
TOPOLOGY OF CRYSTALLOGRAPHIC TILES

BENOIT LORIDANT, JUN LUO, AND JÖRG M. THUSWALDNER

Abstract. We study self-affine tiles which tile the n-dimensional real vector space with respect
to a crystallographic group. First we define classes of graphs that allow to determine the
neighbors of a given tile algorithmically. In the case of plane tiles these graphs are used to

derive a criterion for such tiles to be homeomorphic to a disk. As particular application, we will
solve a problem of Gelbrich, who conjectured that certain examples of tiles which tile R

2 with
respect to the ornament group p2 are homeomorphic to a disk.

1. Introduction

The present paper is devoted to the study of self-affine tiles that tile Rn with respect to a
crystallographic group. Before we describe our detailed aims we give some basic definitions.

Let T ⊂ Rn be a compact set that is equal to the closure of its interior T o. If there is a family
Γ of isometries such that

Rn =
⋃

γ∈Γ

γ(T ) where γ(T o) ∩ δ(T o) = ∅ for γ, δ ∈ Γ with γ 6= δ,

then we say that {γ(T ) : γ ∈ Γ} is a tiling of Rn using a single tile T . We also call γ(T ) a tile
for each γ ∈ Γ. In the special case where Γ is isomorphic to Zn, the collection {γ(T ) : γ ∈ Γ} is
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Figure 1. Example of a crystallographic reptile
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a lattice tiling of Rn. If, more generally, Γ is a crystallographic group, {γ(T ) : γ ∈ Γ} is called
a crystallographic tiling of Rn. Recall that a crystallographic group in dimension n is a discrete
cocompact subgroup Γ of the group Isom(Rn) of all isometries on Rn with respect to a metric d.

The main object in this paper are crystallographic tilings whose tiles are self-affine sets.

Definition 1 (cf. [5]). A crystallographic reptile with respect to a crystallographic group Γ is a
set T ⊂ Rn with the following properties:

• The family {γ(T ) : γ ∈ Γ} is a tiling of Rn.
• There is an expanding affine map g : Rn → Rn such that g ◦ Γ ◦ g−1 ⊂ Γ, and a finite

collection D ⊂ Γ called set of digits, such that

(1.1) g(T ) =
⋃

δ∈D

δ(T ).

We will call a crystallographic reptile also simply a crystile.

Recall that the compact non-empty set T is uniquely defined by (1.1). This is easily seen by a
fixed point argument (cf. Hutchinson [8]). Let a ∈ Rn be arbitrary. By iterating (1.1) we easily
see that the crystile T can be written as

T =
{

lim
n→∞

g−1δ1 . . . g−1δn(a), (δj)j∈N ∈ DN

}

.

The choice of a is irrelevant since (1.1) implies that if (δj)j∈N is a sequence of digits, then for
a, a′ ∈ Rn we have

(1.2) lim
n→∞

g−1δ1 . . . g−1δn(a) = lim
n→∞

g−1δ1 . . . g−1δn(a′).

Remark 1. The following basic facts and some more details can also be found for instance in
Gelbrich [5].

• By a Bieberbach theorem (see [4]), a group Γ is a crystallographic group in dimension n
if and only if there is a normal subgroup Λ ⊂ Γ with finite index, which is isomorphic
to Zn, and which is a maximal abelian subgroup in Γ. The quotient group Γ/Λ is called
the point group, and the group Λ is called the lattice. For a crystallographic group Γ, the
lattice Λ consists of translations. In this paper, we always assume that Λ = Zn and that
the metric d of Rn is chosen in a way that each element γ ∈ Γ is an isometry. So, if the
point group is trivial then the group Γ is just the lattice Zn and T is a lattice reptile.

• Let T , T ′ be two crystiles with respect to crystallographic groups Γ, Γ′, with expansions
g, g′ and digit sets {γ1, . . . , γq}, {γ′

1, . . . , γ
′
q}, respectively. An affine bijection φ : T → T ′

is said to preserve pieces of level m ∈ N if for each sequence of indices i1, . . . , im there is
a sequence j1, . . . , jm such that φ is a bijection from

(
g−1γi1

)
◦ . . . ◦

(
g−1γim

)
(T ) onto

(
g′−1γ′

j1

)
◦ . . . ◦

(
g′−1γ′

jm

)
(T ). We say that two crystiles T and T ′ are isomorphic iff

there is an affine bijection φ : T → T ′ preserving the pieces of all levels.
• For a crystile T w.r.t. Γ, each of the collections {γ(T ) : γ ∈ Γ} and {gγ(T ) = g ◦ γ ◦

g−1 (g(T )) : γ ∈ Γ} is a tiling of Rn. We also say that the two sets T and g(T ) tile Rn

under the action of the groups Γ and gΓg−1, respectively. Thus D is a complete set of
right coset representatives of the subgroup gΓg−1.

• The reptile T is a self-affine set with respect to the IFS {g−1δ : δ ∈ D}. Hence, by replacing
g by δ0

−1g for some δ0 ∈ D and D by δ0
−1D, we may assume that 1, the identity of Γ, is

always contained in D, because the iterated function system {
(
g−1δ0

) (
δ0

−1δ
)

: δ ∈ D} is

equal to {g−1δ : δ ∈ D}.

Gelbrich [5] proved that for any k ≥ 2 there are at most finitely many isomorphy classes of
disk-like plane crystallographic reptiles with k digits. Here, a set is disk-like if it is homeomorphic
to the closed unit disk. Sometimes, such a set is also called a topological disk.
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In the same paper he gave all candidates for disk-like crystallographic reptiles with three digits
for the case that the point group Γ/Λ has 2 elements. As p2 is the crystallographic group corre-
sponding to such a point group (see [6]), we will shortly call these tiles p2−crystiles. Up to now
no proof has been given for disk-likeness of those candidates.

The aim of this paper is to study topological properties of crystiles. We give an algorithmic
way to construct all the tiles γ(T ) having non-empty intersection with the “central tile” T in a
crystallograhic tiling and give some upper bound for the runtime of this algorithm. In fact, the
set of the neighboring tiles forms the set of vertices of a graph which we call the neighborhood
graph of the tiling. In the case of two dimensional crystiles this neighborhood graph (together
with several Cayley-like graphs) is used in order to establish an algorithmic criterion which allows
to check whether a given plane crystile is homeomorphic to a disk or not. This criterion will be
applied to Gelbrich’s example in order to show which of his candidates are really disk-like.

We mention that related questions have been already considered in literature. One of the first
papers dealing with topological properties of iterated function systems is Hata [7]. Luo et al. [11]
prove that a self-affine tile with nonempty interior is disk-like if its interior is connected. For the
case of lattice tiles, Bandt and Wang [3] gave a criterion for disk-likeness in terms of the number
of neighbors of the central tile. Disk-likeness for classes of lattice tiles are studied for instance by
Akiyama and Thuswaldner [2] and by Luo and Zhou [12]. For properties of self-affine sets that are
not homeomorphic to a disk we refer for instance to Ngai and Nguyen [13], Ngai and Tang [15, 14],
and to the survey paper [1].

The present paper is organized as follows. In Section 2 we define several classes of graphs which
will be needed in the sequel. Section 3 is devoted to the construction of the neighborhood graph.
In Section 4 we state and prove our criterion for the disk-likeness of a plane crystile. Section 5
contains the treatment of Gelbrich’s examples.

2. Definition of graphs

This section is devoted to the definition of sets and graphs that will play a role in many theorems
and proofs in this paper.

In the sequel assume that T is a crystile with respect to the crystallographic group Γ. Denote
by g its expanding map and by D ⊂ Γ its set of digits, which is supposed to contain 1, the identity
of Γ. Then {γ(T ) : γ ∈ Γ} is a crystallographic tiling.

The set of neighbors of T is defined by

(2.1) S := {γ ∈ Γ \ {1} : T ∩ γ(T ) 6= ∅}.
Because of the local finiteness of the tiling (recall that Γ is discrete and T is compact), S is a
finite set. Moreover, for γ ∈ S, let

Bγ := T ∩ γ(T ).

Among the possible neighbors of a tile, we mark out the following ones. An element γ ∈ S is
called

• vertex neighbor if Bγ = {x} for some x ∈ Rn;
• adjacent or edge neighbor if Bγ contains a point of int(T ∪ γ(T )).

The set of adjacent neighbors is denoted by A.

In order to construct the set S in the next section we require a set R which is related to the
neighbors of certain approximations of T . It is defined as follows. Let Q be an n-dimensional
polyhedron that is the closure of a fundamental domain of Γ. The boundary of Q consists of a
union of (n − 1)-dimensional faces (hyperplanes of Rn).
We can define R0 as the set of adjacent neighbors of the fundamental domain together with the
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identity, i.e.,

R0 := {1} ∪ {γ ∈ Γ, γ(Q) ∩ Q is an (n − 1)-dimensional face}
= {1} ∪ {γ ∈ Γ, γ(Q) ∩ Q contains an inner point of γ(Q) ∪ Q} .

Starting from this set, we define a sequence (Rp)p≥1 recursively by

(2.2) Rp := Rp−1 ∪ {γ ∈ Γ, gγg−1 D ∩ D Rp−1 6= ∅}

and set: R =
⋃

p≥0

Rp.

Since g is an expanding mapping and Γ is a discrete group, the set R is finite: Rp eventually
stabilizes, i.e., there is a p0 ∈ N such that Rp = Rp0

for p ≥ p0. The obtention of some estimate
for p0 will be discussed in Remark 5.

Having defined these sets we are now in a position to give the definition of the graphs needed
in the sequel.

