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Abstract

We study aperiodic and periodic tilings induced by the Rauzy fractal and its subtiles associated
to beta-substitutions related to the polynomial x3 − ax2 − bx − 1 for a ≥ b ≥ 1. In particular,
we compute the corresponding boundary graphs, describing the adjacencies in the tilings. These
graphs are a valuable tool for more advanced studies of the topological properties of the Rauzy
fractals. As an example, we show that the Rauzy fractals are not homeomorphic to a closed disk
as soon as a ≤ 2b− 4. The methods presented in this paper may be used to obtain similar results
for other classes of substitutions.
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1. Introduction

In 1982 Gérard Rauzy [22] studied the symbolic dynamical system over the alphabet {1, 2, 3}
induced by the substitution

1 7→ 12, 2 7→ 13, 3 7→ 1

and associated to it a set known as Rauzy fractal. It is a compact set equal to the closure of its
interior and it decomposes naturally into three subsets (subtiles). Moreover, the Rauzy fractal
induces two types of tilings: a periodic tiling whose central tile is the Rauzy fractal, and an
aperiodic tiling generated by the three subtiles. In [17, 19, 20], topological properties of the Rauzy
fractal were studied and the Hausdorff dimension of its boundary was computed.

Generalisations of this dynamical system and results concerning the associated fractal sets
can be found in the literature. In [3], the considerations of Rauzy are formulated in a general
way for primitive Pisot substitutions. The interiors of the subtiles associated to a primitive
unimodular Pisot substitution do not overlap provided that the substitution satisfies the so called
strong coincidence condition [3, 14]. Several classes of substitutions were shown to satisfy this
condition. For example, in [5] it was proven that every primitive irreducible Pisot substitution
over an alphabet consisting of two letters satisfies it. It is conjectured that this is true for alphabets
of arbitrary size but a general proof is still outstanding.

Rauzy fractals associated to primitive unimodular Pisot substitutions have been studied in
various articles [8, 10, 12, 13, 16, 21, 24, 26]. They appear naturally in connection to many topics as
numeration systems, geometrical representation of symbolic dynamical systems, multidimensional
continued fractions and simultaneous approximations, self-similar tilings and Markov partitions of
hyperbolic automorphisms of the torus.
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In [14, 18] it was shown that the subtiles induce an aperiodic multiple tiling of the space, called
self-replicating multiple tiling. If the substitution is irreducible, the Rauzy fractals also provide a
periodic (or lattice) multiple tiling (see [3, 12]). Actually, a lattice multiple tiling even exists in
some reducible cases. A necessary and sufficient graph-based condition can be found in [23]. For
large classes of substitutions these multiple tilings are shown to be proper tilings, i.e., two different
tiles have disjoint interiors. Even if there is no known counterexample in the irreducible case, it
is up to now not possible to prove this tiling property in general without requiring additional
conditions like the super coincidence condition or the finiteness property.

The aim of this paper is to study the aperiodic (self-replicating) and periodic (lattice) tilings
induced by the substitutions

σa,b : 1 7→ 1 . . . 1
︸ ︷︷ ︸

a times

2

2 7→ 1 . . . 1
︸ ︷︷ ︸

b times

3

3 7→ 1

over the alphabet {1, 2, 3}, where 1 ≤ b ≤ a. For every such pair (a, b), σa,b is an irreducible
primitive unimodular Pisot substitution. Moreover, it satisfies the super coincidence condition
(see [6, 25]). Therefore, all the tilings are proper tilings.

The class of Rauzy fractals (central tile in the periodic tiling) associated to σa,b was first
studied by Sh. Ito and M. Kimura in [17]. They showed that for a = b = 1, the boundary of the
Rauzy fractal is a Jordan curve and they also computed its Hausdorff dimension. Later, for the
same case, A. Messaoudi [19] constructed a finite state automaton that generates the boundary
of the Rauzy fractal. This helped to prove that this boundary is a quase-circle. In [19], analog
results were obtained for the case a ≥ 1 and b = 1.

In [26], J. Thuswaldner gave an explicit formula for the fractal dimension of the boundary of
the Rauzy fractal in the case a ≥ b ≥ 1. This result was based on the self replicating tiling.

