUT , (5.2)

where UT =
kBT

q
is the thermal voltage, UT ≈ 0.025 V at room tempera-

ture.

5.1.2 Boundary conditions

The boundary ∂Ω of the domain Ω is assumed to consist in a Dirichlet part
∂ΩD, corresponding to Ohmic contacts and a Neumann part ∂ΩN , corre-
sponding to insulating or artificial surfaces.

At Ohmic contacts, the space charge vanishes, there is thermal equilib-
rium and the quasi Fermi levels φn and φp assume the values of the applied
voltages :

n − p − C = 0
np = n2

i

φn := V − UT ln
(

n
ni

)
= U = φp := V + UT ln

(
p
ni

) (5.3)

ni is the intrinsic density of mobile carriers (ni ≈ 1010cm−3 at room
temperature). We refer to [5] for the second equation.
These three conditions lead to following results for the (positive) densities
n, p and for the the potential V :

n(x) = nD(x) = 1
2

(
C(x) +

√
C(x)2 + 4n2

i

)

p(x) = pD(x) = 1
2

(
−C(x) +

√
C(x)2 + 4n2

i

)

V (x) = VD(x) = U(x) + Vbi(x) for x ∈ ∂ΩD

(5.4)

with Vbi(x) = UT ln

(
nD(x)

ni

)
.

Along insulating and artificial surfaces, there is no current flow and a
zero electric field in the normal direction ν (unit outward normal vector to
the boundary) :

∂V

∂ν
(x) := ∇ V · ν = 0

Jn(x) · ν = 0
Jp(x) · ν = 0 for x ∈ ∂ΩN

(5.5)
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5.1.3 With the Slotboom variables

Using the so called Slotboom variables (linear in the densities), we write :

n = ni e
V

UT u p = ni e
− V

UT v

and obtain for the current densities in (5.1), using the Einstein relations
(5.2) :

Jn = q UT ni µn e
V

UT ∇ u Jp = −q UT ni µp e
−

V
UT ∇ v

and thus for the equations of paragraph 5.1.1 :

ǫ ∆ V = qni (e
V

UT u − e
− V

UT v) − qC

0 = UT ni ∇. (µn e
V

UT ∇ u)

0 = UT ni ∇. (µp e
−

V
UT ∇ v)

(5.6)

with the boundary conditions :

Dirichlet conditions :

V = VD, u = uD, v = vD on ∂ΩD (5.7)

with uD = n−1
i e

−
VD
UT nD and vD = n−1

i e
VD
UT pD (5.8)

Neumann conditions :

∂V

∂ν
=

∂u

∂ν
=

∂v

∂ν
= 0 on ∂ΩN (5.9)

5.2 Scaling

We introduce the following scaling and bring the system of Drift Diffusion
Equations (5.6), with boundary conditions (5.7), (5.8) and (5.9) into a di-
mensionless form. Let be

• L a characteristic length for the geometry of the transistor,

• UT the thermal voltage seen in (5.2),

• C̃ the maximal absolute value of the doping concentration (C̃ ≈ 1020 cm−3),

• µ̃ a characteristic value for the mobilities µn and µp (for silicon, µ̃ is
of the order of 1000 cm2V −1s−1).
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We thus set (s stands for scaled):

x = L xs, V = UT Vs

n = C̃ ns, p = C̃ ps, C = C̃ Cs

Jn =
qUT C̃µ̃

L
Jns , Jp =

qUT C̃µ̃

L
Jps

µn = µ̃µns , µp = µ̃µps , Dn = UT µ̃µns , Dp = UT µ̃µps

By now the subscript s will be omitted. Introducing the parameters

λ =

(
ǫUT

qC̃L2

) 1
2

and δ =

(
ni

C̃

) 1
2

(5.10)

(λ is the scaled Debye length), the Drift Diffusion problem now reads :

λ2 ∆ V = δ2 (eV u − e−V v) − C

∇. (Jn) = 0
Jn = µn eV ∇ u

∇. (Jp) = 0
Jp = −µn e−V ∇ v

(5.11)

with the boundary conditions

V = VD, u = uD, v = vD on ∂ΩD (5.12)

where uD(x) = e−U(x) , vD(x) = eU(x) x ∈ ∂ΩD, (5.13)