Definition 2. For M ⊆ Γ we define the graph G(M) as follows. The states G(M) are the
elements of M . Moreover, there is an edge

γ
δ|δ′

−−→ γ′ ∈ G(M) iff δ−1 gγg−1 δ′ = γ′ with γ, γ′ ∈ M and δ, δ′ ∈ D.

The following special cases are of particular importance.

• The neighborhood graph G(S).
• The contact graph G(R).

Besides these graphs the following variants of Cayley graphs are needed.

Definition 3. The adjacent graph GA(Γ) is defined to have Γ as set of states, and two distinct
elements γ1, γ2 ∈ Γ are incident if and only if γ−1

1 γ2 ∈ A. The subgraph GA(M) for a subset M
of Γ is then simply the restriction of GA(Γ) to the set of states M .
The double neighboring graph G2 is the one having {γ (Bγ′) : γ ∈ Γ, γ′ ∈ A} as set of states and
in which two distinct elements γ1

(
Bγ′

1

)
and γ2

(
Bγ′

2

)
are incident whenever they intersect each

other.

The following graph is a subgraph of G2. Its definition looks a bit awkward. We will explain it
in Remark 2.

Definition 4. For each γ ∈ A, denote by Vγ the set of states

{δ
(
Bδ−1gγg−1δ′

)
: if there is δ, δ′ ∈ D with δ−1gγg−1δ′ ∈ A} .

Then Gγ is the subgraph of the double neighboring graph G2 with set of vertices Vγ .

3. Neighborhood and contact graphs

In the present section we will show how the neighborhood graph G(S) associated to a crystal-
lographic tile can be used to characterize the boundary of the tile. Properties of the contact graph
G(R) will also be given, and from this graph we will obtain the neighborhood graph algorithmi-
cally.
In this section, T denotes a crystallographic reptile (or crystile) of Rn with respect to a crystallo-
graphic group Γ; the expanding map is g and the set of digits D ⊂ Γ is assumed to contain 1, the
identity map of Γ.
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3.1. Neighborhood graph. The non overlapping property yields for the boundary of T that

∂T =
⋃

γ∈S

Bγ , with S and Bγ as in Section 2. The following holds for every γ ∈ S.

g(Bγ) = g(T ∩ γ(T )) = g(T ) ∩ gγ(T )
=

⋃

δ∈D δ(T ) ∩ ⋃

δ′∈D gγg−1 δ′(T )

=
⋃

δ,δ′∈D

δ(T ∩ δ−1gγg−1 δ′(T )
︸ ︷︷ ︸

Bδ−1 gγg−1 δ′

)

Consequently, we obtain the following set equation for Bγ :

Bγ =
⋃

δ,δ′∈D

g−1δ( Bδ−1 gγg−1 δ′ ) .

Remark 2. This calculation gives an explanation to the graph Gγ defined in Definition 4. Indeed,
the union of its set of vertices is equal to g(Bγ). Thus Gγ contains some information about the
connectivity of g(Bγ) and, hence, of Bγ . Indeed, we will use this graph to show that Bγ is
connected under certain circumstances.

Using the neighborhood graph defined in Definition 2 and the fact that Bγ′ 6= ∅ iff γ′ ∈ S, the
set equation above reduces to:

∂T =
⋃

γ∈S

Bγ where Bγ =
⋃

δ∈D,γ′∈S,

∃ δ′∈D, γ
δ|δ′−−→γ′ ∈G(S)

g−1δ(Bγ′) .

Remark 3. The graph G(S) has the following properties:

• To given γ, γ′ ∈ S, δ ∈ D, there is at most one δ′ ∈ D with γ
δ|δ′

−−→ γ′ in G(S).
• The graph G(S) is left-resolving, i.e.,

∀ (γ′, δ′) ∈ S × D, ∃! (γ, δ) ∈ S × D : γ
δ|δ′

−−→ γ′ ∈ G(S).

Indeed, if (γ′, δ′) ∈ S × D then there exists exactly one (γ, δ) ∈ Γ × D such that the
equality γ′δ′−1 = δ−1gγg−1 holds. This is true because D is a complete set of right coset
representatives of gΓg−1. Moreover,

T ∩ γ′(T ) 6= ∅
⇒ T ∩ δ−1gγg−1δ′(T ) 6= ∅
⇒ g−1δ(T )

︸ ︷︷ ︸

⊂T

∩ γg−1δ′(T )
︸ ︷︷ ︸

⊂γ(T )

6= ∅

⇒ T ∩ γ(T ) 6= ∅ .

This implies that γ ∈ S, and by the definition of G(S) we conclude that γ
δ|δ′

−−→ γ′ ∈ G(S).

One can wonder how many tiles of the tiling meet the tile T at a point of the boundary of T .

Definition 5. For γ1, . . . , γL ∈ S pairwise different, we call

VL(γ1, . . . , γL) = {x ∈ Rn, x ∈ T ∩ γ1(T ) ∩ . . . ∩ γL(T )}
the set of points (so-called L-vertices) that are common to γ1(T ), . . . , γL(T ) and T , and

VL =
⋃

{γ1,...,γL}⊆S

VL(γ1, . . . , γL)

the set of L-vertices of T .
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Note that V1(γ) = Bγ holds.

There are characterizations of these sets using the neighborhood graph. Let us first characterize
a point belonging to two tiles (say here to the central tile T and one of its neighbors). To this
matter, we recall the following definition:

Definition 6. A walk in a graph G starting from a state γ of this graph is a sequence of edges

γ
δ|δ′

−−→ γ1
δ1|δ

′
1−−−→ γ2

δ2|δ
′
2−−−→ . . . .

The number of edges in the walk is called the length of the walk (this can be infinite).

Characterization 3.1. Let a be a point of Rn, (δj)j∈N ∈ DN a sequence of digits and γ ∈ S.
Then the following assertions are equivalent.

• x = limn→∞ g−1δ1 . . . g−1δn(a) ∈ Bγ .
• There is an infinite walk in G(S) of the shape:

(3.1) γ
δ1|δ

′
1−−−→ γ1

δ2|δ
′
2−−−→ γ2

δ3|δ
′
3−−−→ . . .

for some γi ∈ S and δ′i ∈ D.

Proof. Suppose that x = limn→∞ g−1δ1 . . . g−1δn(a) ∈ Bγ , then x has also a representation of the
shape:

x = lim
n→∞

γg−1δ′1 . . . g−1δ′n(a)

for some δ′i ∈ D.

The elements γ1 = δ1
−1gγg−1δ′1, γ2 = δ2

−1gγ1g
−1δ′2, . . . can then successively be shown to belong

to S. Indeed, if γ1 = δ1
−1gγg−1δ′1, then

δ−1
1 g (x) = lim

n→∞
g−1δ2 . . . g−1δn(a)

︸ ︷︷ ︸

∈ T

= lim
n→∞

γ1g
−1δ′2 . . . g−1δ′n(a)

︸ ︷︷ ︸

∈ γ1(T )

,

and similarly for γ2, γ3, . . . The elements γ1, γ2, . . . now yield the required infinite walk in G(S),
by the definition of the edges in this graph.

Conversely, if the infinite walk (3.1) in G(S) is given, by the definition of the edges of this
graph the equality

g−1δ1 . . . g−1δnγn(a) = γg−1δ′1 . . . g−1δ′n(a)

holds for every n and thus for n → ∞. If now ρ is the greatest contraction factor of the contractions
g−1δ, δ ∈ D, S being a finite set we can write

∀n ∈ N, d
(
g−1δ1 . . . g−1δnγn (a), g−1δ1 . . . g−1δn (a)

)
≤ ρn max

γ∈S
{d(a, γ(a))} ,

so
lim

n→∞
γg−1δ′1 . . . g−1δ′n (a)

︸ ︷︷ ︸

∈ γ(T )

= lim
n→∞

g−1δ1 . . . g−1δnγn (a) = lim
n→∞

g−1δ1 . . . g−1δn (a)
︸ ︷︷ ︸

∈ T
and we are done. �

In a similar way we obtain the following generalization.

Characterization 3.2. Let a be a point of Rn and γ01, . . . , γ0L ∈ S pairwise different. Further-
more let be (δj)j∈N ∈ DN a sequence of digits. Then the following assertions are equivalent.

• x = limn→∞ g−1δ1 . . . g−1δn(a) ∈ VL(γ01, . . . , γ0L).
• There are L infinite walks in G(S) of the shape:

γ0i
δ1|δ1i−−−→ γ1i

δ2|δ2i−−−→ γ2i
δ3|δ3i−−−→ . . . (1 ≤ i ≤ L)

for some γ1i, γ2i . . . ∈ S and δ1i, δ2i . . . ∈ D.
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Characterization 3.3. Let be γ ∈ Γ. Then:

• γ is a vertex neighbor iff every sequence (δj)j∈N of digits associated to an infinite walk in

the graph G(S), γ
δ1|δ

′
1−−−→ γ1

δ2|δ
′
2−−−→ . . . with γ1, . . . ∈ S and δ′1, δ

′
2, . . . ∈ D, leads to the same

point x = limn→∞ g−1δ1 . . . g−1δn(a).
• γ is an edge neighbor (i.e., γ ∈ A) iff the set Bγ \ V2 is nonempty iff there is a sequence

(δj)j∈N of digits such that for each infinite walk in G(S) of the form

γ1
δ1|δ

′
1−−−→ γ2

δ2|δ
′
2−−−→ . . .

where γ1, γ2, . . . ∈ S and δ′1, δ
′
2, . . . ∈ D, we have γ1 = γ.

3.2. Contact graph. Let Q be the closure of a fundamental domain of Γ. Q is a nonempty
compact set of Rn, so an iterative construction of T reads

{
T0 := Q,
Tp :=

⋃

δ∈D g−1δ(Tp−1).

