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Abstract. In this paper, we study cut sets of attractors of iteration function

systems (IFS) in R
d. Under natural conditions, we show that all irreducible

cut sets of these attractors are perfect sets or single points. This leads to a
criterion for the existence of cut points of IFS attractors. If the IFS attractors
are self-affine tiles, our results become algorithmically checkable and can be

used to exhibit cut points with the help of Hata graphs. This enables us to
construct cut points of some self-affine tiles studied in the literature.

1. Introduction

To an iterated function system (IFS) {fi}
q
i=1 of injective contractions on a com-

plete metric space, there corresponds a unique nonempty compact set T with the
self-similarity property

(1.1) T =

q⋃

i=1

fi(T ).

This self-similar set is called the attractor of the IFS (see [10]).
Special instances of IFS are so-called self-affine tiles. Let A ∈ R

d×d be an
expanding real matrix whose determinant detA 6= 0 is an integer and a subset
D =

{
e1, . . . , e| detA|

}
⊂ R

d. If the attractor T satisfying

(1.2) AT = T +D :=
⋃

e∈D

T + e

has non-empty interior, then it is called a self-affine tile. The associated IFS reads
{fe}e∈D, where fe(x) = A−1(x+ e) is a contraction for some norm of Rd (see [13]).
If all the coefficients of A are integers, D ⊂ Z

d and T +Z
d is a tiling of Rd, then T

is called an integral self-affine Z
d-tile.

There is a vast literature on topological properties of IFS attractors and self-
affine tiles. A rather common assumption on the attractor of an IFS {fi}

q
i=1 is the

open set condition (OSC). We say that the IFS (or its attractor) satisfies the open
set condition whenever there exists a bounded open set U with

⋃q

i=1 fi(U) ⊂ U
and fi(U) ∩ fj(U) = ∅ for all i 6= j (see for example [8]). Under this condition, the
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contracted copies fi(T ) of T do not overlap. Hata showed in [9] that a connected
attractor is even a locally connected continuum. In the case of a plane attractor
(d = 2), Luo, Rao and Tan proved in [14] the disk-likeness of self-similar connected
tiles with connected interior. The connectedness of self-affine tiles was studied
in [12], and Bandt and Wang characterized in [6] self-affine plane tiles that are
homeomorphic to a disk by the number and location of their neighbors in the tiling.
The structure of the interior components of self-similar tiles with disconnected
interior is investigated by Ngai and Tang in [15].

These studies usually rely on the way intersections happen between the natural
subdivisions of the attractor obtained by iterating the set equation (1.1). The
underlying tools are the so-called Hata graphs. Suppose that T is the attractor of
an IFS {f1, . . . , fq}. For n ∈ N and any sequence α = i1i2 · · · in ∈ {1, 2, . . . , q}n,
let fα := fi1 ◦ fi2 ◦ · · · ◦ fin . The n-th Hata Graph Gn for the IFS {f1, f2, . . . , fq}
is defined as the graph with vertex set {1, 2, . . . , q}n so that two elements α, β ∈
{1, 2, . . . , q}n are incident whenever fα(T ) ∩ fβ(T ) 6= ∅.

Hata showed in [9] that the attractor is connected if and only if the first Hata
graph G1 is connected. Therefore, sometimes Gn is called the n-th connectivity
graph of the IFS. Hata graphs Gn provide a combinatoric viewpoint to explore the
topology of T and its boundary, such as connectivity, homeomorphy to a simple arc
or to a closed disk [9, 12, 2].

In this paper, we are concerned with cut sets of self-similar sets. These are
subsets X of a connected self-similar set T such that T \X is no longer connected.
The study of cut sets is of great importance for the understanding of fractal sets
with a wild topology. They were used in [1] to give a combinatorial description of the
fundamental group of the Sierpinski gasket, and more generally of one-dimensional
spaces [7]. On the opposite, the lack of cut points has an impact on the boundary
of the complement of locally connected plane continua [19]. This was exploited
in [16] to show the homeomorphy to the closed disk of interior components of some
self-affine tiles.

We obtain the following results. In Section 2, we investigate cut sets of gen-
eral self-similar sets and give conditions under which the irreducible cut sets of a
connected self-similar set without cut points are perfect sets (Theorem 2.1 and its
corollary). In Section 3 we formulate this result for the particular case of integral
self-affine tiles and obtain that the above conditions become algorithmically check-
able. Finally, in Section 4, we present a new application of Hata graphs and give a
method to detect cut points in a self-affine Z

d-tile (Theorem 4.3). As pointed out
in Remark 4.5, this criterion easily generalizes to detect finite irreducible cut sets.
Our results are illustrated throughout the paper by several examples.

Acknowledgments. We thank the referee for the helpful remarks and sugges-
tions.