In our work, we will describe the boundary of the tiles by determining their neighbours in
the tilings. The results will be presented as self-replicating and lattice boundary graphs, recently
introduced in the context of Rauzy fractals by Siegel and Thuswaldner in [23]. The boundary
graphs are of great help in the topological study of a Rauzy fractal. Indeed, the topological
behaviour of a fractal tile is mainly determined by the number and configuration of the neighbours
of the tile in the tiling. For a given substitution, the computation of the boundary graphs is
algorithmic, but the treatment of a whole class is usually not possible. We manage to compute
the self-replicating boundary graph for the whole class of substitutions σa,b. Moreover, we compute
the whole lattice boundary graph for a subclass, and conjecture the shape of this graph for the
rest of the class. Also, we obtain a lower bound (depending on a, b) for the number of neighbours
of the Rauzy fractal in the lattice tiling. As a consequence, we deduce that, if a ≤ 2b − 4, then
the Rauzy fractal is not homeomorphic to a topological disk. For restricted values of a, b, we are
even able to compute the whole lattice boundary graph. Although our analysis is restricted to
the class of substitutions σa,b, we are convinced that our considerations can be extended to other
classes of substitutions.

The paper is organised as follows. In Section 2, we present the substitution class and define
the Rauzy fractal, the different types of tilings and the boundary graphs. Interestingly, the
characterization of these graphs involves a combination of algebraic properties and graph-based
topological studies. In Section 3 we state the main theorems of this paper and give some examples.
Section 4 contains some preparations for the proofs of the main results in Sections 5 and 6. In
Section 7, we present some ideas to solve our conjecture concerning the lattice boundary graphs
of our substitution class.

2. The class of substitutions σa,b

2.1. Notations and Definitions

Let A := {1, 2, 3} be the alphabet. We denote by A∗ the set of finite words over A, including
the empty word ε. For a word w ∈ A∗ we write |w| for its length and the number of occurrences
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of a letter i in w is denoted by |w|i. This allows us to define the abelianisation mapping

l : A∗ → N3

w 7→ (|w|i)i∈A.

For 1 ≤ b ≤ a, we call σ = σa,b : A
∗ → A∗ the mapping

σ : 1 7→ 1 . . . 1
︸ ︷︷ ︸

a times

2

2 7→ 1 . . . 1
︸ ︷︷ ︸

b times

3

3 7→ 1,

extended to A∗ by concatenation. The incidence matrix M of the substitution σ is the 3 × 3
matrix obtained by abelianisation :

l(σ(w)) = Ml(w)

for all w ∈ A∗. Thus we have

M =





a b 1
1 0 0
0 1 0



 .

M is a primitive matrix, i.e., Mk has only strictly positive entries for some power k ∈ N; we
denote by β the corresponding dominant Perron-Frobenius eigenvalue, satisfying β3 = aβ2+bβ+1.
The substitution σ has the following properties. It is

• primitive: the incidence matrix M is a primitive matrix;.

• unimodular: β is an algebraic unit;

• irreducible: the algebraic degree of β is exactly |A| = 3;

• Pisot: the Galois conjugates α1, α2 of β have modulus strictly smaller than 1.

Observe that the substitutions σa,b are so-called beta-substitutions, that is, the induced dynamical
system is intimately related to beta-expansions. Details can be found, for example, in [8].

2.2. Associated Rauzy fractals

There are several equivalent ways of constructing the Rauzy fractal. For an overview of the
different methods we refer to [7]. Here we will use the way via the so-called prefix-suffix graph
presented in [12].

Let uβ be a strictly positive right eigenvector and vβ a strictly positive left eigenvector of M
that correspond to the dominant eigenvalue β such that 〈uβ ,vβ〉 = 1. We set

vβ =(v1, v2, v3) = (1, β − a, β2 − aβ − b) = (1, β−2 + bβ−1, β−1),

uβ =
1

3β2 − 2aβ − b
(β2, β, 1).

Note that
1 = v1 > v2 > v3 > 0. (2.1)

Moreover, let uαi
be the eigenvectors for the Galois conjugates obtained by replacing β by αi in

the coordinates of the vector uβ . We obtain the decomposition

R3 = He ⊕Hc,

where
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• He is the expanding line, generated by uβ .

• Hc is the contracting space, generated by uα1
+ uα2

and −α2uα1
− α1uα2

.

We denote by π : R3 → Hc the projection onto Hc along He and by h the restriction of M on the
contractive space Hc. Note that if we define the norm

||x|| = max {|〈x,vα1
〉|, |〈x,vα2

〉|} ,

then h is a contraction with ‖hx‖ ≤ max{|α1|, |α2|} ‖x‖ < ‖x‖ for all x ∈ Hc.
Furthermore, we have

∀w ∈ A∗, h(π(l(w))) = π(Ml(w)) = π(l(σ(w))). (2.2)

The prefix-suffix graph Γσ is defined as follows (see also [11]). Let P be the finite set

P = {(p, i, s) ∈ A∗ ×A×A∗| ∃ j ∈ A, σ(j) = pis}.