In the Hausdorff metric, we have Tp → T for p → ∞ (cf. [8]).

By induction on p, one can readily prove the following result.

Proposition 3.4. For every p ≥ 0, {γ(Tp), γ ∈ Γ} is a tiling of Rn.

Definition 7. For each approximation Tp, we denote by Bγ,p the set Tp ∩ γ(Tp).

Using Proposition 3.4 we have

(3.2) ∂Tp =
⋃

γ∈Γ\{1}

Bγ,p .

This is in fact a finite union because the tiling is locally finite.

Remark 4. For every p ≥ 0, gp(Tp) is a union of n-dimensional non-overlapping polyhedrons:

gp(Tp) =
⋃

δ0,...,δp−1∈D

gp−1δp−1g
−(p−1)gp−2δp−2g

−(p−2) . . . gδ1g
−1 δ0 (Q)

where each gkδkg−k is an isometry of Γ. Thus for every γ ∈ Γ, gpγ(Tp) = gpγg−p gp(Tp) is also a
union of n-dimensional non-overlapping polyhedrons and gp(Bγ,p) is the intersection of two unions
of polyhedrons that do not overlap. This also holds for Bγ,p, and, hence, this set is the union of
(n − 1)-dimensional faces.

The following result shows the correspondence between the boundary of Tp and the set Rp

defined in (2.2).

Proposition 3.5. If Bγ,p contains an (n − 1)-dimensional face then γ ∈ Rp.

Proof. We proceed by induction on p. First note that the result is obviously true for p = 0. We
assume the result is true for a p − 1 ∈ N. The number of faces of Bγ,p is also the number of faces
of g(Bγ,p). We have

g(Bγ,p) =
⋃

δ,δ′∈D δ(Tp−1) ∩ gγg−1δ′(Tp−1)

=
⋃

δ,δ′∈D δ(Bδ−1gγg−1δ′,p−1)

and by (2.2) this last union contains an (n − 1)-dimensional face only if γ ∈ Rp. �

Consequently, as ∂Tp is the union of its (n − 1)-dimensional faces, from (3.2) follows that

∂Tp =
⋃

γ∈Rp\{1}

Bγ,p
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with

Bγ,p =
⋃

δ∈D,γ′∈Rp−1\{1}

∃δ′∈D, γ
δ|δ′−−→γ′ ∈G(R)

g−1δ(Bγ′,p−1).

Note that if Bγ,p is not an (n − 1)-dimensional face, then it must be already contained in other
(n−1)-dimensional faces of other sets Bγ′,p with γ′ 6= γ. This also holds for the sets g−1δ(Bγ′,p−1)
in the union above. Thus remembering that Rp ⊂ R for every p and using Proposition 3.5, we
get for the boundary of the approximations

∂Tp =
⋃

γ∈R\{1}

Bγ,p

with

(3.3) Bγ,p =
⋃

δ∈D,γ′∈R\{1}

∃δ′∈D, γ
δ|δ′−−→γ′ ∈G(R)

g−1δ(Bγ′,p−1).

There is a relation between the structure of the graph G(R) and the geometry of the sets Bγ,p:

Proposition 3.6. Let γ ∈ R. If all the walks in G(R) starting from γ are at most of length ℓ,
then Bγ,p has no (n − 1)-dimensional face for p > ℓ.

Proof. Let us take p > ℓ. Starting from the set equation (3.3) above and writing it for the sets
Bγ′,p−1, Bγ′′,p−2, . . . that appear at each iteration, one comes after ℓ steps to

Bγ,p =
⋃

γ
δ
−→γ′ ∈G(R)

. . .
⋃

γ(ℓ)
δ(ℓ)

−−→γ(ℓ+1) ∈G(R)

g−1δ . . . g−1δ(ℓ) (Bγ(ℓ+1),p−(ℓ+1)) ,

but by assumption there is no edge γ(ℓ) → γ(ℓ+1) in G(R), so no Bγ(ℓ+1),p−(ℓ+1) and hence Bγ,p

can not have an (n − 1)-dimensional face. �

3.3. Finding neighbors. Scheicher and Thuswaldner [16] gave an algorithm starting from G(R)
to get the neighborhood graph G(S) for lattice tilings. In this section, we write this algorithm in a
“crystallographic way”. Examples of contact and neighborhood graphs obtained by this algorithm
will be given in Section 5.

Definition 8. If G is a graph, we denote by Red(G) the graph emerging from G if all states of G
that are not the starting point of a walk of infinite length are removed. Such a graph is called a
reduced graph.

Definition 9. For two subgraphs G1 and G′
1 of G(Γ) we define the product graph G2 = G1 ⊗G′

1

as follows.

• A state r2 belongs to G2 iff r2 = r1r
′
1 or r2 = r′1r1 for some r1 ∈ G1, r′1 ∈ G′

1

• for r2, s2 states of G2, and δ1, δ2 digits of D, then there is an edge r2
δ1|δ2−−−→ s2 ∈ G2

iff there are edges r1
δ1|δ

′
1−−−→ s1 ∈ G1 and r′1

δ′
1|δ2−−−→ s′1 ∈ G′

1

with r2 = r1r
′
1, s2 = s1s

′
1 and δ′1 ∈ D

or there are edges r′1
δ1|δ

′
1−−−→ s′1 ∈ G′

1 and r1
δ′
1|δ2−−−→ s1 ∈ G1

with r2 = r′1r1, s2 = s′1s1 and δ′1 ∈ D .

The conditions of the second item both lead to the same set of edges if G1 = G′
1.

We write ⊗m
i=1G1 = G1 ⊗ . . . ⊗ G1

︸ ︷︷ ︸

m times

.
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Definition 10. A subgraph G(M) of G(Γ) is said to have property (C) if for each pair (γ′, δ) ∈ M ×D
there exists a unique pair (γ, δ′) ∈ M ×D such that γ

δ|δ′

−−→ γ′ ∈ G(M).

From the last three definitions and the fact that D is a complete set of right coset representatives
of gΓg−1, we derive the following proposition:

Proposition 3.7. If G1 and G′
1 are subgraphs of G(Γ) having property (C), then for r2, s2 states

of G1 ⊗ G′
1 and δ1, δ2 ∈ D,

there exists an edge r2
δ1|δ2−−−→ s2 ∈ G1 ⊗ G′

1 iff gr2g
−1δ2 = δ1s2.

Furthermore, G1 ⊗ G′
1 and hence Red(G1 ⊗ G′

1) have property (C).

The proof of this result runs along the same lines as in the case of lattice tilings (cf. [16]) and
we omit it.

This means that the product graph of two subgraphs satisfying property (C) is again a subgraph
of G(Γ) and it has property (C), as well as its reduced graph.

Algorithm 3.8. We denote by G(S) the graph obtained from G(R) by the following algorithm.

p := 1
A[1] := Red(G(R))
repeat
p := p + 1, A[p] := Red(A[p − 1] ⊗ A[1])
until A[p] = A[p − 1]
G(S) := A[p] \ {1}

Proposition 3.9. Algorithm 3.8 ends after finitely many steps and yields the neighborhood graph
(i.e., G(S) = G(S)).

In order to show this result we have to adapt the proof of the corresponding result in the case
of lattice tilings of Scheicher and Thuswaldner [16]. First we need the following lemmata to get
bounding sets for S (with respect to the inclusion) from below and above.

Lemma 3.10. Each state of G(R′) := Red(G(R)) has infinitely many predecessors and infinitely
many successors. Thus G(R′) is a union of cycles of G(Γ) and of walks connecting these cycles.
Furthermore, G(R′) has property (C).

This can be proved in the same way as in the lattice tiling case (cf. [16]).

Lemma 3.11. The graph G(S ∪ {1}) is the union of all cycles of G(Γ) and all walks connecting
two of these cycles.

Proof. Let γ be a state contained in a cycle of G(Γ), i.e., there exists γ
δ1|δ

′
1−−−→ γ1

δ2|δ
′
2−−−→ . . . γl

δl|δ
′
l−−−→ γ

a cycle in G(Γ). Then for all p ∈ N we have

γ
(
g−1δ′1 . . . g−1δ′l

)p
=

(
g−1δ1 . . . g−1δl

)p
γ.

If we take a ∈ Rn and set δj+pl := δj , δ′j+pl = δ′j for every p ∈ N, j ∈ {1, . . . l}, then we can write

γ
(

lim
n→∞

g−1δ′1 . . . g−1δ′n(a)
)

= lim
n→∞

g−1δ1 . . . g−1δn(γ(a)) = lim
n→∞

g−1δ1 . . . g−1δn(a)

(the last equality follows from (1.2)). This means that γ ∈ S ∪ {1}.
All walks connecting two cycles of G(Γ) are also contained in G(S∪{1}). This follows inductively,
starting from the last state of the walk, that belongs to S ∪{1} as we just saw, and going the walk

backwards: the existence of an edge γ1
δ|δ′

−−→ γ2 in G(Γ) with γ2 ∈ S ∪ {1} implies γ1 ∈ S ∪ {1}
(see Remark 3).
No other state is contained in G(S ∪ {1}), because S is finite and each state of G(S ∪ {1}) must
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have infinitely many predecessors and infinitely many successors. These states must be in a cycle
or in a walk connecting two cycles. �

Corollary 3.12. Red(G(R)) ⊆ G(S ∪ {1}).

This lower bound follows from Lemma 3.10 and 3.11. For the upper bound, we need one more
lemma.

Lemma 3.13. Let G(R′) := Red(G(R)). Then R′ contains a generator set B := {γ1, . . . , γq} of
Γ. By symmetry and because 1 → 1 is a cycle in G(R), R′ even contains the set {1} ∪ B ∪ B−1.