VD(x) = U(x) + ln

[
C(x) +

√
C(x)2 + 4δ4

2δ2

]

= U(x) + Vbi(x) , x ∈ ∂ΩD

and
∂V

∂ν
=

∂u

∂ν
=

∂V

∂ν
= 0 on ∂ΩN (5.14)

The Slotboom variables have now taken the form :

u = δ−2 n e−V and v = δ−2 p eV .
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Figure 5.1: Cross section of a MOSFET
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5.3 Geometry of the Metal Oxide Semiconductor

Field Effect Transistor

5.3.1 Cross section of a MOSFET

see page 45

5.3.2 Explanation

A d = 2 dimensional model can be adopted.
The semiconductor part ADFE of the MOSFET consists in three regions :
source, drain and bulk. Each of these regions is uniformly doped, ie atoms
that are positively (negatively) ionized at room temperature have been in-
troduced in the source and drain regions (bulk region) in order to arise the
number of mobile carriers : negative charged electrons in the so called n-

regions let positive fixed ions, and positively charged holes in the p-region

let negative fixed ions.
Bringing a n-region next to a p-region, as along BG and CH, we get op-
posite phenomena for the movement of the mobile carriers : electrons tend
to diffuse from the n-region to the p-region, holes from the p-region to the
n-region. However, the resulting electric field, created by the fixed ions,
leads to the drift of mobile carriers, opposed to the diffusion. The region
along the frontier with lower mobile carriers is called pn-junction.

In the following, the pn-junctions are assumed to be small compared to
the length L := BC, reference length.

For positive applied bias on the gate IJ , the holes are repulsed and a
depletion zone appears close to BC, even a weak inversion zone when the
electron density becomes greater than the hole density, both densities re-
maining small for high doping. For larger applied bias, the hole density
tends to zero whereas the electron density can become great : a strong in-

version layer appears close to BC (charge can not penetrate the oxide),
which may be followed by a depletion-weak inversion zone, as the potential
decreases along the x-axe.

Then, applying a bias between source and drain, a current can circulate
through the p-region and even become big when a strong inversion layer
exists. In this case, the carriers responsible for the current flow are only the
electrons (holes are not involved) : we have a so-called n-channel of length L.

To sum up, the gate voltage modulates the conductivity of the semi-
conductor, while the drain voltage controls the current flow.
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5.4 MOSFET Equations and Boundary conditions

We set for the Slotboom variables, which have to be positive (see definition) :

u = e−ϕn , v = eϕp .

So ϕn,p are the quasi-Fermi levels scaled by UT .

For example, the unscaled version for n reads : n = ni e
V −φn

UT ,

and the scaled one : n = δ2 eV −ϕn .

Remembering ϕn = ϕp = U the applied voltage at a Ohmic contact,
we see that an equilibrium ( no applied voltage : U << UT ) corresponds
to u ≡ v ≡ 1.

5.4.1 Equations in the MOSFET

They simply read for the rectangle ADFE :

λ2 ∆ V = δ2 (eV −ϕn − e−V +ϕp) − C (5.15)

∇. (Jn) = 0
Jn = −µn eV −ϕn ∇ ϕn

(5.16)

∇. (Jp) = 0
Jp = −µp eϕp−V ∇ ϕp

(5.17)

The oxide is free of charges, thus the potential verifies in the rectangle BCJI :

∆V = 0 (5.18)

5.4.2 Boundary conditions

At the Ohmic contacts AB, CD and EF, we can write the Dirichlet conditions
(the source is the reference voltage):

• ϕn = ϕp = 0 on AB

• ϕn = ϕp = UD on CD, UD the drain-source voltage

• ϕn = ϕp = UB on EF, UB the bulk-source voltage.

At the interface IJ, we have the condition (ideal case):

• V (−d, y) = Vbi + UG, UG the gate-source voltage.

• No current is assumed to be able to flow across the surfaces AE, DF,
and IB, JC, so we have there homogenous Neumann conditions for the
quasi Fermi levels ( see (5.16) and (5.17) ).
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Chapter 6

A simplified model for

MOSFETs

After reducing the problem on a central part of the transistor, we compute
the current source-drain using a quasi-one dimensional model.