Then Γσ is the directed graph with

• vertices : the letters of the alphabet A;

• edges : i
(p,i,s)
−−−−→ j if and only if σ(j) = pis, where (p, i, s) ∈ P .

The prefix-suffix graph Γσa,b
of σa,b is

1 2 3

(ε,1,1b−13),...,(1b−1,1,3)

(ε,1,ε)

(1b,3,ε)

(1a,2,ε)
(ε,1,1a−12),...,(1a−1,1,2) . (2.3)

Here, for a letter i ∈ A, ik stands for i . . . i
︸ ︷︷ ︸

k times

.

The Rauzy fractal and its subtiles are geometric representations of the infinite walks in the
prefix-suffix graph [12]:

T =







∑

k≥0

hkπ(l(pk))

∣
∣
∣
∣
∣

j0
(p0,j0,s0)
−−−−−−→ j1

(p1,j1,s1)
−−−−−−→ j2

(p2,j2,s2)
−−−−−−→ . . .

is an infinite path of Γσ







and for j ∈ A

T (j) =







∑

k≥0

hkπ(l(pk))

∣
∣
∣
∣
∣

j0 = j
(p0,j0,s0)
−−−−−−→ j1

(p1,j1,s1)
−−−−−−→ j2

(p2,j2,s2)
−−−−−−→ . . .

is an infinite path of Γσ






. (2.4)

Since σ is a primitive unimodular Pisot substitution satisfying the strong coincidence condition,
the subtiles have disjoint interiors (e.g., see [8]). Moreover, by [24] each subtile is the closure of
its interior, as it is the solution of a graph-based iterated function system.

Due to the connection with beta-expansions, the Rauzy fractals for our class coincide with
beta-tiles treated, for example, in [1, 9].

2.3. Tilings

For a substitution σa,b of our class, the Rauzy fractal gives rise to two types of tilings of the
contracting space Hc: an aperiodic tiling and a periodic tiling, obtained as follows.

The self-replicating translation set is

Γsrs :=
{
[π(x), i] ∈ π(Z3)×A | 0 ≤ 〈x,vβ〉 < vi

}
. (2.5)
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Figure 1: Clippings around the origin of the self-replicating tiling (left) and the lattice tiling (right)
associated to the substititution σ1,1.

Then {T (i) + γ| [γ, i] ∈ Γsrs} is the self-replicating tiling of the contracting space (see [18]).
The lattice translation set is

Γlat =
{
[π(x), i] ∈ π(Z3)×A |x = (x1, x2, x3), x1 + x2 + x3 = 0

}
.

Then {T (i) + γ| [γ, i] ∈ Γlat} is the lattice tiling of the contracting space (see [3, 12]) .
By [2] the tilings have the following properties:

• covering property: Hc =
⋃

[γ,i]∈Γsrs
T (i) + γ =

⋃

[γ,i]∈Γlat
T (i) + γ;

• tiling property: the interiors of two tiles T (i) + γ, T (j) + γ′ with [γ, i] 6= [γ′, j] ∈ Γsrs or
[γ, i] 6= [γ′, j] ∈ Γlat are disjoint;

• local finiteness: for each compact subsetB ofHc, the subsets {[γ, i] ∈ Γsrs| (T (i)+γ)∩B 6= ∅}
and {[γ, i] ∈ Γlat| (T (i) + γ) ∩B 6= ∅} are finite.

Figure 1 shows the self-replicating tiling (left) and the lattice tiling (right) for the Tribonacci
substitution σ1,1. The lattice tiling and topological properties of T have been already studied in
[19, 20].

2.4. Boundary graphs

Graphs that describe the intersection of two tiles in the above tilings were introduced by Siegel
and Thuswaldner [23]. The aim of this paper is the computation of these graphs for the whole
class σa,b introduced in Subsection 2.1. We recall briefly their definitions in terms of our class
σa,b.

We call neighbours two subtiles of the self-replicating (or lattice) tiling if their intersection
is non-empty. The intersection T (i) ∩ (T (j) + γ) will be described by the vertex [i, γ, j] in the
boundary graph. Since [j,−γ, i] would correspond to the same intersection translated by −γ, we
impose the vertices to belong to

D =
{
[i, γ, j] ∈ A× π

(
Z3

)
×A | γ = π(x), (〈x,vβ〉 > 0) or (γ = 0 and i < j)

}
.