Proof. R being a finite set, let ℓ := |R|. Then for p > ℓ, the fact that Bγ,p contains an (n − 1)-
dimensional face implies that γ belongs to R′. Indeed, because of Proposition 3.6, there must be
a walk of length p > ℓ in G(R) starting from γ. In this walk, a state γ′ ∈ R has to appear at
least twice (because p > |R|). This provides a cycle in the walk which can be repeated to get an
infinite walk starting from γ. Thus γ ∈ R′. This allows the following description of the boundary
of Tp for p > ℓ:

∂Tp =
⋃

γ∈R′\{1}

Bγ,p

Now we show that R′ generates Γ. Let α ∈ Γ. Remember (Proposition 3.4) that {γ(Tp), γ ∈ Γ}
is a tiling of Rn; let x ∈ Tp and y ∈ α(Tp) (but x, y not vertices of these tiles), one can draw a
line from x to y avoiding the vertices of the tiles. Tp is compact, so this line passes through a
finite number of tiles Tp, α1(Tp), . . . , αq(Tp) in this order. Two consecutive tiles have an (n − 1)-

dimensional face in common, so α1, α
−1
1 α2, . . . , α

−1
q α are elements of R′, thus α is a product of

elements of R′. �

Corollary 3.14. The inclusion

Red(G(R)p0) ⊇ G(S ∪ {1})
holds for some positive integer p0. Furthermore, Red(G(R)p0) has property (C).

Proof. If B is a generator set of Γ contained in R′ (hence in R too), then the set of states of
G(R)p contains all elements of ({1} ∪ B ∪ B−1)p (see Lemma 3.13). As S is finite, there is a p0

with G(R)p0 ⊃ G(S ∪ {1}), and each state of G(S) ∪ {1} having infinitely many successors, the
required inclusion holds. The second claim follows from Proposition 3.7. �

The following lemma will be useful in the conclusion of the proof of Proposition 3.9. It can be
obtained in a similar way as in the case of lattice tilings, we refer the reader to [16, Section 5] for
more details.

Lemma 3.15. If G(R′) denotes Red(G(R)), then the identity

Red(G(R′)p) = Red(. . . Red(Red(Red(G(R′)) ⊗ G(R′)) ⊗ G(R′)) . . . ⊗ G(R′))
︸ ︷︷ ︸

p times

holds for every p ∈ N.

Proof of Proposition 3.9. The proof of Proposition 3.9 is then similar as in [16]. Firstly, the
algorithm terminates: choosing p0 as in Corollary 3.14, we have by Lemma 3.15 that A[p0] =
Red(G(R)p0), thus A[p0] ⊇ G(S ∪ {1}). This implies in view of Lemma 3.11 that A[p0] contains
each reduced finite subgraph of G(Γ) with the property that each of its states has a predecessor.
Thus A[p0 + 1] ⊆ A[p0], and the opposite inclusion being trivial we even have A[p0 + 1] = A[p0].
Hence the algorithm terminates for a p1 ≤ p0 + 1, and we have G(S) = A[p1] \ {1}.
Secondly, G(S) is the neighborhood graph: note that by the definition of p1 and of the algorithm,
A[p1] = A[p1 + 1] = . . . = A[p0 + 1] = A[p0] holds. Moreover, Lemma 3.11 indicates that
G(S ∪{1}) contains all reduced finite subgraphs G(Γ) for which each state has a predecessor, and
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Proposition 3.7 states that A[p0] has property (C), so that each state of A[p0] has a predecessor.
Hence A[p0] ⊆ G(S ∪ {1}) = A[p1] = A[p0], showing that G(S) = G(S). �

We end up this section by giving an upper bound for the number of steps required by Algo-
rithm 3.8 to compute the neighbor graph from the contact graph. We first give a bound for the
number of neighbors, i.e., for the cardinality of S. Let || · || be the Euclidean norm on Rn, with
respect to which the elements of Γ are isometries. We denote also by || · || the induced matrix
norm. We write g(x) = Ax + t, where A is the expanding matrix and t the translation vector
associated to g. Similarly, we write for an isometry γ ∈ Γ: γ(x) = Aγx + tγ , where Aγ is an
isometry matrix (in particular, ||Aγ || = 1), and tγ is the translation vector of γ.

Proposition 3.16. We have the following upper bound:

|S| ≤ |Γ/Λ| ·



4 · max
δ∈D

{||t − tδ||} ·
∞∑

j=1

||A−j ||





n

.

Proof. We compute a bound M for the norms of the possible translational parts tγ of the elements
γ ∈ S. Then, the volume of the hypercube of side size 2M will bound the number of these allowed
translation parts. Multipliying this volume by the cardinality of the point group, we get the
desired upper bound.
Let γ ∈ S, then some point belongs to T and γ(T ). Thus there are sequences of digits (δj), (δ′j),
such that

lim
m→∞

g−1δ1 . . . g−1δm(0) = lim
m→∞

γg−1δ′1 . . . g−1δ′m(0).

This means for the translation part of γ that

tγ = limm→∞

Aγ

m−1∑

j=0

Aδ′
0
A−1Aδ′

1
A−1 . . . Aδ′

j
A−1(tδ′

j+1
− t) −

m−1∑

j=0

Aδ0
A−1Aδ1

A−1 . . . Aδj
A−1(tδj+1

− t),

where by convention Aδ0
= Aδ′

0
= 1.

We recall now that, by Definition 1, gΓg−1 ⊂ Γ, hence if an isometry γ ∈ Γ is given, there is another
isometry γ′ ∈ Γ such that γg−1 = g−1γ′. This property also holds for the linear parts: given Aγ ,
there is Aγ′ such that AγA−1 = A−1Aγ′ . Using this fact, one can rewrite the products of matrices
in the first sum above in the following way: for each j, there are matrices A

γ
(j)
0

, A
γ
(j)
1

, . . . , A
γ
(j)
j

such that
Aδ′

0
A−1Aδ′

1
A−1 . . . Aδ′

j
A−1 = A−(j+1)A

γ
(j)
0

A
γ
(j)
1

. . . A
γ
(j)
j

,

and similarly for the other sum. Going to the norm and using the triangle inequality and the fact
that isometries have norm 1, we obtain the following majoration:

||tγ || ≤ 2 ·
∞∑

j=1

||A−j || · max
δ∈D

{||tδ − t||} =: M.

�

Remark 5. The bound in this lemma often applies to the number of elements in the contact set
R. Indeed, in practical applications, looking at a picture of the tiling, it is possible to guess an
appropriate set R0 to start with, corresponding to a good first approximating polyedron of the
central tile. In this case, we eventually obtain R \ {1} ⊂ S. Often, we even have that R is much
smaller than S. A better general upper bound can not be given, the cardinality of the contact set
and the number of neighbors really depend on the geometry of the particular example (crystiles
with arbitrary number of neighbors can be produced, see [2]).

Proposition 3.17. Let q := |Γ/Λ| be the cardinality of the point group. Then there is a basis
BL of the lattice Λ such that BL ∪ B−1

L are states of G(R′)q. Consider the translational parts
of the elements of S. If N is the maximal Euclidean norm of these translational parts, then S
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is contained in the set of states of G(R′)Nq. Hence, Algorithm 3.8 terminates after at most Nq
steps.

Proof. First note that by Lemma 3.15, the graph Red(G(R′)Nq) will be exactly equal to the graph
obtained when reduction happens after each step, like in Algorithm 3.8. This graph is moreover
a subgraph of G(R′)Nq. Since q is the order of the point group and by Lemma 3.13 the set
R′ contains a generator for Γ, the product R′ q = {r1 · . . . · rq, ri ∈ R′} contains a basis for
the lattice Λ and is equal to the set of states of G(R′)q. It even contains all the elements of Γ
whose translation vector has norm less than 1. Then, the set of states of G(R′)2q contains all the
elements of Γ whose translation vector as norm less than 1+1 = 2. Consequently, the neighbor(s)
with maximal translation vector will be reached after iterating at most N times this operation, as
well as all the neighbors with smaller translation vector. �

Example. We eventually give the bound obtained above for the algorithm in a lattice example.
For a lattice tile, we have q = 1. We consider in the plane the expansion g(x) = Ax with

A =

(
0 −5
1 −4

)

and the digit set {(0, 0)T , . . . , (4, 0)T } (see [2]). We have |S| = 10, and

R′ = {±(4, 1)T ,±(3, 1)T ,±(1, 0)T }
for a choice of R0 = {(0, 0)T , (±1, 0), (0,±1)T }. The set of neighbors is

S = R′ ∪ {±(6, 2)T ,±(2, 1)T }.
The greatest neighbor has Euclidean norm 2

√
10. The bound for the number of steps in the above

proposition is thus 6. The effective number of steps is 1.

4. Plane crystiles: criterion of disk-likeness

The aim of this section is to establish a criterion for the disk-likeness of plane crystiles.
We use the sets and graphs defined in Section 2.
We recall the following fundamental facts, easily seen from the definition of the set of neighbors
S and the set of adjacent neighbors A.

• In A, there is a set of generators for Γ, and A ⊆ S.
• The boundary of T satisfies ∂T = ∪γ∈SBγ = ∪γ∈ABγ .
• For each A′ ⊆ S with ∂T = ∪γ∈A′Bγ , we have A′ ⊇ A .

The first result is a proposition stated for general crystallographic tilings of the plane.

Proposition 4.1. Suppose that {γ(T ) : γ ∈ Γ} is a crystallographic tiling of R2. Then, T is
disk-like if and only if the following three conditions all hold.

(1) The triple intersection V2 (γ1, γ2) = T ∩ γ1(T ) ∩ γ2(T ) is either empty or a single point
set for any distinct γ1, γ2 ∈ S.