2. Irreducible cuts are perfect

In this section, the main result concerns cut sets of general self-similar sets. Let
us start with fundamental definitions.

We recall that a cut set X of a connected set Y is a subset of Y such that Y \X
is disconnected. If X = {x0} is a cut set for some point x0 ∈ Y , then x0 is called a
cut point. A cut set X of a connected set Y is irreducible if Y \X0 is connected for
any proper subset X0 of X which is closed in Y . The derived set of a set X ⊂ Y is
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the set of limit points, denoted by X ′. Finally, for a finite set A, the set A∗ denotes
the set of all nonempty finite words on A. For k ≥ 1, Ak is then the subset of words
of length k.

Theorem 2.1. Let T be the attractor of an IFS {f1, . . . , fq} with injective con-
tractions. Suppose that T is connected and let E be the exceptional set defined
as

(2.1) E :=
⋃

α, β ∈ {1, . . . , q}∗,
#fα(T ) ∩ fβ(T ) = 1

fα(T ) ∩ fβ(T ).

Then either T has a cut point or each irreducible cut set X of T admits a partition
X = X ′ ∪X1 with X1 ⊂ E.

Corollary 2.2. Let {f1, . . . , fq} be a set of injective contractions. Assume that the
associated attractor T is connected and satisfies #fα(T ) ∩ fβ(T ) 6= 1 for each pair
of elements α, β ∈ {1, 2, . . . , q}∗. Then either T has a cut point or each irreducible
cut set X of T is a perfect set.

Proof for Theorem 2.1. Assume that T has no cut point and let X be an irreducible
cut set of T . Then for any separation T \ X = A ∪ B we have A ∩ B = X. Let
X0 := X \ E. We have to show that X0 contains no isolated point of X.

Assume on the contrary that x0 ∈ X0 is isolated in X. Let ε > 0 be the distance
between x0 and X \ {x0}. Choose k ∈ N large enough that diamfα(T ) < ε for each
α ∈ {1, 2, . . . , q}k. Let W be the collection of all the indices α ∈ {1, 2, . . . , q}k with
x0 ∈ fα(T ) and define

A1 :=
⋃

α∈W

[fα(T ) \ {x0}] .

Observe that fα(T ) \ {x0} is connected for each α ∈ W. Indeed, if it were discon-
nected then x0 would be a cut point of fα(T ) and therefore, since fα is injective,
f−1
α (x0) is a cut point of T , which contradicts our assumption.
Note that fα(T ) ∩ fβ(T ) 6= ∅ for α, β ∈ W. Since x0 /∈ E this implies that

# [fα(T ) ∩ fβ(T )] ≥ 2. Hence, A1 is the union of finitely many connected sets hav-
ing pairwise nonempty intersection. Thus A1 is connected and therefore contained
either in A or in B. Without loss of generality, assume A1 ⊂ A. Set a closed set
B1 by

B1 :=
⋃

α∈{1,2,...,q}k\W

fα(T ).

Then T \ {x0} = A1 ∪ B1. Since A1 ⊂ A and B ∩ A = ∅, we have necessarily
B ⊂ B1, and B1 does not contain x0. This means that A∩B is contained in A∩B1

and therefore A ∩ B = X does not contain x0. This contradicts the assumption
that x0 ∈ X. �

Example 2.3. Let n ∈ N be even and define the squares

Qn(i, j) :=

[
i

n
,
i+ 1

n

]
×

[
j

n
,
j + 1

n

]
(i, j ∈ {0, 1, . . . , n− 1}).
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On the left side: an example of an IFS attractor with irreducible cut sets with
one, two, three, four and five elements. On the right side: an example of an IFS

attractor with an infinite irreducible cut set that is not perfect.

It is easily seen that the set

Tn :=
⋃

i,j∈{0,1,...,n−1}
i+j≡0 (mod 2)

Qn(i, j)

is the attractor of an IFS with n2 similarities (the set T6 is depicted on the left side
of Figure 2.3). Moreover the set

X :=

{(
1

n
,
2

n

)
,

(
2

n
,
3

n

)
, . . . ,

(
n− 2

n
,
n− 1

n

)}

forms an irreducible cut set with cardinality #X = n− 2 and

Y :=

{(
n− 1

n
,
1

n

)
,

(
n− 2

n
,
2

n

)
, . . . ,

(
1

n
,
n− 1

n

)}

forms an irreducible cut set with #Y = n− 1.
Since n can be chosen to be any even positive integer we conclude that for each

given m ∈ N there exists an IFS attractor having an irreducible cut set X with
#X = m.

We mention that Tn even tiles the plane with respect to the ornament group p2.