6.1 Reduction of the problem to the rectangle BCHG

We do following simplifications :
The quasi-Fermi levels corresponding to the majority carriers are constant
in each p−and n−region, that means :

• ϕn = 0 in the source region, and hence on BG

• ϕn = UD in the drain region, and hence on CH

• ϕp = UB in the bulk region, and hence in BCHG

6.1.1 Rescaled equations in BCHG

We introduce the small parameter γ defined by :

γ =
1

ln
1

δ2

ie δ2 = e
−

1

γ

δ has been defined in (5.10). We rescale the variables with this parameter
γ :

W = γV , Φn = γϕn , ξ =
x

λ̃
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where λ̃ =
λ√
γ

.

As ϕp = cst in BCHG, the hole continuity equation is trivial, that’s why we
only consider the following equations :

∂2
ξ W + λ̃2∂2

yW = exp

(
W − Φn − 1

γ

)
− exp

(
UB − W − 1

γ

)
+ 1 (6.1)

and

∂ξ

(
µn exp

(
W − Φn − 1

γ

)
∂ξΦn

)
+ λ̃2∂y

(
µn exp

(
W − Φn − 1

γ

)
∂yΦn

)
= 0

(6.2)
In the next section, we will use the smallness of λ̃ in order to derive a

one-dimensional model.
We also recall that γ is a small parameter, so the discussion for the analysis
of these equations in section 6.3 will be based on the sign of W −Φn−1 and
of UB − W − 1, ie the cases of small or big scaled electron-holes densities.

6.1.2 Boundary conditions at the interface BC

As there is no current flow crossing BC, Jn · ν = 0 or :

∂ξΦn = 0 at BC. (6.3)

The second boundary condition on BC is :

α∂ξW = W − γVbi − UG (6.4)

where α =
ǫsd

ǫoxλ̃
.

In order to get it, we compute the potential in the oxide :

The oxide thickness is small compared to the channel length : d << L,
and L was chosen as the reference length, so that in fact : d << 1; setting
η = x

d , we get from 5.18 that :

∂2
ηV + d2∂2

yV = 0

As d tends to zero, one can write and solve the equation

∂2
ηV = 0 (6.5)

knowing that, even if the Neumann conditions seem to be violated, it
is possible to consider corrector layers (that reveal to be a O(d) ) at the
boundaries BI and CJ. So we suppose (6.5) to be true everywhere in BCJI
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and solve it :

Vox(η) = V (0+, y) − (Vbi(0, y) + UG) η + V (0+, y)

We used here the continuity of the potential :

V (0−, y) = V (0+, y)

The continuity of the electric displacement at the interface BC :

ǫox∂xV (0−, y) = ǫs∂xV (0+, y)

gives us the boundary condition on BC :

ǫsd

ǫox
∂xV = V − Vbi − UG on BC

which reads (6.4) in the rescaled version.

6.1.3 Boundary conditions at the interfaces BG, CH

We rescale the equations seen in the introduction :
Φn = 0 at BG and Φn = UD at CH.
The potentials along the pn−junctions BG and CH are left unspecified.

6.1.4 Boundary conditions at the interface GH

Firstly, we assume that no current flow occurs across GH, which leads to
the boundary condition :

∂ξΦn = 0 at GH. (6.6)

It means we expect only a tangential current at the interface, but this is not
necessary justified by numerical simulations.

Secondly, up to this artificial boundary the space charge is assumed to
be zero, hence at the boundary : C + p − n = 0, or in the scaled version :

exp

(
W − Φn − 1

γ

)
− exp

(
UB − W − 1

γ

)
+ 1 = 0

This leads to a quadratic equation for exp(W
γ ), from which we get the

following solution :

W = UB − 1 − γ ln
1

2

[
1 +

√

1 + 4 exp
UB − Φn − 2

γ

]
on GH (6.7)
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6.2 A quasi-one dimensional model for a formula-

tion of the current

We get below a general 1-D formulation of the current and derive a square-
root equation fot the potential W that will help us compute the current
in the cases of depletion-weak inversion and strong inversion (see following
section).