(2) For each γ ∈ S, the double edge Bγ is either a single point or a simple arc.
(3) The subgraph of the double neighboring graph G2 with set of vertices {Bγ : γ ∈ A} consists

of a simple loop.

Since a crystallographic reptile T with respect to Γ induces a crystallographic tiling {γ(T ) : γ ∈ Γ},
the disk-like question for crystiles is solved if we can verify the three items of Theorem 4.1, or
disprove a single one. In general, Items (1) and (3) can be checked by concrete algorithms, while
we still need to deal with Item (2). Recall that T is the attractor of an IFS {f1, . . . , fk} consisting
of affine contractions and that T satisfies the open set condition. Thus, T is disk-like if and only
if T o is connected [11, Theorem 1.1 (iii)]. This will provide us an algorithm to solve the disk-like
question of crystiles in R2, without verifying Item (2) of Proposition 4.1.
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Indeed, for a crystallographic reptile T with respect to Γ and the corresponding crystallographic
tiling {γ(T ) : γ ∈ Γ}, let g be the expanding map, and let the double neighboring graph G2(Γ),
the sets Vγ and the graph Gγ be as in Definition 4 of Section 2. Then the union of all the elements
of Vγ is exactly the image g (Bγ) of Bγ under the expansion map g. If the complementary set
R2 \ Bγ has some bounded component U then the region will be “enlarged” as g(U), which is a
bounded component of R2 \ g (Bγ). Under simple assumptions on the graph Gγ , we can exclude
the existence of such a region U . This will eventually lead us to connectivity of T o and hence
disk-likeness of T .

Now, we can state our disk-like criterion for crystiles as follows.

Theorem 4.2. Let T ⊂ R2 be a crystile with respect to Γ whose expanding map is g and whose
digit set is D. Then T is disk-like if and only if each of the following three conditions holds:

(1) The triple intersection V2 (γ1, γ2) = T ∩ γ1(T ) ∩ γ2(T ) is either empty or a single point
set for any disjoint pair γ1, γ2 ∈ S.

(2) For each γ ∈ A, the graph Gγ consists of a simple path.
(3) The subgraph of the double neighboring graph G2 with set of vertices {Bγ : γ ∈ A} consists

of a simple loop.

Before proving Proposition 4.1 and Theorem 4.2, let us recall some results from plane topology.

Given a set M in a topological space X, we say that M is a cut of X or separates X if its
complement X \ M = M c is disconnected. If n points x1, . . . , xn, n ≥ 2, belong to pairwise
distinct connected components of X \M , we say that x1, . . . , xn are separated by M ; if n = 2, we
also say that M is a cut between x and y, or that M cuts between x and y in X.

A continuum is a connected compact Hausdorff space, and a locally connected continuum X is
a Janiszewski space ([9, §61, I, p.505]) provided that the union M ∪N of two continua M,N ⊂ X
is a cut of X whenever their intersection M ∩ N is not connected.

Lemma 4.3. [9, §61, I, Theorem 7] Let B,C be two closed or open sets of a Janiszewski space
X. If none of these sets is a cut between p and q and if B ∩ C is connected, then B ∪ C is not a
cut between p and q either.

Since the 2-dimensional sphere S2 is a Janiszewski space [9, §61, I, Theorem 2], we can infer
two separation theorems for the plane R2 as follows.

Lemma 4.4. If the common part of two continua M,N in the plane is disconnected, then there
exist two points p0, p1 separated by M ∪ N but not by either M or N .

Lemma 4.5. Let M,N be compact sets in the plane and suppose that there exist n(≥ 2) points
separated by M ∪ N but not by either M or N . Then the common part M ∩ N has at least n
components.

Suppose that M1,M2, . . . ,Mn, n ≥ 3, are compact sets in the plane. If # (Mi ∩ Mi+1) = 1 for
1 ≤ i ≤ n − 1 and Mi ∩ Mj = ∅ for |i − j| ≥ 2, we say that M1,M2, . . . ,Mn form a chain. If
# (Mi ∩ Mi+1) = 1 for 1 ≤ i ≤ n − 1, # (Mn ∩ M1) = 1 and Mi ∩ Mj = ∅ for 2 ≤ |i − j| ≤ n − 2,
we say that M1,M2, . . . ,Mn form a circular chain. By Lemmata 4.3 to 4.5, we have the following
two corollaries which will be used in our proof for Theorem 4.2.

Corollary 4.6. If M1, . . . ,Mn(n ≥ 3) are compact sets in the plane which form a chain, then
every two points separated by

⋃

j Mj are separated by a single Mj.

Corollary 4.7. If the continua M1, . . . ,Mn(n ≥ 3) in the plane form a circular chain and each

of them does not separate the plane, then R2 \
(
⋃

j Mj

)

is the union of two regions.

We also recall a theorem of Torhorst.
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Lemma 4.8. [9, §61, II, Theorem 4] Let M ⊂ S2 be a locally connected continuum having no
cutpoint and R a component of M c. Then R is homeomorphic to a disk.

Dealing with disk-like tiles in crystallographic tilings, we will need the following considerations.
Recall that for a closed disk D, distinct points of the boundary are accessible from any given
point of the interior of D by disjoint simple open arcs within Do. More precisely, for distinct
a1, . . . , an ∈ ∂D, n ∈ N and p ∈ Do, there are pairwise disjoint simple open arcs A1, . . . , An ⊂ Do

leading from p to a1, . . . , an, respectively. This fact is needed in order to prove the following
lemmata:

Lemma 4.9. Let D1,D2 be two closed disks with disjoint interiors such that there exists a bounded
connected component Z of (D1 ∪ D2)

c
. Then Z∩D1∩D2 consists of two points a, b. Furthermore,

Z ∩ Di, i = 1, 2, are simple arcs meeting in their end points a and b, and there are C1 ⊂ Do
1,

C2 ⊂ Do
2 simple open arcs from a to b such that Z = Interior (C1 ∪ C2 ∪ {a, b}) ∩ (D1 ∪ D2)

c
.

(Here the interior Interior(C) of the simple closed curve C is defined as the bounded component
of its complement.)

Proof. Note that D1 ∪D2, union of disks with disjoint interiors, is a locally connected continuum
with no cut points because its complement has a bounded component, so by Lemma 4.8 Z is
disk-like, thus its boundary ∂Z = Z ∩ (D1 ∪ D2) is a simple closed curve and Z = Interior(∂Z).
The intersection Z∩D1∩D2 has at least two points because ∂Z is connected and has no cut point.
Let us suppose that it contains three distinct points a, b, c. Then, choosing pi ∈ Do

i , i = 1, 2, and
disjoint simple open arcs Ci

α from pi to α within Do
i for i = 1, 2 and α = a, b, c, we obtain three

disjoint simple open arcs from p1 to p2, namely Cα := {α} ∪ C1
α ∪

(
−C2

α

)
for α = a, b, c, with the

property that Cα ⊂ Do
1 ∪ Do

2 ∪ {α}. Thus θ := {p1, p2} ∪
⋃

α Cα is a theta-curve. Since Z ⊂ θc

is connected, it must be entirely included in one open disk-like region B of θc. This implies that
a, b, c are all on B, contradicting the fact that these points lie on the distinct arcs of θ.
Thus Z ∩ D1 ∩ D2 consists of exactly two points a, b, and the remaining assertions follow: Ai :=
Z ∩ Di for i = 1, 2 is a continuum and each point of Ai different from a, b is a cut point of Ai, so
Ai is a simple arc on ∂Z (see [9, §49, IV, Theorem 4]). Every two simple open arcs C1, C2 from a
to b within Do

1,D
o
2 are homotopic to A1, A2 within D1,D2 and have the required property. �

Lemma 4.10. Let {γ(T ), γ ∈ Γ} be a crystallographic tiling with disk-like tiles, and γ, γ′ two
elements of Γ. Then (γ(T ) ∪ γ′(T ))

c
has no bounded component. In other words, no pair of tiles

can surround a third one.

Proof.
(i) For each γ, γ′ ∈ Γ, (γ(T ) ∪ γ′(T ))

c
has finitely many bounded connected components.

Indeed, because of the tiling property, every component of (γ(T ) ∪ γ′(T ))
c

being open, it
is intersected by the interior of at least one tile γ′′(T ) with γ′′ 6= γ, γ′, thus it contains
the whole tile γ′′(T ), since this tile is disk-like. For this reason also, disjoint components
contain distinct tiles, and all of these tiles have the same Lebesgue-measure. But note
that there is a bounded domain containing all the bounded components of (γ(T ) ∪ γ′(T ))

c
.

Hence (γ(T ) ∪ γ′(T ))
c

can have only finitely many bounded components.
(ii) For each γ ∈ Γ, there are at most finitely many γ′ ∈ Γ such that (γ(T ) ∪ γ′(T ))

c

has a bounded component. Indeed, because the tiles are disk-like, if γ′ /∈ γS, then
(γ(T ) ∪ γ′(T ))

c
is connected and unbounded.

(iii) If Z is a bounded component of (γ(T ) ∪ γ′(T ))
c
, we denote by N(γ, γ′, Z) the number

of tiles whose interior intersects Z. Note again that γ′′(T o) ⊂ Z as soon as γ′′(T ) ∩
Z 6= ∅, because of the disk-likeness of the tiles, thus this number is finite. Moreover,
we have N(γ′, γ′γ, γ′Z) = N(1, γ, Z) for every γ, γ′ ∈ Γ, and every component Z ′ of
(γ′(T ) ∪ γ′γ(T ))

c
is obtained in this way (i.e., Z ′ = γ′Z with Z bounded component of

(T ∪ γ(T ))
c
).
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(iv) Let

N :=







·max {N(1, γ, Z) : γ ∈ Γ, Z bounded component of (T ∪ γ(T ))
c}

if (T ∪ γ(T ))
c

has a bounded component for some γ ∈ Γ,
·0 otherwise.