Example 2.4. Define the IFS {f0,0, f1,0, f2,0, f0,1, f2,1, f0,2, f1,2} with

fi,j(x, y) :=

(
x+ i

3
,
y + j

3

)
.

The attractor T of this IFS is depicted on the right side of Figure 2.3.
It is easy to see that the set

X :=

{(
1

3n
,
1

3n

)
: n ≥ 1

}
∪

{(
2

3n
,
2

3n

)
: n ≥ 1

}

is an irreducible cut set of T . This set is infinite but not perfect. On the other
hand one easily verifies that T has no finite cut sets.

We mention that the Sierpiński triangles also has non-perfect irreducible cut
sets.
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3. Cut sets of Z
d-tiles

We are interested in self-affine tiles, defined as attractors with nonempty interior
of IFS of the form

{fe(x) = A−1(x+ e), x ∈ R
d}e∈D,

where A is a d× d matrix with eigenvalues greater than 1 in modulus and D ⊂ R
d

with |D| = |detA| is supposed to be an integer.
In particular, we will be concerned with integral self-affine tiles with standard

digit set : this means that A is an integer matrix and D ⊂ Z
d is a complete set of

coset representatives of Zd/AZd. Moreover the set T + Z
d will be assumed to be

a tiling of Rd, i.e., Rd = T + Z
d with (int(T + d1)) ∩ (T + d2) = ∅ for d1 6= d2

(d1, d2 ∈ Z
d). We say also that T = T (A,D) is a Z

d-tile in R
d.

In the more restrictive setting of integral self-affine Zd-tiles, Theorem 2.1 and its
corollary take the following form.

Theorem 3.1. Let T be a connected Z
d-tile. Then one of the following alternatives

holds:

• T has a cut point.
• Each irreducible cut set X of T admits a partition X = X ′ ∪X1 with X1

contained in

Ẽ :=
⋃

k∈N

⋃

v, s ∈ Z
d,

#T ∩ (T + s) = 1

A−k(T ∩ (T + s)) +A−kv.

The following corollary is an immediate consequence of this result.

Corollary 3.2. If T is a connected Z
d-tile and if #(T ∩ (T + s)) 6= 1 for all s ∈ Z

d,
then either T has a cut point or each irreducible cut set of T is a perfect set.

Proof for Theorem 3.1. To prove this result just note that E ⊂ Ẽ where E is
defined as in Theorem 2.1. The theorem now is a consequence of Theorem 2.1. �

Remark 3.3. Note that the conditions of these assertions are much easier to check
than the conditions of the more general result in Theorem 2.1. Moreover, since T
is compact, the quantities #(T ∩ (T + s)) can be non-zero for only finitely many
s ∈ Z

d and can be read off from the so-called neighbor graph associated to the
Z
d-tile T , which can be computed algorithmically from the data (A,D) (see [17]).

Example 3.4. Let T = T (A,D) be the Z
2-tile with

A =

(
0 −5
1 −4

)
,D =

{(
i
0

)
; 0 ≤ i ≤ 4

}

This tile is the fundamental domain of the canonical number system associated
with the complex basis −2 + i (see [11]). It is depicted in Figure 1 together with
its 10 neighbors.

T is a connected self-affine tile [2, 3]. In [16], S-M. Ngai and T-M. Tang used a
technique developed in their paper to prove that T has no cut point. On the other
hand, in [3], S. Akiyama and J. M. Thuswaldner show that #(T ∩ (T + s)) 6= 1 for
each s ∈ Z

d. Applying Corollary 3.2, we deduce that each irreducible cut set of T
is a perfect set.
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Figure 1. Example 3.4: the tiling induced by T .

4. A criterion for the existence of cut points of Z
d-tiles

In this section we will establish a theorem stating that under certain circum-
stances the existence of a cut point of a Z

d-tile can be seen form the structure of
the Hata graphs Gn. The formulation of the theorem will require some technical
preliminaries, however, as will be illustrated by two examples, its application is
often very simple.

For Zd-tiles T , the vertex set Vn of the Hata graph Gn = (Vn, En) of n-th order
associated to T can be defined in terms of elements of Zd rather than strings of
digits. Indeed, for an integral self-affine Z

d-tile T (A,D) with standard digit set D,
we get the following equivalent representation of Gn.

• Vn: v ∈ Z
d is a vertex of Gn if and only if v =

n−1∑
k=0

Akdk with dk ∈ D

(0 ≤ k ≤ n− 1).
• En: there is an edge between v and v′ if and only if (T + v)∩ (T + v′) 6= ∅.

Remark 4.1. Vn is exactly the set of all v ∈ Z
d satisfying A−n(T + v) ⊂ T . Indeed

T can be written as T =
⋃

v∈Vn

A−n(T + v).