Definition 2.1 (cf. [23]). The self-replicating boundary graph G
(B)
srs (lattice boundary graph G

(B)
lat ,

respectively) is the largest graph with the following properties.

1. The vertices [i, γ, j] are elements of D such that

‖γ‖ ≤
2max(p,j,s)∈Pσ

‖πl(p)‖

1−max{|α1|, |α2|}
. (2.6)
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2. There is an edge from [i, γ, j] to [i′, γ′, j′] if and only if there exist [i, γ, j] ∈ A × π(Z3)×A
and (p1, a1, s1), (p2, a2, s2) ∈ P such that







[i′, γ′, j′] = [i, γ, j] (Type 1) or [i′, γ′, j′] = [j,−γ, i] (Type 2),
a1 = i and p1a1s1 = σ(i),
a2 = j and p2a2s2 = σ(j),
hγ = γ + π(l(p2)− l(p1)).

The edge is labelled by

η =

{
πl(p1), if 〈l(p1),vβ〉 ≤ 〈l(p2) + x,vβ〉,
πl(p2) + γ, otherwise,

where x ∈ Z3 such that π(x) = γ.

3. Each vertex belongs to an infinite walk starting from a vertex [i, γ, j] with [γ, j] ∈ Γsrs

([γ, j] ∈ Γlat \ ({0} × A), respectively).

There exist algorithms to compute G
(B)
srs and G

(B)
lat for any given substitution (see [23]). These

algorithms mainly consist in enumerating nodes satisfying Condition 1. and pruning them ac-
cording to Conditions 2. and 3. However, the bound (2.6) in Definition 2.1 is inconvenient when

working with a whole class like σa,b. We will formulate an equivalent definition for G
(B)
srs in Section 4

without this bound (see Theorem 4.1).
The following three propositions contain information on the structure and the use of the bound-

ary graphs. The proofs can be found in [23].

Proposition 2.2 (cf. [23, Proposition 5.5]). The self-replicating boundary graph G
(B)
srs and the

lattice boundary graph G
(B)
lat are well defined and finite.

Proposition 2.3 (cf. [23, Theorem 5.7]). Let [i, γ, j] be a vertex in the self-replicating boundary

graph G
(B)
srs . Then [γ, j] ∈ Γsrs.

Unfortunately, an analogue assertion for the lattice boundary graph does not hold. For this
reason, our results concerning the lattice boundary graph will be weaker than for the self-replicating
boundary graph.

Proposition 2.4 (cf. [23, Corollary 5.9]). Let [i, γ, j] ∈ D. A point ξ ∈ Hc belongs to the

intersection T (i) ∩ (T (j) + γ) with [γ, j] ∈ Γsrs if and only if there exists an infinite walk in G
(B)
srs

starting from [i, γ, j] and labelled by (η(k))≥0 such that

ξ =
∑

k≥0

hkη(k).

3. Main theorems

The main results of this paper consist in a description of the boundary graphs associated to
the substitutions of the class defined in Subsection 2.1. For convenience, we set

m(a, b) := max

{

1,

⌊
a

a− b+ 2

⌋}

.

Note that m(a, b) = 1 if and only if a ≥ 2b− 3.
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Sa,b(1) Sa.b(2)
S ′
a,b(1)

Sa,b(3)
S ′
a,b(2)

· · ·
S ′
a,b(3)

Sa.b(m)
S ′
a,b(m− 1)

Figure 2: The subgraphs Sa,b(t) (t = 1 · · ·m = m(a, b)) of the self-replicating boundary graph are
linked by the edges of S ′

a,b(t) (t = 1 · · ·m− 1).

3.1. The self-replicating boundary graph

Let 1 ≤ b ≤ a. For 1 ≤ t ≤ m(a, b), we call Sa,b(t) the graph whose nodes and edges are given
in Adjacency Table 1 (t = 1) and Adjacency Table 2 (t ≥ 2). For 1 ≤ t ≤ m(a, b)− 1, we denote
by S ′

a,b(t) the graph described by Adjacency Table 3. Finally, let S(a, b) denote the union of these
graphs:

S(a, b) =

m(a,b)
⋃

t=1

Sa,b(t) ∪

m(a,b)−1
⋃

t=1

S ′
a,b(t).

