REAL SETS INDUCED BY ENDOMORPHISMS OF THE FREE MONOID

Paul Surer
Institut für Mathematik
Universität für Bodenkultur

Salzburg, September 2017

FШF

Der Wissenschaftsfonds.

Definitions and Notations

$$
\begin{array}{ll}
\mathcal{A}=\{1,2, \ldots, m\} & \text { finite alphabet } \\
\mathcal{A}^{*}=\mathcal{A}^{+} \cup\{\varepsilon\} & \text { free monoid over } \mathcal{A} \text { consisting of the set of non- } \\
& \text { empty words } \mathcal{A}^{+} \text {and the empty word } \varepsilon \text { (neutral } \\
\overline{\mathcal{A}}=\{\overline{1}, \overline{2}, \ldots, \bar{m}\} & \text { element) } \\
\overline{\mathcal{A}}^{*}:=\overline{\mathcal{A}}^{+} \cup\{\varepsilon\} & \text { set of inverse letters } \\
(\mathcal{A} \cup \overline{\mathcal{A}})^{*} & \text { finite words over } \mathcal{A} \cup \overline{\mathcal{A}} \\
\sim & \text { equivalence relation on }(\mathcal{A} \cup \overline{\mathcal{A}})^{*} \text { induced by the } \\
& \text { cancellation law } x \bar{x} \sim \varepsilon \sim \bar{x} x(\text { for } x \in \mathcal{A})
\end{array}
$$

Observe that $(\mathcal{A} \cup \overline{\mathcal{A}})^{*} / \sim$ is the free group over \mathcal{A}. For $X=x_{1} x_{2} \ldots x_{n} \in(\mathcal{A} \cup \overline{\mathcal{A}})^{*}$ the word $\bar{X}:=\bar{x}_{m} \ldots \bar{x}_{1} \in(\mathcal{A} \cup \overline{\mathcal{A}})^{*}$ is the inverse of X (modulo \sim) where $\overline{\bar{x}}=x$ for all $x \in \mathcal{A}$.

Definitions and Notations

For $X=x_{1} x_{2} \ldots x_{n} \in(\mathcal{A} \cup \overline{\mathcal{A}})^{*}$ and $y \in \mathcal{A}$ define

$$
\begin{aligned}
|X|_{y} & =\#\left\{j \in\{1, \ldots, n\}: x_{j}=y\right\}-\#\left\{j \in\{1, \ldots, n\}: x_{j}=\bar{y}\right\} \\
|X| & =\sum_{y \in \mathcal{A}}|X|_{y} \\
\mathbf{I}(X) & =\left(|X|_{1},|X|_{2}, \ldots,|X|_{m}\right)
\end{aligned}
$$

We denote by \preceq the partial ordering on $(\mathcal{A} \cup \overline{\mathcal{A}})^{*}$ induced by the prefix-condition:

$$
\begin{aligned}
& X \preceq Y \Longleftrightarrow \bar{X} Y \in \mathcal{A}^{*} \quad(\bmod \sim), \\
& X \prec Y \Longleftrightarrow \bar{X} Y \in \mathcal{A}^{+} \quad(\bmod \sim) .
\end{aligned}
$$

Note that for $A, B \in(\mathcal{A} \cup \overline{\mathcal{A}})^{*}$ with $A \prec B$ the set

$$
\left\{X \in(\mathcal{A} \cup \bar{A})^{*} / \sim: A \preceq X \preceq B\right\}
$$

is a \prec-chain.

Morphisms of the free monoid

Denote by $\sigma: \mathcal{A}^{*} \longmapsto \mathcal{A}^{*}$ a primitive morphism (substitution), hence, there exists a positive integer n such that $\left|\sigma^{n}(y)\right|_{x} \geq 1$ for all $x, y \in \mathcal{A}$.
We define

$$
\begin{array}{ll}
\mathrm{M}:=\left(|\sigma(y)|_{x}\right)_{1 \leq x, y \leq m} & \text { the incidence matrix of } \sigma ; \\
\theta>1 & \text { the dominant Perron-Frobenius eigen- }
\end{array}
$$ value of \mathbf{M};

$\mathbf{v}=\left(v_{1}, \ldots, v_{m}\right) \quad$ a strictly positive left eigenvector of \mathbf{M} with respect to θ.