Definition 4.2 (Children). For n ≥ 1 let Gn = (Vn, En) be the Hata graphs
associated to a Z

d-tile T . A node v′ ∈ Vn+1 is called a child of a node v ∈ Vn if

A−n−1(T + v′) ⊂ A−n(T + v).

If U ⊆ Vn is given, then

C(U) := AU +D = {v′ ∈ Vn+1 ; ∃v ∈ U : A−n−1(T + v′) ⊂ A−n(T + v)}

is the set of children of the elements of U . Note that C(U) ⊆ Vn+1.

In what follows, we will consider cut sets of the Hata graphs Gn. To this matter

we will study partitions Vn = W
(n)
1 ∪ W

(n)
2 ∪ W

(n)
3 of the Hata graph with the

property that W
(n)
2 separates Gn between W

(n)
1 and W

(n)
3 , i.e., all paths in Gn

between a node v1 ∈ W
(n)
1 and a node v3 ∈ W

(n)
3 pass through nodes contained in

W2. Set

Xn(W ) :=
⋃

v∈W

A−n(T + v) (W ⊆ Vn).

Then, by the definition of the Hata graph the separation property of W
(n)
2 in Gn

means that Xn(W
(n)
2 ) separates between Xn(W

(n)
1 ) and Xn(W

(n)
3 ), i.e., since T =
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Xn(W
(n)
1 ) ∪Xn(W

(n)
2 ) ∪Xn(W

(n)
3 ) this means that Xn(W

(n)
2 ) forms a separation

of T . We will define W
(n)
i in a way that there exists a single point z ∈ T such that

(4.1) Xn(W
(n)
2 ) ⊃ Xn+1(W

(n+1)
2 ) and

⋂

n≥n0

Xn(W
(n)
2 ) = {z}.

The point z will turn out to be a cut point. Note that the inclusion relation on the

left hand side of (4.1) is equivalent to W
(n+1)
2 ⊂ C(W

(n)
2 ).

This procedure will a priori require to check infinitely many partitions W
(n)
1 ,

W
(n)
2 , W

(n)
3 . However, we will see in the examples that the self-affinity of the tiles

allows to define these partitions in a recursive way. We are now in a position to
state the following theorem.

Theorem 4.3 (Cut points of Zd-tiles). Let T be a connected Z
d-tile and Gn =

(Vn, En) (n ∈ N) its associated Hata graphs. Let n0 be a positive integer. Suppose

that for each n ≥ n0 there are partitions Vn = W
(n)
1 ∪W

(n)
2 ∪W

(n)
3 with W

(n)
j 6= ∅

(j ∈ {1, 2, 3}) satisfying the following properties.

(i) The set W
(n)
2 induces a connected subgraph of Gn that separates Gn between

W
(n)
1 and W

(n)
3 .

(ii) The inclusions

• W
(n+1)
1 ⊂ C(W

(n)
1 ) ∪ C(W

(n)
2 ),

• W
(n+1)
2 ⊂ C(W

(n)
2 ),

• W
(n+1)
3 ⊂ C(W

(n)
3 ) ∪ C(W

(n)
2 )

hold.
(iii) The number of elements of W

(n)
2 is uniformly bounded, i.e., there is an

integer K such that for all n ∈ N, we have #W
(n)
2 ≤ K.

Then
⋂

n≥n0
Xn(W

(n)
2 ) consists of a single point and this point is a cut point of T .

Remark 4.4. The connectedness of a self-affine Z
d-tile can be checked algorithmi-

cally [9].

Remark 4.5. A slight modification of Assumption (i) allows to detect finite irre-
ducible cut sets of connected self-affine Z

d-tiles. Consider the new assumption

(i′) The set W
(n)
2 induces an irreducible cut in the graph Gn consisting of p

connected components ( p ≥ 1 independent of n) and separating Gn between

W
(n)
1 and W

(n)
3 .

Then, under Assumptions (i′), (ii) and (iii),
⋂

n≥n0
Xn(W

(n)
2 ) consists of p points

and is an irreducible cut set of T . The proof runs along the same lines. An example
of a self-affine Z

2-tile with an irreducible cut set consisting of two points can be
found in [6, Figure 3].