Suppose that N > 0. Let γ, Z with N = N(1, γ, Z). By Lemma 4.9, there exist disjoint
points a, b in T ∩ γ(T ) and simple open arcs C1, Cγ contained in T o, γ(T o) respectively,
such that Z ⊂ Interior(C) with C := C1 ∪ Cγ ∪ {a, b} and such that for γ′ /∈ {1, γ} with
γ′(T )∩Interior(C) 6= ∅, we have γ′(T o) ⊂ Z. Let γ′ /∈ {1, γ} with γ′(T )∩Interior(C) 6= ∅.
Then γ′(T ) lies entirely in Interior(C)∪{a, b}. Moreover, γ′′ := γ′γ and Z ′ := γ′Z satisfy
N(γ′, γ′′, Z ′) = N .

(v) We have γ′′(T ) ∩ Z = ∅. Otherwise γ′′(T ) ⊂ Interior(C) ∪ {a, b} and the bounded
components of (γ′(T ) ∪ γ′′(T ))

c
have to lie in Z, but they are all different from Z since

they do not contain γ′(T o) nor γ′′(T o) that are both in Z; in particular for Z ′ we have
N = N(γ′, γ′′, Z ′) < N(1, γ, Z) = N , a contradiction.

(vi) We have γ′′ /∈ {1, γ}. For sure, γ′′ = γ′γ 6= γ, and if γ′′ = 1 we obtain the same
contradiction as in item (v): the bounded components of (γ′(T ) ∪ T )

c
lie in Z but do not

contain γ′(T o), so N = N(γ′, 1, Z ′) < N(1, γ, Z) = N , the contradiction.
(vii) By Items (v) and (vi), γ′′(T ) ⊂ Exterior(C)∪{a, b}. Thus γ′(T )∩γ′′(T ) = {a, b}, because

these tiles intersect in at least two points but are contained in Interior(C) ∪ {a, b} and
Exterior(C) ∪ {a, b}, respectively.

(viii) Consider a simple open arc Cγ′′ from a to b within γ′′(T ). We may assume that C1 ⊂
Exterior(Cγ′ ∪ {a, b} ∪ Cγ′′).
We now have that (T ∪ γ′′(T ))

c
has a bounded component Z ′′ containing Z and γ(T o).

Indeed, each of these sets is in some bounded component of (T ∪ γ′′(T ))
c
. Moreover, by

Lemma 4.9, Z ∩ γ(T ) is a simple arc from a to b that does not intersect T except in a
and b, and that lies in Interior(C) ∪ {a, b}, so it does not intersect γ′′(T ) except in a and
b either. Thus one can find at least one point c ∈ Z ∩ γ(T )∩ (T ∪ γ′′(T ))

c
, and this point

connects the open disks Z and γ(T o) within (T ∪ γ′′(T ))
c
: indeed, Z ∪ {c} ∪ γ(T o) is

connected and lies in (T ∪ γ′′(T ))
c
, thus the sets Z and γ(T o) lie in the same bounded

component of (T ∪ γ′′(T ))
c
.

(ix) From Item (viii), N(1, γ′′, Z ′′) > N(1, γ, Z) = N , contradicting the maximality of N .

This means that the assumption N > 0 in Item (iv) is false. Hence no union of two tiles has a
complement which contains a bounded component. �

We eventually recall that in a topological space X, the quasi-component at the point p ∈ X is
the intersection of all closed-open (or clopen) sets of X containing p.

Lemma 4.11. [9, §47, II, p.169, Theorem 2] In compact spaces, the quasi-components are con-
nected and coincide therefore with the components.

Proof of Proposition 4.1. We first suppose that the three items hold and prove that T is disk-like.

Items (1) and (3) indicate that the compact sets {Bγ : γ ∈ A} form a circular chain, and Item
(2) implies that for each γ ∈ A, Bγ and Bc

γ are both connected. This means that {Bγ , γ ∈ A}
form a circular chain of continua, each of which does not separate the plane. By Corollary 4.7,

R2 \
(
⋃

γ∈A Bγ

)

= R2 \ ∂T is then the union of two connected sets; the bounded one is T o and

the unbounded one is R2 \ T , since T = T o and T o = R2 \
(
⋃

γ 6=1 γ(T )
)

. Moreover, because ∂T
is the union of arcs forming a circular chain, it has no cut point and Lemma 4.8 assures that T is
disk-like.

Conversely, we assume that the tile T is disk-like and prove that the three items hold.

Proof of Item (1).
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Let us assume that the triple intersection T ∩ γ1(T ) ∩ γ2(T ) contains at least two distinct
points, say a and b. Then, choosing a point p in T o, one can find two disjoint simple open arcs
A and A′ in T o leading from p to a and b, respectively. C := A ∪ {p} ∪ A′ is then a simple open
arc leading from a to b with C ⊂ T o. Similarly for the other tiles, one can find simple open arcs
C1 ⊂ γ1(T o), C2 ⊂ γ2(T o), each of which joins a, b. Then θ := {a, b}∪C∪C1∪C2 is a theta-curve
whose complementary set consists of three regions. Assume with no loss of generality that C1 does
not intersect the unbounded component of R2 \ θ. Then γ1(T o) entirely lies in the interior of the
simple closed curve C ′ = {a, b} ∪C ∪C2, indicating that (T ∪ γ2(T ))

c
has a bounded component

there, a contradiction to Lemma 4.10.

Proof of Item (2).

Suppose that Bγ 6= ∅. In view of Lemmata 4.4 and 4.10, Bγ must be connected. Thus Bγ

is a connected subset of the simple closed curve ∂T . If Bγ = ∂T this would imply that T is
surrounded by γ(T ) which is impossible. Thus Bγ is homeomorphic to a (possibly degenerated)
interval and the proof is done.

Item (3) now follows from the disk-likeness of T together with Items (1) and (2). �

Proof of Theorem 4.2. The necessity part is a direct corollary of Theorem 4.1, so we just need to
show the sufficiency part. More precisely, we will assume the three conditions and infer that the
interior T o of T is connected. By Corollary 4.7, we just need to show that Bγ does not separate
the plane for each γ ∈ A and that {Bγ : γ ∈ A} is a collection of continua which form a circular
chain.

Claim 1: Bc
γ is connected for every γ ∈ A.

If it is not the case, consider the set

U = {U ⊂ R2 : ∃γ ∈ A such that U is a bounded connected component of Bc
γ},

and choose U ∈ U with maximal area, associated to Bγ for some γ ∈ A. Recall that

g(Bγ) =
⋃

δ(B
δ−1gγg−1δ′ )∈Vγ

δ(Bδ−1gγg−1δ′),

where the set Vγ has been defined in Definition 4. Then g(U), a bounded component of g(Bγ)c,
lies in the complement of every δ(Bδ−1gγg−1δ′) ∈ Vγ , thus, by maximality of U , it must entirely lie
in the unbounded component of δ(Bδ−1gγg−1δ′)c for every δ(Bδ−1gγg−1δ′) ∈ Vγ . Let be p ∈ g(U)
and q in the unbounded component of g(Bγ)c. Items (1) and (2) imply that the elements of Vγ

form a chain. Thus we can apply Corollary 4.6 to the sets of Vγ to obtain that the union of these
sets, which is exactly g(Bγ), does not cut between p and q, a contradiction to the choice of these
points.

Claim 2: Bγ is connected for every γ ∈ A.
Indeed, by Items (1) and (3), one can arrange the elements of A as γ1, γ2, . . . , γn such that the
compact sets Bγ1

, . . . , Bγn
form a circular chain. Note that their union is the continuum ∂T .

Without loss of generality, suppose that Bγ2
is disconnected. We denote by C1 and C3 the

connected components of Bγ2
such that #C1 ∩ Bγ1

= 1 = #C3 ∩ Bγ3
. Then we have for each

other component D of Bγ2
and for every i ∈ {1, 3, . . . , n} that D ∩ Bγi

= ∅.
If C1 = C3 =: C, then C 6= Bγ2

and by Lemma 4.11 there exists a clopen subset P of Bγ2
with

C ⊆ P ( Bγ2
. Thus the boundary can be written as

∂T = (Bγ2
\ P ) ∪



P ∪
⋃

i∈{1,3,...,n}

Bγi



 ,

which is a separation of ∂T into two disjoint closed subsets, a contradiction to the connectedness
of ∂T .
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If C1 6= C3, one can write

∂T = C1 ∪ C3 ∪ E ∪
⋃

i∈{1,3,...,n}

Bγi
,

where E is the union of all connected components of Bγ2
different from C1 and C3. If E = ∅,

note that the union C1 ∪ C3 ∪ ⋃

i∈{1,3,...,n} Bγi
is not a cut of the space (use Claim 1 and apply

Corollary 4.6 to the chain C3, Bγ3
, Bγ4

, . . . , Bγn
, Bγ1

, C1). But this union is exactly ∂T . This
contradicts the fact that T is a tile. If E 6= ∅, let C be a component of Bγ2

distinct from C1 and
C3. Then using Lemma 4.11 one can find clopen subsets P1, P3 of Bγ2

such that C1 ⊆ P1, C3 ⊆ P3

and P1∩C = P3∩C = ∅. Thus P1∪P3 ( Bγ2
is a clopen subset of Bγ2

. This leads to the separation

∂T = (Bγ2
\ (P1 ∪ P3)) ∪



P1 ∪ P3 ∪
⋃

i∈{1,3,...,n}

Bγi





of the boundary of T into two disjoint closed subsets, contradicting the connectivity of ∂T .