We can extend σ easily to $(\mathcal{A} \cup \overline{\mathcal{A}})^{*}$ by defining $\sigma(\bar{x})=\overline{\sigma(x)}$ for all $x \in \mathcal{A}$.

Coding prescriptions

Definition

A coding prescription (with respect to σ) is a function c with domain \mathcal{A}^{2} that assigns to each pair of letters a finite set of integers such that

1. for each $x \in \mathcal{A}$ the set $c(x x)$ is a complete residue system modulo $|\sigma(x)|$ such that for all $k \in c(x x)$ we have $-|\sigma(x)|<k<|\sigma(x)| ;$
2. for all $a b \in \mathcal{A}^{2}$ we have

$$
c(a b)=\{k \in c(a a): k<0\} \cup\{0\} \cup\{k \in c(b b): k>0\} .
$$

We call a coding prescription continuous if $c(a b)$ consists of consecutive integers for each $a b \in \mathcal{A}^{2}$.

Graph associated to a coding prescription

We associate to a coding prescription a finite graph $H_{\sigma, c}$ with vertex set \mathcal{A}^{2} and an edge from $a b$ to $a_{1} b_{1}$ labelled by $\left(D, a_{1} b_{1}\right)$ with $D \in \mathcal{A}^{*} \cup \bar{A}^{*}$ whenever $|D| \in c(a b)$ and $\overline{\sigma(a)} \preceq D \bar{a}_{1} \prec D \prec D b_{1} \preceq \sigma(b)$.

Observe that each each vertex $a b$ has exactly $|c(a b)|$ outgoing edges.

For each positive integer n we denote by $H_{\sigma, c}^{n}(a b)$ the set of paths of length n that start in $a b$. Analogously $H_{\sigma, c}^{\infty}(a b)$ is the set of infinite walks that start in $a b$.

Finite paths

Theorem 1
Let n be a positive integers and define the function $c^{(n)}$ on \mathcal{A}^{2} by

$$
c^{(n)}(a b):=\left\{\sum_{j=1}^{n}\left|\sigma^{n-j}\left(D_{j}\right)\right|:\left(D_{j}, a_{j} b_{j}\right)_{j=1}^{n} \in H_{\sigma, c}^{n}(a b)\right\} \subset \mathbb{Z}
$$

Then $c^{(n)}$ is a coding prescription with respect to σ^{n}.

Example (Fibonacci substitution)

$$
\begin{array}{ll}
\sigma(1)=12, & c(11)=c(12)=\{-1,0\}, \\
\sigma(2)=1 . & c(21)=c(22)=\{0\} .
\end{array}
$$

We have $\sigma^{2}: 1 \mapsto 121,2 \mapsto 12$ and $\sigma(\overline{2})=\overline{1}$, therefore

$$
c^{(2)}(11)=c^{(2)}(12)=\{-2,-1,0\}, c^{(2)}(21)=c^{(2)}(22)=\{-1,0\}
$$

Infinite paths

For each $a b \in \mathcal{A}^{2}$ define

$$
I_{a b}:=\left\{\sum_{j \geq 1}\left\langle\mathbf{l}\left(D_{j}\right), \mathbf{v}\right\rangle \theta^{-j}:\left(D_{j}, a_{j} b_{j}\right)_{j \geq 1} \in H_{\sigma, c}^{\infty}(a b)\right\} \subset \mathbb{R} .
$$

Note that always $0 \subseteq I_{a b}$ where equality may hold.
Problem
Characterise the sets $I_{a b}$ (in terms of c and σ).