Proof of Theorem 4.3. We first show that
⋂

n≥n0
Xn(W

(n)
2 ) is a single point. By

the second assumption in Item (ii), we have for all n ≥ n0 that

Xn(W
(n)
2 ) ⊃ Xn+1(W

(n+1)
2 ) 6= ∅.
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Since T is connected and W
(n)
2 induces a connected subgraph in the Hata graph, we

conclude that Xn(W
(n)
2 ) is a compact connected subset of T for all n ≥ n0. Now,

by Item (iii), for all n ≥ n0,

diam(Xn(W
(n)
2 )) ≤

K diam(T )

λn
,

where λ is the smallest eigenvalue of A in absolute value. Indeed, Xn(W
(n)
2 ) is a

union of subtiles of the form A−n(T + v) for some v ∈ Vn, whose diameters are
smaller than diam(T )/λn. Moreover, by the connectedness of the subgraph induced

by W
(n)
2 in the Hata graph, any two points x, y of Xn(W

(n)
2 ) can be connected by

a connected chain of at most K such subtiles, i.e., there are v1, . . . , vk ∈ Vn with
k ≤ K such that x ∈ A−n(T + v1), y ∈ A−n(T + vk) and

A−n(T + vj) ∩A−n(T + vj+1) 6= ∅ for j ∈ {1, . . . , k − 1}.

This implies the above inequality. Therefore, (Xn(W
(n)
2 )) is a closed nested se-

quence of compact sets whose diameters converge to 0 as n → ∞, and the intersec-

tion
⋂

n≥n0
Xn(W

(n)
2 ) consists of a single point.

We call this single point z. We shall prove now that z is a cut point of T . Let

X :=
⋃

n≥n0

Xn(W
(n)
1 ) \ {z}, Y :=

⋃

n≥n0

Xn(W
(n)
3 ) \ {z}.

Obviously, X ∩ Y = ∅. Moreover, since Vn = W
(n)
1 ∪W

(n)
2 ∪W

(n)
3 is a partition of

the Hata graph, we have the following inclusions by Item (ii) for all n ≥ n0:

• ∅ 6= Xn(W
(n)
1 ) ⊂ Xn+1(W

(n+1)
1 ),

• ∅ 6= Xn(W
(n)
3 ) ⊂ Xn+1(W

(n+1)
3 ).

In particular, X 6= ∅ 6= Y . Also, z /∈ X ∪ Y . Thus we infer the existence of the
partition

T = X ∪ {z} ∪ Y.

More precisely, let us show that T is connected while T \{z} = X∪Y is a separation,
that is, X ∩ Y = ∅ = X ∩ Y . Indeed, suppose on the contrary that y ∈ X ∩ Y .

Then there is N ≥ n0 such that y ∈ XN (W
(N)
3 ). Since W

(n)
2 separates the Hata

graph Gn between W
(n)
1 and W

(n)
3 for all n ≥ n0, we conclude that for all n ≥ N ,

y /∈ Xn(W
(n)
1 ). Also, as y 6= z, there exists N1 ≥ N such that y /∈ XN1

(W
(N1)
2 ).

Now,

X ⊂
⋃

n≥n0
Xn(W

(n)
1 ) =

⋃
n≥N1

Xn(W
(n)
1 )

⊂ XN1
(W

(N1)
1 ) ∪XN1

(W
(N1)
2 )

= XN1
(W

(N1)
1 ) ∪XN1

(W
(N1)
2 ).

The second inclusion above follows from the fact that, by Item (ii), for all n ≥ N1,

Xn(W
(n)
1 ) ⊂ XN1

(W
(N1)
1 ) ∪XN1

(W
(N1)
2 ).

However, by construction of N1, y is neither in XN1
(W

(N1)
1 ), nor in XN1

(W
(N1)
2 ).

Thus y /∈ X, a contradiction. Hence we obtained that X ∩ Y = ∅.
Since we can obtain similarly that X ∩Y = ∅, we conclude that T \{z} = X ∪Y

is a separation. In other words, z is a cut point of T . �
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We apply our theorem to two examples.

Example 4.6. We consider as a first example the tile T satisfying the equation

AT = T +D =
⋃

e∈D

(T + e),

where

A =

(
0 3
1 1

)
, D =

{(
0
0

)
,

(
1
0

)
,

(
−1
0

)}
.

This tile can be found in [4] and [6, Figure 4]. We depict it with its neighbors on
Figure 2. The tile T has the following neighbors:

Figure 2. Tiling for Example 4.6.

(4.2) S =

{
±

(
1
0

)
,±

(
−2
1

)
,±

(
−1
1

)
,±

(
−4
2

)
,±

(
−3
1

)}
.

This can be computed via well-known algorithms (see for example [17]).
For n ∈ N, consider the associated n-th Hata graph Gn = (Vn, En). We write the

elements of Vn as strings of digits, i.e., dn−1 · · · d0 ∈ DN stands here for
∑n−1

k=0 A
kdk.

For convenience, we will often write d instead of

(
d
0

)
(d ∈ {−1, 0, 1}). If a digit

d ∈ D is repeated p times for some p ≥ 0, we will simply write dp instead of d · · · d︸ ︷︷ ︸
p times

.

For p = 0, this is just the empty word.
We check the assumptions of Theorem 4.3 to obtain the existence of a cut point.