From Claims 1 and 2 and Items (1) and (3) we obtain that the {Bγ , γ ∈ A} form a circular
chain of continua, each of which does not separate the plane. The disk-likeness of T then follows
as in the first part of the proof of Proposition 4.1. �

5. Application to p2-crystiles

5.1. Introduction. Now let Γ be the crystallographic group p2 in R2, i.e.,

Γ = {apbqcr : p, q ∈ Z , r ∈ {0, 1}}
where the isometries a, b, c are defined by:

a(x, y) = (x + 1, y), b(x, y) = (x, y + 1), c(x, y) = (−x,−y).

In this section, four examples of crystiles will be presented and we will answer the question
of their disk-likeness. These examples are cases of 3-reptiles (i.e., |D| = 3) and correspond to
disk-like candidates listed in Gelbrich [5].
For each example, we will proceed as follows:

(1) We compute the contact graph G(R), defined in Definition 2. Note that there are five
types of fundamental domains of p2 given by Grünbaum and Shephard in [6, pp.288-290].
For each example, we have the possibility to choose one of these types for Q (hence for
R0) to get the contact graph G(R).

(2) The neighborhood graph G(S) (Definition 2) is obtained by Algorithm 3.8.
(3) We use the neighborhood graph to give some informations concerning the crystile, about

its sets of L-vertices (see Proposition 3.2), its vertex neighbors and its edge neighbors (set
A) (see Characterization 3.3).

The last part of the section is then devoted to the proof of the disk-likeness or non disk-likeness
of the tiles presented in these examples by applying Theorem 4.2.

5.2. Example 1. This example corresponds to Gelbrich’s picture [5, p.252, Fig.6 (i)]. This crystile
will be shown to be disk-like. It is depicted in Figure 2 together with its subdivision tiles (images
of the tile by the digits).

We take

g(x, y) =

(

y,−3x − 1

2

)

, D = {1, b, c},

and the tile is defined by

g(T ) = T ∪ b(T ) ∪ c(T ).
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Figure 2. Crystile T of Example 1.

The requirement gΓg−1 ⊂ Γ (see Definition 1) is fulfilled because

gag−1 = b−3, gbg−1 = a, gcg−1 = b−1c.

(1) We choose R0 = {1, b, b−1, c, a−1c} (see the corresponding fundamental domain in Fig-
ure 5). This yields R1 = R0 ∪ {a−1b−1c}, R2 = R1 ∪ {b−1c} = R3, so finally

R = {1, b, b−1, c, a−1c, a−1b−1c, b−1c}.
(2) The application of Algorithm 3.8 leads to S = R \ {1}, so the contact graph and the

neighborhood graph are equal (up to the identity). They are depicted in Figure 6.

(3) Sets of L-vertices. Using Proposition 3.2, we read on the graph the sets of L-vertices and
obtain the following results:

– #V2(b, c) = #V2(b, a
−1c) = #V2(b

−1, b−1c) = #V2(b
−1, a−1b−1c)

= #V2(c, b
−1c) = #V2(a

−1b−1c, a−1c) = 1. (The other sets of 2-vertices are empty.)
– VL = ∅ for L ≥ 3.

Vertex and edge neighbors. One can use the graph of neighbors together with Character-
ization 3.3 to get that there is no vertex neighbor and that the set of edge neighbors is
the whole set S. Another way to show this will be given in the last part of this section
(Proposition 5.4).

5.3. Example 2. This example corresponds to Gelbrich’s picture [5, p.252, Fig.6 (b)]. This
crystile will be shown to be disk-like. It is depicted here in Figure 3 together with its subdivision
tiles. We take

g(x, y) = (−y, 3x + 1), D = {1, b, c},
and the tile is defined by

g(T ) = T ∪ b(T ) ∪ c(T ).

We have gΓg−1 ⊂ Γ because

gag−1 = b3, gbg−1 = a−1, gcg−1 = b2c.

(1) We choose R0 = {1, b, b−1, c, bc, a−1c} (see Figure 5). This yields R1 = R0, so

R = {1, b, b−1, c, bc, a−1c}.
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Figure 3. Crystile T of Example 2.

(2) The application of Algorithm 3.8 leads to S = R \ {1} ∪ {a−1bc, a−1b−1c}. The graphs
are depicted in Figure 6.

(3) Sets of L-vertices. Using Proposition 3.2, we read off from the neighborhood graph the
sets of L-vertices and obtain the following results:

– #V2(b, a
−1c) = #V2(b, a

−1bc) = #V2(b
−1, a−1b−1c) = #V2(b

−1, a−1c)
= #V2(a

−1c, a−1bc) = #V2(a
−1c, a−1b−1c)

= #V2(b, bc) = #V2(b
−1, c) = #V2(c, bc) = 1. (The sets of 2-vertices that are not

listed are empty.)
– #V3(b, a

−1c, a−1bc) = #V3(b
−1, a−1b−1c, a−1c) = 1. (The sets of of 3-vertices that

are not listed are empty.)
– VL = ∅ for L ≥ 4.

Remark. For each of the first six sets V (s, s′) in the first item, using the neighborhood
graph in Figure 6 one gets only one possible sequence of labels for a walk starting from
s and s′, but for the other sets, one finds exactly two possible walks. Let us just con-
sider V2(b, bc). Then the infinite walks starting from b and bc are (1, 1, c, 1, c, 1, c, . . .)
and (b, c, 1, c, 1, c, 1, . . .). However, they represent the same point on the boundary of T ,
because:

lim
n→∞

g−1(g−1g−1c)n(0, 0) =

(

−1

6
,
1

2

)

= lim
n→∞

g−1bg−1c(g−g−1c)n(0, 0).

Vertex and edge neighbors. Looking at the graph in Figure 6, we see that there is
exactly one infinite walk starting from the neighbors

{a−1bc, a−1b−1c}.
This implies that these are vertex neighbors because of Characterization 3.3. One can also
use Characterization 3.3 to obtain that the set of edge neighbors is A = {1, b, b−1, c, bc, a−1c},
but another way will be given in Proposition 5.4.

5.4. Example 3. This example corresponds to Gelbrich’s picture [5, p.253, Fig.8 (c)]. This
crystile will be shown to be non disk-like. It is depicted in Figure 4 with its subdivision tiles. We
take

g(x, y) = (−y,−3x − y), D = {1, b, a−1c},
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Figure 4. Crystile T of Example 3.

and the tile is defined by

g(T ) = T ∪ b(T ) ∪ a−1c(T ).

The property gΓg−1 ⊂ Γ holds because

ga−1cg−1 = b3c, gbg−1 = a−1b−1, gcg−1 = c.

(1) We choose R0 = {1, b, b−1, a−1c, c, bc} (see Figure 5). This yields R1 = R0 ∪ {a−1bc},
R2 = R1, so finally

R = {1, b, b−1, a−1c, c, bc, a−1bc}.
(2) The application of Algorithm 3.8 leads to

S = R \ {1} ∪ {a, a−1, a−1b, ab−1, a−1b2c, b2c, a−2b2c}.
The graphs are depicted in Figure 7.

5.5. Example 4. This example corresponds to Gelbrich’s picture [5, p.254, Fig.7 (a)], one of the
two “not as convincing” pictures listed by Gelbrich. We represented it in Figure 1. We take

g(x, y) = (x − y, 3x + 1), D = {1, b, a−1c},
and the tile is defined by

g(T ) = T ∪ b(T ) ∪ a−1c(T ).

The property gΓg−1 ⊂ Γ holds because

ga−1cg−1 = a−1b−1c, gbg−1 = a−1, gcg−1 = b2c.

(1) We choose R0 = {1, b, b−1, c, a−1c, bc, a−1bc} (see Figure 5). This yields R1 = R0, so

R = {1, b, b−1, a−1c, c, bc, a−1bc, a−1bc}.
(2) The application of Algorithm 3.8 leads to S = R\{1}. The graphs are depicted in Figure 6.
(3) Sets of L-vertices. Using Proposition 3.2, we read on the graph the sets of L-vertices and

obtain following results:
– #V2(b, bc) = #V2(b, a

−1bc) = #V2(b
−1, c) = #V2(b

−1, a−1c)
= #V2(bc, c) = #V2(a

−1bc, a−1c) = 1. (The sets of 2-vertices that are not listed are
empty.)

– VL = ∅ for L ≥ 3.
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Vertex and edge neighbors. One can use the graph of neighbors together with Character-
ization 3.3 to get that there is no vertex neighbor and that the set of edge neighbors is
exactly the whole set S. Indeed, the infinite walks

(a−1c, b, b, . . .) , (1, b, b, . . .) , (b, b, b, . . .), (a−1c, a−1c, 1, a−1c, 1, . . .) ,
(1, a−1c, 1, a−1c, . . .) , (a−1c, 1, a−1c, 1, . . .)

are in G1(S) iff their starting points are respectively b , b−1 , c , a−1c , bc , a−1bc . How-
ever, this result will also be obtained by Proposition 5.4.

c

b

b−1

a−1c

b−1

c

b bc

a−1c

b−1

c

bc

b

a−1bc

a−1c

Example 1. Examples 2, 3. Example 4.

Figure 5. Fundamental domain Q.

5.6. Application of the disk-likeness criterion. We now answer the question of Gelbrich in
our examples.

Proposition 5.1. The following assertions hold.

• The tiles defined in Example 1, Example 2 and Example 4 are disk-like.
• The tile defined in Example 3 is non disk-like.

To prove this, we will apply the criterion of Theorem 4.2 to the examples. To this matter, we
want to identify the edge neighbors of the central tile T in another way than in Characteriza-
tion 3.3. First we recall two results on the boundary connectedness of connected tiles.