6.2.1 The 1-D model

Letting λ̃ go to zero in (6.1) where it appears in a quadratic way, we obtain
following problem for fixed y ∈ [0, 1]:

∂2
ξ W = exp

(
W − Φn − 1

γ

)
− exp

(
UB − W − 1

γ

)
+ 1 (6.8)

For given Φn this equation combined with the boundary conditions on BC
and GH ( (6.4) and (6.7) ) has exactly one solution

W = W (Φn, ξ, y).

Doing the same for (6.2), we write :

∂ξ

(
µn exp

(
W − Φn − 1

γ

)
∂ξΦn

)
= 0

which means, as ∂ξΦn = 0 at BC (and in our assumptions also at GH, see
(6.3) and (6.6) ) that Φn does not depend on ξ :

Φn = Φn(y).

6.2.2 A formulation of the current

Integrating the continuity equation (6.2) over ξ ∈ [0, ξ∗] with ξ∗ =
BG

λ̃
the

value of ξ on GH, and using the other boundary conditions on BC and GH
( (6.3) and (6.6) ), the integral of the first term in (6.2) is zero and thus we
obtain :

∫ ξ∗

0
∂y

(
µn exp

(
W (Φn, ξ, y) − Φn − 1

γ

)
∂yΦn

)
dξ = 0

We note that ∂yΦn is like Φn independent of ξ for λ̃ tending to zero, and
set :

N(Φn, y) :=

∫ ξ∗

0
exp

(
W (Φn, ξ, y) − Φn − 1

γ

)
dξ (6.9)

so that :
∂y(µn N(Φn, y) ∂yΦn) = 0
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As we considered that the holes do not contribute to the current (we set
ϕp = cst in BCHG), the expression µnN(Φn, y)∂yΦn is exactly the (electron)
current I(y) at a section y = cst, and the equation above just says it does
not depend on y :

I = cst = µn N(Φn, y) ∂yΦn

=
∫ 1
0 µn N(Φn, y) ∂yΦn dy

Remarking ∂yΦn dy = dΦn and remembering that Φn ∈ [0, UD] for y ∈
[0, 1] (see paragraph 6.1.3), the formulation for the current reads :

I = µn

∫ UD

0
N(Φn) dΦn (6.10)

6.2.3 A squareroot equation for the potential

Here Φn(y) and UB are seen as parameters verifying the inequality

∀ y, UB < Φn(y) + 2.

We start from equation (6.8), multiply it with ∂ξW and integrate over
[0, ξ∗ = BG

λ̃
≈ ∞] :

1

2
(∂ξW )2 = γ exp

(
W − Φn − 1

γ

)
− exp

(
UB − W − 1

γ

)
+ W + k

where k is an integration constant we are determining as follows :
We introduce the notation TST (Transcendentally Small Terms), in fact

TST (γ) meaning TST = O
(
e−c/γ

)
as γ tends to zero for a positive con-

stant c, so every TST (γ) is small compared to any power of γ.
As a consequence, we can write :

W = −1 + UB + TST on GH, ie for ξ = ξ∗ ≈ ∞

Writing ∂ξW (∞) = 0, we get the value of k :

k = 1 − UB − γ + TST (6.11)

Assuming W is decreasing at fixed y in BCHG, we obtain :

∂ξW√
2

= −
√

γ exp

(
W − Φn − 1

γ

)
− exp

(
UB − W − 1

γ

)
+ W + k

(6.12)
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This can be written at ξ = 0, using (6.4) :

W (0) − γ Vbi − UG

α
√

2
=
√

γ exp
(

W (0)−Φn−1
γ

)
− exp

(
UB−W (0)−1

γ

)
+ W (0) + k

(6.13)
We eventually remark that in this expression

γVbi = −1 + TST.

6.3 Computation of the potential

In this section we use the equations obtained in section 6.2.3 to compute
the potential in the depletion-weak inversion case and in the strong inversion
case.
We remember that the scaled densities are given by :

n = exp

(
W − Φn − 1

γ

)
and p = exp

(
UB − W − 1

γ

)

6.3.1 Depletion-Weak inversion

Here is UG supposed to be lightly greater than UB.