Remark 3.1. This subdivision of S(a, b) into several subgraphs has technical reasons that will
become apparent in the proof. As can be seen in the Adjacency Tables, the subgraphs Sa,b(t) for
the different values of t have very similar structures. Schematically, S(a, b) has the shape depicted
in Figure 2. It turns out that the size of S(a, b) associated with σa,b grows with the number
m(a, b). Mainly, if m(a, b) ≤ m(a′, b′), then the graph associated with σa,b is a subgraph of the
graph associated with σa′,b′ . In particular, Sa,b(1) is common to all the self-replicating boundary
graphs of our class. Properly speaking, only the vertices of the graph are entirely determined by
m = m(a, b). This almost holds for the edges too: the exceptions are listed in the arrow Condition
of the adjacency tables. The labels and the number of edges strongly depend on the specific values
of a and b.

Theorem 3.2. The self-replicating boundary graph G
(B)
srs related to the substitution σa,b is equal

to the graph S(a, b). Its nodes and edges can be read off from Adjacency Tables 1, 2 and 3.

Proof. The complete proof can be found in Section 5. We give here a short overview of the strategy.
First we will give an alternative definition of the self-replicating boundary graph in Theorem 4.1.

In this way, we will be able to prove that S(a, b) is a subgraph of G
(B)
srs . This part of the proof,

relying on Lemma 5.1, is purely algebraic. The proof of the reverse inclusion mixes algebraic and
algorithmic methods (Lemmata 4.2, 4.5 and 5.2). In Lemma 5.2, we will show that the vertices of

the strongly connected components of G
(B)
srs are included in S(a, b). With this result we will obtain

that, in fact, all vertices of G
(B)
srs are included in S(a, b) and, finally, that G

(B)
srs is a subgraph of

S(a, b).

3.2. The lattice boundary graph

As already mentioned, we are not able to characterise G
(B)
lat completely for all possible values

of a and b. We give a complete description of the lattice boundary graph for the case m(a, b) = 1

and conjecture the shape of G
(B)
lat for the other cases. Let 1 ≤ b ≤ a. For 1 ≤ t ≤ m(a, b), we call

La,b(t) the graph whose nodes and edges are given in Adjacency Table 4 (t = 1) and Adjacency
Table 5 (t ≥ 2). For 1 ≤ t ≤ m(a, b)− 1, we denote by L′

a,b(t) the graph described by Adjacency
Tables 6 and 7. Note that in these tables the vertices that correspond to elements of the lattice
translation set Γlat are highlighted in grey. We denote by L(a, b) the union of all these graphs:

L(a, b) =

m(a,b)
⋃

t=1

La,b(t) ∪

m(a,b)−1
⋃

t=1

L′
a,b(t).
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Vertex Edge(s)
# Name Condition to Label(s) Type Condition

A1 [1, π(0, 0, 1), 1]

C1 {π(e, 0, 0)| 0 ≤ e ≤ a − b} 1
D1 {π(0, 0, 0)} 1
O1 {π(0, 0, 0)} 1
N1 {π(e, 0, 0)| 0 ≤ e ≤ a − b − 1} 1 a 6= b

B1 [1, π(0, 0, 1), 2]
N1 {π(a − b, 0, 0)} 1
C1 {π(a − b + 1, 0, 0)} 1 b 6= 1

C1 [1, π(0, 1,−1), 1]
P1 {π(e, 0, 0)| 0 ≤ e ≤ b − 1} 1
H1 {π(e, 0, 0)| 0 ≤ e ≤ b − 2} 1 b ≥ 2
I1 {π(e, 0, 0)| 0 ≤ e ≤ b − 2} 1 b ≥ 2

D1 [1, π(0, 1,−1), 2]
H1 {π(b − 1, 0, 0)} 1
I1 {π(b − 1, 0, 0)} 1 b ≥ 2

E1 [2, π(1, 0,−1), 1]
C1 {π(a − b + 1, 0,−1)} 2
N1 {π(a − b, 0,−1)} 2 a 6= b

F1 [3, π(1, 0,−1), 1]
D1 {π(1, 0,−1)} 2
O1 {π(1, 0,−1)} 2

G1 [1, π(1, 0,−1), 1]
a 6= b or C1 {π(e, 0,−1)| 1 ≤ e ≤ a − b} 2 a 6= b
a ≥ 4 N1 {π(e, 0,−1)| 1 ≤ e ≤ a − b − 1} 2 a ≥ b + 2

H1 [2, π(1,−1, 1), 1]
P1 {π(b,−1, 1)} 2
H1 {π(b − 1,−1, 1)} 2 b ≥ 2
I1 {π(b − 1,−1, 1)} 2 b ≥ 2