Lemma 5.2. [10, Theorem 1.1] Let f1, . . . , fk be injective contractions on Rn (n ≥ 2) satisfying
the open set condition, and let T be the attractor. Then the boundary ∂T of T is connected
whenever T is.

Remember that a compact set in Rn which coincides with the closure of its interior is said to
tile Rn by Zn if the translates of this set by Zn cover Rn and the interiors of distinct tiles have
no intersection.

Lemma 5.3. [10, Theorem 3.1] Let T be an arcwise connected compact set that tiles Rn by Zn,
then its boundary ∂T is connected.

Proposition 5.4. Let T be a connected p2-tile. Let a, b be the translations of R2 defined by
a(x, y) = (x + 1, y) and b(x, y) = (x, y + 1), c the 180◦-rotation of the plane c(x, y) = (−x,−y).

(i) If T has six neighbors S = {b, b−1, c, a−1c, a−1b−1c, b−1c}, then S consists of edge neigh-
bors.

(ii) If T has seven neighbors S = {b, b−1, c, bc, a−1c, a−1bc, a−1b−1c}, then {b, b−1, c, bc, a−1c}
are edge neighbors.

(iii) If T has eight neighbors S = {b, b−1, c, a−1c, bc, b−1c, a−1bc, a−1b−1c}
( resp. S = {c, bc, ac, a−1bc, b, b−1, ab−1, a−1b}),
then {b, b−1, c, a−1c} (resp. {c, bc, ac, a−1bc}) are edge neighbors.
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Figure 6. Contact graphs G(R) (dark part) and neighborhood graphs G(S)
(dark and dimmed parts).
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Figure 7. Example 3: contact graph G(R) (dark part) and neighborhood graph
G(S) (dark and dimmed parts).

(iv) If T has twelve neighbors S = {c, a−1c, bc, abc, a−1bc, a−1b−1c, a, a−1, b, b−1, ab, a−1b−1},
then {c, bc, a−1c} are edge neighbors.

Proof. Let us consider the case of six neighbors. We will show that the rotation c is an edge
neighbor. Let

T ′ := T ∪ a−1b−1c(T ) .

Then T ′ is an arcwise connected compact set that tiles R2 by Z2, i.e., that T ′ provides a lattice
tiling of R2. We set

S1 =
⋃

q∈Z,r∈{0,1}(ab)qcr(T )

=
⋃

q∈Z
(ab)q(T ′),

Ω1 =
(
⋃

q<q′,r∈{0,1} aqbq′

cr(T )
)

=
(
⋃

q<q′ aqbq′

(T ′)
)

,

Ω2 =
(
⋃

q>q′,r∈{0,1} aqbq′

cr(T )
)

=
(
⋃

q>q′ aqbq′

(T ′)
)

.



24 BENOIT LORIDANT, JUN LUO, AND JÖRG M. THUSWALDNER

The identity R2 = S1 ∪ Ω1 ∪ Ω2 holds, and because of the assumption on the set S, we have
Ω1 ∩ Ω2 = ∅.
The tile T ′ being an arcwise connected compact set, Lemma 5.3 assures that its boundary ∂T ′ is
connected. Let us suppose that ∂T ′ ⊆ Ω1 ∪ Ω2, then we would obtain

∂T ′ = (∂T ′ ∩ Ω1) ∪ (∂T ′ ∩ Ω2),

which is a partition of ∂T ′ into two relative closed sets that have empty intersection, a contradiction
to the connectedness of ∂T ′.
Consequently, ∂T ′ ∩ (S1 \ (Ω1 ∪ Ω2)) 6= ∅, thus there is an s ∈ {ab, a−1b−1} such that

(5.1) (T ′ ∩ s(T ′)) \
⋃

(q,q′) 6=(0,0),±(1,1)

aqbq′

(T ′) 6= ∅,

since ab(T ′) and a−1b−1(T ′) are the only lattice tiles in S1 that are in contact with T ′ (this follows
from the assumption on S).
By the assumption on S, we have

(5.2) T ′ ∩ ab(T ′) = T ∩ c(T ) and T ′ ∩ a−1b−1(T ′) = a−1b−1c(T ) ∩ a−1b−1(T ),

hence, also by this assumption, (T ′ ∩ ab(T ′)) ∩
(
T ′ ∩ a−1b−1(T ′)

)
= ∅.

Thus, if s = ab, we get from (5.1) and (5.2) that

(T ∩ c(T )) \
⋃

γ∈Γ\{1,c}

γ(T ) 6= ∅.

This indicates that c is an edge neighbor.
If s = a−1b−1, we obtain similarly that a−1b−1(T ) and a−1b−1c(T ) are edge neighbors, hence
after translation by ab again that c is an edge neighbor.
The other neighbors of the six-neighbor case as well as the cases of seven, eight and twelve neighbors
can be treated similarly. (Note that the case of translations, say b for instance, does not require
the introduction of a substitution tile T ′: we can choose S1 =

⋃

q∈Z
bq(T ) and use Lemma 5.2 to

obtain that ∂T intersects S1.) �

We are now able to examine the disk-likeness of the tiles presented in Examples 1 to 4 by
checking the three items of Theorem 4.2.
For each example, we will have to compute the graph Gγ for every γ ∈ A. The set of states of Gγ

is

{δ (Bγ′) : if there is an edge γ
δ|δ′

−−→ γ′ in G(A)}.
There is an edge in Gγ between two states δ (Bγ′) and δ′ (Bγ′′) iff

T ∩ γ′′(T ) ∩ δ′−1δ(T ) ∩ δ′−1δγ′(T ) 6= ∅.
This can easily be checked by looking at the sets V2 and V3.
We will also need the subgraph of G2 induced by the states {Bγ , γ ∈ A}. Again, there is an edge
between Bγ and Bγ′ in this graph iff

T ∩ γ(T ) ∩ γ′(T ) 6= ∅,
which can be seen using the sets V2.

Proof of Proposition 5.1.

• Example 1

The first item of Theorem 4.2 is fulfilled as we check in Section 5.2.
From Proposition 5.4, we get

A = {b, b−1, c, a−1c, a−1b−1c, b−1c}.
We obtain the graphs Gγ for γ ∈ A in Figure 8. Each of them consists of a simple path.
So the second item is fulfilled.
The subgraph of G2 induced by the states {Bγ : γ ∈ A} is represented on Figure 9: it is a
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simple loop.
Thus the crystile of Example 1 is disk-like.

• Example 2

The first item of Theorem 4.2 is fulfilled (see Section 5.3).
From Proposition 5.4, we get:

A = {b, b−1, c, a−1c, a−1b−1c, b−1c}.

We obtain the graphs Gγ in Figure 8. Each of them consists of a simple path. So the
second item is fulfilled.
The subgraph of G2 induced by the states {Bγ : γ ∈ A} is represented on Figure 9: it is a
simple loop.
Thus the crystile of Example 2 is disk-like.

• Example 3

We show that the first item of the criterion of Theorem 4.2 is not fulfilled, in particular:

#V2(a
−1bc, b−1) ≥ 2 .

Indeed, the infinite walks

a−1bc
1−→ a−1bc

b−→ a−1bc
b−→ a−1bc

b−→ . . .

b−1 1−→ a−1 b−→ a−1b2c
b−→ a−1 b−→ . . .

labelled by (1 b b b . . .) and

a−1bc
b−→ a−1c

1−→ b2c
a−1c−−−→ b2c

a−1c−−−→ b2c
a−1c−−−→ . . .

b−1 b−→ c
1−→ a

a−1c−−−→ a−1b2c
a−1c−−−→ a

a−1c−−−→ . . .

labelled by (b 1 a−1c a−1c a−1c . . .) are in G(S) (look at Figure 7), this means by
Proposition 3.2 that the points

x = lim
n→∞

g−1(g−1b)n(0, 0) =

(

−2

3
, 1

)

and

y = lim
n→∞

g−1bg−1(g−1a−1c)n(0, 0) =

(

−4

9
,
1

3

)

are two distinct points of V2(a
−1bc, b−1).

Thus the crystile of Example 3 is non disk-like.

• Example 4

The first item of the criterion is fulfilled (see Section 5.5).
From Proposition 5.4 (replace b by b−1) we have

A = {b, b−1, c, a−1c, a−1bc, bc}.

We obtain the graphs Gγ in Figure 8. Each of them consists of a simple path. So the
second item is fulfilled.
The subgraph of G2 induced by the states {Bγ : γ ∈ A} is represented in Figure 9: it is a
simple loop.
Thus the crystile of Example 4 is disk-like. �

Acknowledgements. We thank the referee for his valuable suggestions improving the algo-
rithmical part of this paper!
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γ Gγ

b c(Ba−1b−1c) − c(Ba−1c)
b−1 b(Ba−1b−1c) − Ba−1c

c Bb−1 − Bb−1c − c(Bb)
a−1c c(Bb−1) − b(Bc) − b(Bb)

a−1b−1c b(Ba−1c)
b−1c Ba−1b−1c

Example 1.

γ Gγ

b Ba−1c

b−1 c(Ba−1c)
c b(Bb) − b(Bbc) − b(Bc) − Bbc − c(Bb−1)
bc b(Ba−1c)

a−1c Bb−1 − c(Bbc) − c(Bb)
Example 2.

γ Gγ

b a−1c(Bc)
b−1 Bc

c b(Bbc) − b(Bc) − Bbc

a−1c Bb−1 − a−1c(Ba−1bc) − a−1c(Bb)
a−1bc a−1c(Bbc)

bc a−1c(Bb−1) − Ba−1bc − b(Ba−1c) − b(Ba−1bc) − b(Bb)
Example 4.

Figure 8. Subgraph Gγ of the double neighboring graph G2.
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Figure 9. Restriction of G2 to the set of states {Bγ , γ ∈ A}.
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