Conditions on UG

The densities n and p can be neglected (ie are TST (γ) ) in all the rectangle
BCHG iff UB − 1 < W (ξ) < Φn + 1 for all ξ.
As W is a decreasing function, it means :

W (0) < Φn + 1 and W (1) > UB − 1

In this case W (0) is solution of a simplified equation, obtained from (6.13),
(6.11) and the remark at end of paragraph 6.2.3 :

W (0) − γ Vbi − UG

α
√

2
= −

√
W (0) + k

≈ W (0) + 1 − UG

α
√

2
≈ −

√
W (0) + 1 − UB

Taking the square of this equation we get :

W (0) = UG − 1 + α2 − α
√

α2 + 2(UG − UB), (6.14)
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and the condition W (0) < Φn + 1 is realised as soon as :

UG ∈
[
UB, 2 + Φn + α

√
2(2 + Φn − UB)

]
(6.15)

The right end of this intervall is thus the limit between weak inversion and
strong inversion.

Potential and depletion width

Under the above assumptions, the equation (6.8) can be written :

∂2
ξ W = 1 ⇒ W (ξ) = ξ2

2 + ∂ξW (0)ξ + W (0)

with W (0) < Φn + 1.

As long as W (ξ) > UB − 1 holds, we are in the depletion-weak inver-
sion case, and as soon as W (ξ) reaches the value UB − 1, then W has to
stay constant equal to this value, as there is no accumulation of holes in the
semiconductor. It allows us to define the depletion width ξd, value of ξ after
which the potential is constant.

Replacing ∂ξW (0) and W (0) in the potential above thanks to (6.13) and
(6.14), we can come (neglecting the TST s) to the following expression for
the potential under ξd :

W (ξ) =

{
−1 + UB + 1

2(ξ − ξd)
2 0 ≤ ξ ≤ ξd

−1 + UB ξ ≥ ξd
ξd := −α +

√
α2 + 2(UG − UB)

(6.16)
We note that in this case of depletion-weak inversion ξd and thus W are
independant of Φn.
W is maximal for UG equal to the right end of the interval seen in (6.15),
which leads to an expression of ξmax

d in the form :

ξmax
d =

√
2(2 + Φn − UB) (6.17)

6.3.2 Strong inversion

Here is UG going to be strongly greater than UB .

The electron density n is expected to be large in a some part of the
rectangle BCHG, ie W (ξ) > Φn + 1 for some ξ over a so called strong
layer [0, ξinv ] next to the oxide. As the potential decreases we expect a
depletion-weak inversion layer where n is small as in the preceding section
for ξ ∈ [ξinv, ξd] ending in an equipotential layer in the rest of the rectangle.
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Looking at n = exp

(
W − Φn − 1

γ

)
, we make the Ansatz :

Winv = 1 + Φn + γ ln
1

γ
+ γ z

The function z is solution of a simple differential equation with boundary
condition at ξ = 0:
Only the second exponential term (corresponding to p) is now a TST in
(6.13), the first exponential (electron density) is exp(z(0)), and letting γ go
to zero we come to the equation :

2 + Φn − UG

α
√

2
= −

√
(exp(z(0)) + 2 + Φn − UB)

and obtain the boundary value of z :

z(0) = ln

(
(2 + Φn − UG)2

2 α2
− 2 − Φn + UB

)

We move to the fast variable

τ =
ξ

γ
=

x

λ
√

γ
, (6.18)

write ẑ(τ) = z(ξ) and obtain from (6.12) the differential equation for ẑ(τ) ,
letting γ tend to zero :

∂τ ẑ = −
√

2(exp(ẑ) + 2 + Φn − UB)

with the solution :

ẑ(τ) = ln


(2 + Φn − UG) sinh−2



√

1 +
Φn − UB

2
τ + c




 (6.19)

where the constant c is determined by ẑ(0) = z(0).
As ẑ(τ) tends to −∞ when τ tends to ∞, the potential will come under the
value 1 + Φn for a value ξinv of ξ, where the weak inversion begins. In this
zone, the potential is solution of ∂2