I1 [1, π(1,−1, 1), 1] b ≥ 2
P1 {π(e,−1, 1)| 1 ≤ e ≤ b − 1} 2 b ≥ 2
H1 {π(e,−1, 1)| 1 ≤ e ≤ b − 2} 2 b ≥ 3
I1 {π(e,−1, 1)| 1 ≤ e ≤ b − 2} 2 b ≥ 3

J1 [1, π(0, 0, 0), 2] A1 {π(a − 1, 0, 0)} 1

K1 [1, π(0, 0, 0), 3]
B! {π(b − 1, 0, 0)} 1
J1 {π(b, 0, 0)} 1 a 6= b
M1 {π(b − 1, 0, 0)} 1 b = 1

L1 [2, π(0, 0, 0), 3] a = b J1 {π(a, 0, 0)} 1 a = b

M1 [2, π(0, 0, 1), 2] b = 1 C1 {π(a, 0, 0)} 1 b = 1

N1 [1, π(0, 1, 0), 1]
E1 {π(0, 0, 0)} 1
F1 {π(0, 0, 0)} 1
G1 {π(0, 0, 0)} 1 a 6= b

O1 [3, π(0, 1,−1), 2] P1 {π(b, 0, 0)} 1

P1 [2, π(1,−1, 0), 1]
E1 {π(1,−1, 0)} 2
F1 {π(1,−1, 0)} 2
G1 {π(1,−1, 0)} 2 a 6= b or a ≥ 4

Adjacency Table 1: The subgraph Sa,b(1) of the self-replicating boundary graph.

Remark 3.3. The graph L(a, b) has a similar structure as the graph S(a, b), with subgraphs
La,b(t) and edges between them described by L′

a,b(t) (see Remark 3.1).

Theorem 3.4. For all a, b, the graph L(a, b) is a subgraph of the lattice boundary graph G
(B)
lat

related to σa,b.

We will prove the theorem at the beginning of Section 6. For m(a, b) = 1, we will also prove
the reverse inclusion, as stated below.

Theorem 3.5. Let a ≥ 2b − 3. Then the lattice boundary graph G
(B)
lat related to the substitution

σa,b equals L(a, b).

The proof can be found in Section 6. Unfortunately, we cannot use the same strategy as for
Theorem 3.2, although the lattice boundary graph and the self-replicating boundary graph have
very similar definitions. The main problem is that an equivalent of Proposition 2.3 does not hold
for the lattice boundary graph.

Proof. The proof is mainly topological and will run as follows. We make use of the results con-
cerning the self-replicating boundary graph in order to construct a tube around the Rauzy fractal
(central tile). We will show that six Γlat-translates of the Rauzy fractal are sufficient to cover all
this tube and deduce from topological arguments that no other Γlat-translate can intersect the
central tile.

The following conjecture remains.

Conjecture 3.6. L(a, b) coincides with the lattice boundary graph G
(B)
lat related to the substitution

σa,b for all a ≥ b ≥ 1.
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Vertex Edge(s)
# Name Condition to Label(s) Type Condition

At [1, π(t − 1, 1 − t, t), 1]
Ct {π(e, 0, 0)| 0 ≤ e ≤ δt − 2} 1
Dt {π(e, 0, 0)| 0 ≤ e ≤ δt + b − a − 2} 1

Bt [1, π(t − 1, 1 − t, t), 2] Ct {π(δt − 1, 0, 0)} 1

Ct [1, π(1 − t, t,−t), 1]
Ht {π(e, 0, 0)| 0 ≤ e ≤ a − δt} 1
It {π(e, 0, 0)| 0 ≤ e ≤ a − δt} 1 a ≥ δt + 1

Dt [1, π(1 − t, t,−t), 2]
Ht {π(a − δt + 1, 0, 0)} 1
It {π(a − δt + 1, 0, 0)} 1 a ≥ δt + 1

Et [2, π(2 − t, t − 1,−t), 1] Ct {π(δt − t, t − 1,−t)} 2
Ft [3, π(2 − t, t − 1,−t), 1] Dt {π(δt − a + b − t, t − 1,−t)} 2

Gt [1, π(2 − t, t − 1,−t), 1]
Ct {π(e+ 2 − t, t − 1,−t)| 0 ≤ e ≤ δt − 3} 2
Dt {π(e + 2 − t, t − 1,−t)| 0 ≤ e ≤ δt−1 − 1} 2

Ht [2, π(t,−t, t), 1]
Ht {π(a − δt + t,−t, t)} 2
It {π(a − δt + t,−t, t)} 2 a ≥ δt + 1

It [1, π(t,−t, t), 1] a ≥ δt + 1
Ht {π(e+ t,−t, t)| 0 ≤ e ≤ a − δt − 1} 2 a ≥ δt + 1
It {π(e+ t,−t, t)| 0 ≤ e ≤ a − δt − 1} 2 a ≥ δt + 1

Qt [3, π(t − 1, 1 − t, t − 1), 1] Bt {π(a − δt + t, 1 − t, t − 1)} 2

Adjacency Table 2: The subgraph Sa,b(t) of the self-replicating boundary graph, where 2 ≤ t ≤
m(a, b) (δt = t(a− b+ 2)).