We define the sets W
(n)
i for i ∈ {1, 2, 3} and n ≥ n0 := 1 recursively as follows. Let

W
(1)
1 = {−1}, W

(1)
2 = {0}, W

(1)
3 = {1}

and for n ≥ 1, let

W
(n+1)
1 = (AW

(n)
1 +D) ∪ {0n(−1)}

W
(n+1)
2 = {0n+1},

W
(n+1)
3 = (AW

(n)
3 +D) ∪ {0n1}.
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Remark 4.7. For n ∈ N, we have 0n = 0 =

(
0
0

)
, but we want to stress the fact

that we are considering elements of Vn.

The sets W
(n)
i (i ∈ {1, 2, 3}) partition Vn for all n ≥ 1. Moreover, they satisfy

Conditions (ii) and (iii) of Theorem 4.3 with K = 1. As W
(n)
2 consists of a single

point, it is connected for all n ≥ 1. Let us now prove the separation property of
Condition (i) by induction. More precisely, we shall prove the following lemma.

Lemma 4.8. For all n ≥ 1,

(a) W
(n)
2 separates Gn between W

(n)
1 and W

(n)
3 ;

(b)

{v ∈ W
(n)
1 ; (T + v) ∩ (T + 0n) 6= ∅} = {0n−1(−1), 0n−2(−1)1︸ ︷︷ ︸

only for n≥2

}

and

{v ∈ W
(n)
3 ; (T + v) ∩ (T + 0n) 6= ∅} = {0n−11, 0n−21(−1)︸ ︷︷ ︸

only for n≥2

}.

Proof. The first Hata graph is shown in Figure 3, the second Hata graph in Figure 3.
Note that, by definition, G1 has the set of vertices V1 = D = {−1, 0, 1}, and
V2 = AD +D, i.e., G2 has the set of vertices

V2 = {v ∈ Z
2; v =

∑1
k=0 A

kdk, dk ∈ D}
= {(−1)(−1), (−1)0, (−1)1, 0(−1), 00, 01, 1(−1), 10, 11}.

The edges are constructed using the neighbor relations of (4.2).
We read from these pictures that Items (a) and (b) are thus true for n ∈ {1, 2}.

Suppose now that Items (a) and (b) hold true for some n ≥ 2. By (a), using the
set equation for T , we have

(T +W
(n)
1 ) ∩ (T +W

(n)
3 ) = ∅ ⇒ (T +AW

(n)
1 +D) ∩ (T +AW

(n)
3 +D) = ∅.

Also,

(T + 0n(−1)) ∩ (T + 0n1) 6= ∅ ⇐⇒ 0n(−1)− 0n1 =

(
−1− 1

0

)
∈ S.

However, this does not happen, as can be seen from (4.2). Furthermore, if w =

w1d0 ∈ AW
(n)
1 +D and w′ = 0n1 with w1 ∈ W

(n)
1 and d0 ∈ D satisfy

(T + w) ∩ (T + w′) 6= ∅,

then by the induction hypothesis on Item (b) we have w1 ∈ {0n−1(−1), 0n−2(−1)1},
and

(T + 0n−1(−1)d0) ∩ (T + 0n−101) 6= ∅ ⇐⇒ (−1)d0 − 01 =

(
d0 − 1
−1

)
∈ S;

This only happens for d0 − 1 ∈ {1, 2, 3}, as can be seen from (4.2), but no choice of
d0 ∈ {−1, 0, 1} leads to these values. Similarly,

(T + 0n−2(−1)1d0)∩ (T + 0n−2001) 6= ∅ ⇐⇒ (−1)1d0 − 001 =

(
−4 + d0

0

)
∈ S.

This does not happen for d0 ∈ {−1, 0, 1}, as can be seen from (4.2). In the same

way, we can show that (T + w) ∩ (T + 0n(−1)) = ∅ for all w ∈ AW
(n)
3 + D. This
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−1 10

(−1)(−1) (−1)0 (−1)1

0(−1) 01

1(−1) 10 11

00

Figure 3. First and second Hata Graphs for Example 4.6.

proves that W
(n+1)
2 separates Gn+1 between W

(n+1)
1 and W

(n+1)
3 (Item (a)). For

Item (b), just note that

∀d ∈ D, (T +0n0)∩ (T +0nd) 6= ∅ ⇐⇒ 0−d =

(
0− d
0

)
∈ S ⇐⇒ d ∈ {−1, 1}.