ξW = 1 and thus has the form

Wdepl(ξ) = a + b ξ +
ξ2

2

The scaling shows that ξinv << 1 and a development of Winv in terms of
the slow variable ξ by zero gives :

Winv(ξ) = 1 + Φn + γ ln 1
γ + γ ẑ( ξ

γ )

= 1 + Φn −
√

1 + (Φn − UB)/2 ξ + o(ξ) + TST
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Equating the coefficients in Wsl and Wdepl implies :

Wdepl(ξ) = 1 + Φn −
√

1 + (Φn − UB)/2 ξ + ξ2

2
= −1 + UB + 1

2 (ξ − ξmax
d )2

where ξmax
d was given in (6.17) and is independant of UG.

After ξmax
d the potential is constant equal to UB−1 in the rest of the rect-

angle. Saying that the depletion layer has to stay in the rectangle BCHG,
we have the condition that ξmax

d remains inferior to ξ∗ for every y.
For increasing Φn (equal to zero at the source and to UD at the drain), ξmax

d

is also increasing, and the condition reads :

√
2(2 + UD − UB) ≤ BG

λ̃
.

We sum up the results for the potential in the strong inversion case :

W (ξ) =





1 + Φn + γ ln 1
γ + 0 ≤ ξ ≤ ξinv

+γ ln

(
(2 + Φn − UG) sinh−2

(√
1 +

Φn − UB

2

ξ

γ
+ c

))

−1 + UB + 1
2(ξ − ξmax

d )2 ξinv ≤ ξ ≤ ξmax
d

−1 + UB ξ ≥ ξmax
d

(6.20)
The value of ξmax

d is given in (6.17).
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6.4 Computation of the current

We will use the formulation established in section 6.2 to compute the current
in the cases of depletion-weak inversion and strong inversion. We thus need
the expression of N(Φn) that appears in (6.10). It is defined in (6.9).

6.4.1 Expression of N(Φn)

In the depletion-weak inversion case, we use the potential of (6.16), omit
the quadratic term and integrate over [0,∞] (γ is small) :

Ndepl(Φn) =
∫ ξ∗

0 n dξ

≈
∫∞
0 exp

(
W−Φn−1

γ

)
dξ

Ndepl(Φn) =
γ

ξd
exp

(
W (0) − Φn − 1

γ

)
(6.21)

In the strong inversion case, we use the expression (6.20). In fact, we
just need to compute the contribution of the strong inversion layer (integral
over [0, ξinv] approximated by integral over [0,∞]) and add it to the contri-
bution of the depletion layer (6.21) with ξd = ξmax

d (integral over [ξinv, ξd]
approximated by integral over [0,∞]). We obtain :

Ninv(Φn) = (UG − 2−Φn)/α −
√

2(2 + Φn − UB) + γ/
√

2(2 + Φn − UB)
(6.22)

6.4.2 Currents

We use the formula (6.10) for the current, and thus have to consider three
cases, depending on the value of the gate voltage UG. The bounding values
of UG are derived from the interval (6.15). Indeed, if UG is small enough,
depletion-weak inversion prevails in the whole channel; if it is big enough,
strong inversion prevails; otherwise both of these occur :

• for U ≤ Ut = 2 + α
√

2(2 − UB) (Ut stands for threshold voltage),
we use (6.21) and obtain :

I = µn
γ2

ξd
exp

(
W (0) − 1

γ

)
(1 − e−UD/γ)

So the saturation current in this subthreshold region is, for large UD,
a transcendentally small term of γ.

• for U ≥ Ut = 2 + UD + α
√

2(2 + UD − UB), and so as long as the
drain-source voltage verifies
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UD ≤ UDsat = UG − 2+α2 −α
√

α2 + 2UG − 2UB , we use (6.22) and
obtain :

I = µn

(
1

α
(UG − 2 − UD/2)UD − 2

√
2

3
(2 + UD − UB)3/2

+
2
√

2

3
(2 − UB)3/2 + γ

√
2(2 + UD − UB) − γ

√
2(2 − UB)

)

This is the non-saturation region.