Edges
from to Label(s) Type

At

Et+1 {π(e, 0, 0)| 0 ≤ e ≤ δt − 1} 1
Ft+1 {π(0, 0, 0)} 1
Gt+1 {π(e, 0, 0)| 0 ≤ e ≤ δt − 1} 1

Bt
Et+1 {π(δt, 0, 0)} 1
Gt+1 {π(δt, 0, 0)} 1

Ct

At+1 {π(e, 0, 0)| 0 ≤ e ≤ a − δt − 1} 1
Bt+1 {π(e, 0, 0)| 0 ≤ e ≤ b − δt − 1} 1
Qt+1 {π(0, 0, 0)} 1

Dt At+1 {π(a − δt, 0, 0)} 1

Et
Et+1 {π(δt + 1 − t, t − 1,−t)} 2
Gt+1 {π(δt + 1 − t, t − 1,−t)} 2

Gt

Et+1 {π(e+ 2 − t, t − 1,−t)| 0 ≤ e ≤ δt − 2} 2
Ft+1 {π(2 − t, t − 1,−t)} 2
Gt+1 {π(e+ 2 − t, t − 1,−t)| 0 ≤ e ≤ δt − 2} 2

Ht At+1 {π(a − δt − 1 + t,−t, t)} 2

It

At+1 {π(e+ t,−t, t)| 0 ≤ e ≤ a − δt − 2} 2
Bt+1 {π(e + t,−t, t)| 0 ≤ e ≤ b − δt − 2} 2
Qt+1 {π(t,−t, t)} 2

Adjacency Table 3: The subgraph S ′
a,b(t) of the self-replicating boundary graph, where 1 ≤ t ≤

m(a, b)− 1 (δt = t(a− b+ 2)).
,

Theorem 3.4 shows that for a ≤ 2b− 4, i.e., m(a, b) ≥ 2, each tile in the lattice tiling has 10 or
more neighbours. Using a classical result concerning lattice tilings (see, for example, [4, Lemma
5.1] or [15]), we conclude that the Rauzy fractals in these cases are not disk-like.

Theorem 3.7. If a ≤ 2b − 4 then the Rauzy fractal T induced by the substitution σa,b is not
homeomorphic to a topological disk.

3.3. Examples

Example 3.8. Let a = 3 and b = 2. Then m(3, 2) = 1. The self-replicating boundary graph G
(B)
srs

of σ3,2 consists of 14 vertices. The graph is shown in (3.1). Edges of Type 1 are drawn solid while
those of Type 2 are dashed. The labels can be obtained from Adjacency Table 1. The lattice

boundary graph G
(B)
lat has a similar shape. Indeed, it can be obtained from (3.1) by removing the

dark grey vertices (and the associated edges). The vertices that correspond to elements of Γlat

are the light grey ones. Figure 3 shows the Rauzy fractal and its neighbours in the self-replicating
tiling (left) and the lattice tiling (right). T (1) is the biggest subtile, followed by T (2) and T (3).
The numbers inside show the corresponding translation. The boundaries between subtiles with
respect to the same translation are grey.
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Vertex Edge(s)
# Name Condition to Label(s) Type Condition

C1

P1 {π(e, 0, 0)| 0 ≤ e ≤ b − 1} 1
H1 {π(e, 0, 0)| 0 ≤ e ≤ b − 2} 1 b ≥ 2[1, π(0, 1,−1), 1]
I1 {π(e, 0, 0)| 0 ≤ e ≤ b − 2} 1 b ≥ 2

D1
H1 {π(b − 1, 0, 0)} 1

[1, π(0, 1,−1), 2]
I1 {π(b − 1, 0, 0)} 1 b ≥ 2

E1
C1 {π(a − b + 1, 0,−1)} 2

[2, π(1, 0,−1), 1]
N1 {π(a − b, 0,−1)} 2 a 6= b

F1
D1 {π(1, 0,−1)} 2

[3, π(1, 0,−1), 1]
O1 {π(1, 0,−1)} 2

G1
a 6= b or C1 {π(e, 0,−1)| 1 ≤ e ≤ a − b} 2 a 6= b

[1, π(1, 0,−1), 1]
a ≥ 4 N1 {π(e, 0,−1)| 1 ≤ e ≤ a − b − 1} 2 a ≥ b + 2

H1 [2, π(1,−1, 1), 1]
P1 {π(b,−1, 1)} 2
H1 {π(b − 1,−1, 1)} 2 b ≥ 2
I1 {π(b − 1,−1, 1)} 2 b ≥ 2