And if w = w1d0 ∈ AW
(n)
1 +D with w1 ∈ W

(n)
1 and d0 ∈ D, then as above

(T + w) ∩ (T + 0n0) 6= ∅ ⇒ w1 ∈ {0n−1(−1), 0n−2(−1)1}

⇒ 0n−1(−1)d0 − 0n−100 =

(
d0
−1

)
∈ S

or 0n−2(−1)1d0 − 0n−2000 =

(
−3 + d0

0

)
∈ S

⇒ w = 0n−1(−1)1

(compare with (4.2)). Similarly, (T + w) ∩ (T + 0n+1) 6= ∅ for w ∈ AW
(n)
3 + D

occurs only possible for w = 0n−11(−1).
�

Therefore, we can apply Theorem 4.3 and obtain that
⋂

n≥1

Xn(W
(n)
2 ) = {0.0∞},

where 0.0∞ =
∑∞

k=1 A
−k

(
0
0

)
=

(
0
0

)
is a cut point of T .

Example 4.9. As a second example, we consider a planar tile associated with a
canonical number system (CNS-tile). It is defined similarly as in Example 3.4 by
T = T (A,D) with

A =

(
0 −7
1 −6

)
,D =

{(
i
0

)
; 0 ≤ i ≤ 6

}
.

It is shown in [3] that this tile is not homeomorphic to a disk. We obtain here
further information and exhibit a cut point of T .

The set of neighbors of T can be found in [3]:

(4.3) S = {±P1,±P2,±P3,±Q1,±Q2,±Q3,±R} ,

where

Pm =

(
−5m+ 6
−m+ 1

)
, Qm =

(
5m
m

)
, R =

(
−6
−1

)
(m ∈ {1, 2, 3}).
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We check the assumptions of Theorem 4.3 to obtain the existence of a cut point.

To this effect, we define the sets W
(n)
i for i ∈ {1, 2, 3} and n ≥ n0 := 1 recursively

as follows. Let

W
(1)
1 = {0, 1, 2}, W

(1)
2 = {3}, W

(1)
3 = {4, 5, 6}

and for n ≥ 1, let

W
(n+1)
1 = (AW

(n)
1 +D) ∪





{3n4, 3n5, 3n6} if n is odd

{3n0, 3n1, 3n2} if n is even
,

W
(n+1)
2 = {3n+1},

W
(n+1)
3 = (AW

(n)
3 +D) ∪





{3n0, 3n1, 3n2} if n is odd

{3n4, 3n5, 3n6} if n is even
.

Note that the sets W
(n)
i (i ∈ {1, 2, 3}) constitute a partition of Vn for all n ≥ 1.

Moreover, they satisfy Conditions (ii) and (iii) of the theorem with K = 1. As

W
(n)
2 consists of a single point, it is connected for all n ≥ 1. Let us now prove the

separation property of Condition (i) by induction. More precisely, we shall prove
the following lemma.

Lemma 4.10. For all n ≥ 1,

(a) W
(n)
2 separates Gn between W

(n)
1 and W

(n)
3 ;

(b)

{v ∈ W
(n)
1 ; (T + v) ∩ (T + 3n) 6= ∅} =





{3n−12} if n is odd

{3n−14} if n is even

and

{v ∈ W
(n)
3 ; (T + v) ∩ (T + 3n) 6= ∅} =





{3n−14} if n is odd

{3n−12} if n is even
.

Proof. The first Hata graph can be seen in Figure 4. We have V1 = D and the edges

are constructed according to (4.3). As can be seen on this graph, W
(1)
2 separates

G1 between W
(1)
1 and W

(1)
3 . Also,

{v ∈ W
(1)
1 ; (T+v)∩(T+3) 6= ∅} = {2} and {v ∈ W

(1)
3 ; (T+v)∩(T+3) 6= ∅} = {4}.

Hence, Items (a) and (b) are fulfilled for n = 1.
Now, by definition, V2 = AD +D, i.e., G2 has the set of vertices

V2 = {v ∈ Z
2; v =

∑1
k=0 A

kdk, dk ∈ D}
= {00, 01, . . . , 06, 10, 11, . . . , 16, 20, 21, . . . , 26, . . . , 60, 61, . . . 66},

and
W

(2)
1 = (AW

(1)
1 +D) ∪ {34, 35, 36},

W
(2)
2 = {33},

W
(2)
3 = (AW

(1)
3 +D) ∪ {30, 31, 32}.

The following considerations can be directly seen from the second Hata graph G2

depicted in Figure 5. First, using the set equation for T = T (A,D), we have

(T +W
(1)
1 ) ∩ (T +W

(1)
3 ) = ∅ ⇒ (T +AW

(1)
1 +D) ∩ (T +AW

(1)
3 +D) = ∅.
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Second,

(T + 3d) ∩ (T + 3d′) 6= ∅ ⇐⇒ 3d− 3d′ =

(
d− d′

0

)
∈ S.