• when the quasi Fermi level can take the value of UDsat, ie the in-
equalities of the two first items are not satisfied, there is a so called
pinch-off, and (6.21) is used for 0 < Φn < UDsat whereas (6.22) is used
for UDsat < Φn < UD :

I = Isat + µn
γ2

ξd
exp

(
W (0) − 1

γ

)
(e−UDsat/γ − e−UD/γ)

Isat is the saturation current obtained by substituting UD = UDsat in
the current of the non-saturation region. The distance of the pinch-off
point to the drain is in fact very small compared to the channel length.
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Chapter 7

Quantized model for

MOSFETs

Miniaturization of transistors introduces quantum effects. Recent research
tries to couple the classical Drift Diffusion model and a quantum description
through the Schrödinger eigenvalue equation involving the quantized direc-
tion. The Poisson equation is still used to get a selfconsistent problem.

7.1 Unscaled system

For a MOSFET as pictured page 45, the n-channel (next to BC) is quantized
in the x-direction.
We use [4] and write the unscaled sytem :






ǫ △x,y V = q(n − C − p)

n(x, y) = ni
∑

p≥1 exp

(
−ϕn(y) + ǫp(y)

UT

)
|χp(x, y)|2

with − h̄2

2m
∂2

x χp − q V χp = q ǫp χp , p ≥ 1

where χp(., y) ∈ H1
0 (0, d),

∫ d

0
χpχq dx = δpq.L

∇y.(qDn ∇yN − µn N ∇yVs︸ ︷︷ ︸
Jn

) = 0

with N(y) =
∫ L
0 n(x, y)dx = ni e−ϕn/UT

∑

p≥1

e−ǫp/UT

and Vs = −UT log



∑

p≥1

e−ǫp/UT
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The quantification (p ∈ N) is due to the confinement in the x-direction
(χp(0, .) = χp(d, .) = 0).

Current Jn

In fact, the equation for Jn combined to the definition of Vs reduces to :

Jn = −µn N ∂yφn , ∂yJn = 0 ,

which is the equation of section 6.2.2 page 51.

Holes and doping densities

The holes desert the n− channel region, so we still take for p the value (see
page 47) :

p = ni e(UB − V )/UT

For the doping density we also still have :

C = −C̃

7.2 Scalings and expansion

Adimensioning

We use the scaling

x, y =
x, y

L
; V,ϕn, ǫp =

V,ϕn, ǫp

UT
; µ =

µ

µ̃
; Jn =

Jn

qUT C̃µ̃/L

in order to get the following scaled equations :

• Poisson equation

λ2△x,yV = δ2
∑

p≥1

e−ϕn − ǫp |χp|2

︸ ︷︷ ︸
n

− δ2 e−V + UB︸ ︷︷ ︸
p

+ 1

with the usual definitions λ =

√
ǫUT

qC̃L2
and δ2 =

ni

C̃
.

• Schrödinger equation

−β′2∂2
x χp − V χp = ǫpχp

χp ∈ H
d/L
0 being now orthonormized

with β′2 :=
h̄2

2mqUT L2
.
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• Drift Diffusion equation
It reads :

∂y(µn N ∂yϕn) = 0

Rescaling

We now introduce the scaling of section 6.1.1 of page 48 :

δ2 = e
−

1

γ λ̃ =
λ√
γ

W = γV Φn, UB , ǫp = γ ϕn, UB , ǫp

ξ =
x

λ̃

and to have the χp still orthonormized :

χp =
1√
λ̃

χps

We obtain :

• for the Poisson Equation

∂2
ξ W + λ̃2∂2

yW =
1

λ̃

∑

p

e
−Φn + ǫp + 1

γ |χp|2 − e

UB − W − 1

γ + 1

• for the Schrödinger equation

−γ β̃2∂2
ξ χp − W χp = ǫp χp∫ d/Lλ̃

0
χpχq dξ = δpq

with β̃ =
β′

√
λ̃

,

• and for the drift diffusion equation

∂y(µn N ∂yΦn) = 0

The term in λ̃2 in the Poisson equation will be neglected (λ̃ → 0).