Some fundamental properties

Lemma 2

There exists a positive constant $K \in \mathbb{R}$ such that for each $a b \in \mathcal{A}^{2}$

$$
I_{a b}=K \cdot \lim _{n \rightarrow \infty} \theta^{-n} c^{(n)}(a b)
$$

(the limit with respect to the Hausdorff metric).
Proposition 3
For each $a b \in \mathcal{A}^{2}$

1. $I_{a b}$ is a compact set;
2. $l_{a b} \subseteq\left[-v_{a}, v_{b}\right]$;
3. $I_{a b}=\left(I_{a a} \cap(-\infty, 0)\right) \cup\{0\} \cup\left(I_{b b} \cap(0, \infty)\right)$;
4.

$$
l_{a b}=\bigcup_{\left(D, a_{1} b_{1}\right) \in H_{\sigma, c}^{1}(a b)} \theta^{-1}\left(\langle\mathbf{l}(D), \mathbf{v}\rangle+l_{a_{1} b_{1}}\right) .
$$

Continuous coding prescriptions

Proposition 4

Suppose that c is continuous.

- For each $a b \in \mathcal{A}^{2}$ we have $I_{a b}=\left[-v_{a}^{-}, v_{b}^{+}\right]$with $v_{a}^{-}, v_{b}^{+} \geq 0$.
- $\left(v_{1}^{-}, \ldots, v_{m}^{-}\right)+\left(v_{1}^{+}, \ldots, v_{m}^{+}\right)=\left(v_{1}, \ldots, v_{m}\right)$.
- For each $a b \in \mathcal{A}^{2}$ the particular subsets in the union

$$
I_{a b}=\bigcup_{\left(D, a_{1} b_{1}\right) \in H_{\sigma, c}^{1}(a b)} \theta^{-1}\left(\langle\mathbf{I}(D), \mathbf{v}\rangle+I_{a_{1} b_{1}}\right)
$$

have pairwise disjoint interior.

A special case

Proposition 5

Suppose that $|\sigma(x)| \equiv 1(\bmod 2)$ for all $x \in \mathcal{A}$ and $c(a b) \subset 2 \mathbb{Z}$ for all $a b \in \mathcal{A}^{2}$. Then the following items hold for all $a b \in \mathcal{A}^{2}$.

- $l_{a b}=\left[-v_{a}, v_{b}\right]$.
- The particular subsets in the union

$$
I_{a b}=\bigcup_{\left(D, a_{1} b_{1}\right) \in H_{\sigma, c}^{1}(a b)} \theta^{-1}\left(\langle\mathbf{I}(D), \mathbf{v}\rangle+I_{a_{1} b_{1}}\right)
$$

have pairwise disjoint interior.

Questions

Question 1
For which setting is $l_{a b}$ an interval?

Question 2

For which setting do the subsets in the union (4. of Proposition 3) have disjoint interior? Alternatively, which setting corresponds to a graph directed iterated function system?

Question 3
What is the Lebesuge measure of $I_{a b}$?

Example 1

$$
\begin{array}{rrlrl}
\sigma: & 1 & \mapsto 12112, & 2 & \mapsto 121 \\
c: & 11 & \mapsto\{-1,0,1,2,3\}, & 22 & \mapsto\{-2,1,0\}
\end{array}
$$

Example 2

$$
\begin{array}{rrlrl}
\sigma: & 1 & \mapsto 12112, & 2 & \mapsto 121 \\
c: & 11 & \mapsto\{-4,-2,0,2,4\}, & 22 & \mapsto\{-2,0,2\}
\end{array}
$$

Example 3

$$
\begin{array}{rrlrl}
\sigma: & 1 & \mapsto 12112, & 2 & \mapsto 121 \\
c: & 11 & \mapsto\{-4,-3,-2,0,4\}, & 22 & \mapsto\{-2,0,2\}
\end{array}
$$

Example 4

$$
\begin{array}{rrlrl}
\sigma: & 1 & \mapsto 12112, & 2 & \mapsto 121 \\
c: & 11 & \mapsto\{-4,-3,-2,0,4\}, & 22 & \mapsto\{-2,-1,0\}
\end{array}
$$

Example 5

$$
\begin{aligned}
& \sigma: 1 \mapsto 121, \quad 2 \mapsto 12 \\
& c: 11 \mapsto\{-2,-1,0\}, 22 \mapsto\{0,1\}
\end{aligned}
$$