However, this does not happen for d ∈ {4, 5, 6} and d′ ∈ {0, 1, 2}, as can be seen

from (4.3). Third, if w = d1d0 ∈ AW
(1)
1 +D and w′ = 3d with d1, d ∈ {0, 1, 2} and

d0 ∈ D satisfy

(T + w) ∩ (T + w′) 6= ∅,

then by Item (b) for n = 1 we conclude that d1 = 2, and

(T + 2d0) ∩ (T + 3d) 6= ∅ ⇐⇒ 2d0 − 3d =

(
d0 − d
2− 3

)
=

(
d0 − d
−1

)
∈ S.

This only happens for d0 − d ∈ {−4,−5,−6}, as can be seen from (4.3), but no
choice of d0 and d leads to these values. Similarly, (T + w) ∩ (T + w′) = ∅ for all

w ∈ AW
(1)
3 + D and w′ ∈ {34, 35, 36}. This proves that Item (a) is fulfilled for

n = 2. For Item (b), just note that

∀d ∈ D, (T + 33) ∩ (T + 3d) 6= ∅ ⇐⇒ 33− 3d =

(
3− d
0

)
∈ S ⇐⇒ d ∈ {2, 4}.

And if w = d1d0 ∈ AW
(1)
1 +D with d1 ∈ {0, 1, 2} and d0 ∈ D, then as above

(T + w) ∩ (T + 33) 6= ∅ ⇒ d1 = 2 and 2d0 − 33 =

(
d0 − 3
−1

)
∈ S,

which does not happen. Similarly, (T + w) ∩ (T + 33) = ∅ for w ∈ AW
(1)
3 +D.

By the above considerations, for n ∈ {1, 2}, Items (a) and (b) are fulfilled.
Suppose that Items (a) and (b) hold true for some n ≥ 1. Assume first that n is
odd, that is,

W
(n+1)
1 = (AW

(n)
1 +D) ∪ {3n4, 3n5, 3n6},

W
(n+1)
2 = {3n+1},

W
(n+1)
3 = (AW

(n)
3 +D) ∪ {3n0, 3n1, 3n2}.

By the separation property, using the set equation for T , we have

(T +W
(n)
1 ) ∩ (T +W

(n)
3 ) = ∅ ⇒ (T +AW

(n)
1 +D) ∩ (T +AW

(n)
3 +D) = ∅.

Also,

(T + 3nd) ∩ (T + 3nd′) 6= ∅ ⇐⇒ 3nd− 3nd′ =

(
d− d′

0

)
∈ S.

However, this does not happen for d ∈ {4, 5, 6} and d′ ∈ {0, 1, 2}, as can be seen

from (4.3). Furthermore, if w = w1d0 ∈ AW
(n)
1 +D and w′ = 3nd with w1 ∈ W

(n)
1 ,

d ∈ {0, 1, 2} and d0 ∈ D satisfy

(T + w) ∩ (T + w′) 6= ∅,

then by the induction hypothesis on Item (b) we conclude that w1 = 3n−12, and

(T +3n−12d0)∩(T +3n−13d) 6= ∅ ⇐⇒ 2d0−3d =

(
d0 − d
2− 3

)
=

(
d0 − d
−1

)
∈ S.

This only happens for d0 − d ∈ {−4,−5,−6}, as can be seen from (4.3), but no
choice of d0 and d leads to these values. Similarly, (T + w) ∩ (T + w′) = ∅ for all



14 BENOÎT LORIDANT, JUN LUO, TAREK SELLAMI, AND JÖRG M. THUSWALDNER

0 1 2 4 5 63

Figure 4. First Hata Graph for Example 4.9.

w ∈ AW
(n)
3 + D and w′ ∈ {34, 35, 36}. This proves that W

(n+1)
2 separates Gn+1

between W
(n+1)
1 and W

(n+1)
3 (Item (a)). For Item (b), just note that

∀d ∈ D, (T + 3n3) ∩ (T + 3nd) 6= ∅ ⇐⇒ 3− d =

(
3− d
0

)
∈ S ⇐⇒ d ∈ {2, 4}.

And if w = w1d0 ∈ AW
(n)
1 +D with w1 ∈ W

(n)
1 and d0 ∈ D, then as above

(T + w) ∩ (T + 3n−133) 6= ∅ ⇒ w1 = 3n2 ⇒ 2d0 − 33 =

(
d0 − 3
−1

)
∈ S,

which does not happen. Similarly, (T + w) ∩ (T + 3n+1) = ∅ for w ∈ AW
(n)
3 +D.

The argument runs similarly as above if n is even.
�

Therefore, we can apply Theorem 4.3 and obtain that
⋂

n≥1

Xn(W
(n)
2 ) = {0.3∞},

where 0.3∞ =
∑∞

k=1 A
−k

(
3
0

)
=

(
−3/2
−3/14

)
is a cut point of T .
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