Strong inversion As we are intersted in the strong inversion case, we
move (similarly to the last chapter) to the fast variable

τ =
ξ

γ
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and make the Ansätze :

W = Φn + 1 + γ ln(λ̃) + γ z

ǫp = −Φn − 1 − γ ln(λ̃) − γ λp

We have to re-re-rescale χp :

χp =
1√
γ

χps

so that for the re-re-rescaled eigenfunctions :

∫ d/Lλ̃γ

0
χpχq dτ ≈

∫ ∞

0
χpχq dτ = δpq

The following relations hold :

∂2
ξW = 1

γ ∂2
τz

n =
∑

p

eλp
|χp|2

γ

so that the Poisson equation becomes :

∂2
τ z =

∑

p

eλp | χp|2 +
γ

λ̃
exp

(
UB − Φn − 2

γ
− z

)
+ γ

Neglecting the last two terms (supposed to be a Transcendentally Small
Term of γ), we come to the Poisson Equation :

∂2
τ z =

∑

p

eλp |χp|2

The Schrödinger equation now reads :

β2∂2
τ + z χp = λp χp

where β is assumed to satisfy

β :=
β̃

γ
= O(1) for γ → 0

As a consequence, we have obtained the

Drift Diffusion Schrödinger Poisson system





∂y(µn N Φn) = 0

N =
∑

p eλp

β2∂2
τ χp + z χp = λp χp

with
∫∞
0 χpχq dτ = δpq

∂2
τ z =

∑
p eλp |χp|2
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with the initial condition (see page 55)

∂τ z (0) =
2 + Φn − UG

α
,

which should be uniquely solvable for a fixed N =
∑

p

eλp .

7.3 Computation of the macroscopical current

As in the last chapter, the equation

∂y(µnN∂yΦn) = 0

gives the right to compute the current I through the formula :

I = µn

∫ 1

0
N(Φn)∂yΦn dy = µn

∫ Φn(1)=UD

Φn(0)=0
N(Φn) dΦn ,

so we need to express N as function of Φn.
Integrating the reduced Poisson equation of the system, we have :

N =
∑

p

eλp = ∂τ z (∞) − ∂τ z (0)

In the depletion zone that still follows the strong inversion zone, as seen
page 56 the potential W can be written (because it is solution of the Poisson
equation ∂ξW = 1) :

W = UB − 1 +
1

2
(ξ − ξd)

2

and it is constant equal to UB − 1 for ξ ≥ ξd.
The constant ξd is determined by the boundary value W (0) = 1 + Φn

(as γ → 0) :

ξd =
√

2(Φn + 2 − UB)

The strong inversion layer being very small with respect to the ”normal”
values of ξ, we can write the following equality :

∂τ z (∞) = ∂ξ W (0)

and get the value of ∂τ z (∞) :

∂τ z (∞) = −ξd = −
√

2(Φn + 2 − UB)

Hence the total density N reads :

N(Φn) =
UG − 2 − Φn

α
−
√

2(Φn + 2 − UB)
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which is the same as in section 6.4.1 (γ → 0) and will lead to the same
current I.

Conclusion

If the inner computations differ from the classical case when we consider the
microscopical changes of the physics introduced by the quantification of one
direction in a MOSFET, the macroscopical result (the current circulating
through the MOSFET) remains the same.
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CONCLUSION

We saw in this report how kinetic transport equations can be used to
derive the computation of the current in a transistor. An appropriate Drift-
Diffusion model, obtained through asymptotics, was the key to the physical
description of the semiconductor.
If, at the beginning, we included the quantum effects in the equations, in
fact the Drift Diffusion model was derived from the Classical Boltzmann
equation. Coupling this model to a Schrödinger-Poisson system, we saw no
impact on the macroscopical current in a MOSFET.
Recent research tries and use a Quantum Drift Diffusion model : the equilib-
rium density (that was the Maxwellian density in the classical case) is found
by minimizing the ”quantum entropy”, defined as function of the density
matrix ρ. Then, starting from the linear collision operator and the Quan-
tum Boltzmann equation with relaxation time, the quantum drift diffusion
model is obtained by a similar asymptotical method.
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