I1 [1, π(1,−1, 1), 1] b ≥ 2
P1 {π(e,−1, 1)| 1 ≤ e ≤ b − 1} 2 b ≥ 2
H1 {π(e,−1, 1)| 1 ≤ e ≤ b − 2} 2 b ≥ 3
I1 {π(e,−1, 1)| 1 ≤ e ≤ b − 2} 2 b ≥ 3

N1 [1, π(0, 1, 0), 1]
E1 {π(0, 0, 0)} 1
F1 {π(0, 0, 0)} 1
G1 {π(0, 0, 0)} 1 a 6= b

O1 [3, π(0, 1,−1), 2] P1 {π(b, 0, 0)} 1

P1

E1 {π(1,−1, 0)} 2
F1 {π(1,−1, 0)} 2[2, π(1,−1, 0), 1]
G1 {π(1,−1, 0)} 2 a 6= b or a ≥ 4

Adjacency Table 4: The subgraph La,b(1) of the lattice boundary graph. The vertices highlighted
in grey correspond to elements of the lattice translation set Γlat.

[1,π(0,1,0),1]

[1,π(1,0,−1),1] [1,π(0,0,0),2]

[2,π(1,−1,0),1] [2,π(1,0,−1),1] [1,π(0,0,0),3]

[3,π(1,0,−1),1]

[3,π(0,1,−1),2]

[1,π(1,−1,1),1] [1,π(0,1,−1),1] [1,π(0,0,1),2]

[2,π(1,−1,1),1] [1,π(0,1,−1),2] [1,π(0,0,1),1] (3.1)

ΠH0,0,0L

ΠH0,0,1L

ΠH0,1,0L

ΠH0,1,-1L
ΠH1,0,-1L

ΠH1,-1,0L

ΠH1,-1,1L

ΠH0,0,0L

ΠH-1,0,1L

ΠH-1,1,0L

ΠH0,1,-1L
ΠH1,0,-1L

ΠH1,-1,0L

ΠH0,-1,1L

Figure 3: The neighbours of the Rauzy fractal in the self-replicated (left) and the lattice (right)
tiling for σ3,2.

Example 3.9. From Adjacency Table 1 we see that the case b = 1 has a special behaviour.
Indeed, vertex [1, π(1,−1, 1), 1] does not appear but a vertex [2, π(0, 0, 1), 2] exists. Analogously
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Vertex Edge(s)
# Name Condition to Label(s) Type Condition

At [1, π(t − 1, 1 − t, t), 1]
Ct {π(e, 0, 0)| 0 ≤ e ≤ δt − 2} 1
Dt {π(e, 0, 0)| 0 ≤ e ≤ δt + b − a − 2} 1

Bt [1, π(t − 1, 1 − t, t), 2] Ct {π(δt − 1, 0, 0)} 1

Ct [1, π(1 − t, t,−t), 1]
Ht {π(e, 0, 0)| 0 ≤ e ≤ a − δt} 1
It {π(e, 0, 0)| 0 ≤ e ≤ a − δt} 1 a ≥ δt + 1

Dt [1, π(1 − t, t,−t), 2]
Ht {π(a − δt + 1, 0, 0)} 1
It {π(a − δt + 1, 0, 0)} 1 a ≥ δt + 1

Et [2, π(2 − t, t − 1,−t), 1] Ct {π(δt − t, t − 1,−t)} 2
E′

t [2, π(1, t − 1,−t), 1] Ct {π(δt − t, t − 1,−t)} 2
Ft [3, π(2 − t, t − 1,−t), 1] Dt {π(δt − a + b − t, t − 1,−t)} 2
F ′

t [3, π(1, t − 1,−t), 1] Dt {π(δt−1 − t + 2, t − 1,−t)} 2

Gt [1, π(2 − t, t − 1,−t), 1]
Ct {π(e + 2 − t, t − 1,−t)| 0 ≤ e ≤ δt − 3} 2
Dt {π(e+ 2 − t, t − 1,−t)| 0 ≤ e ≤ δt−1 − 1} 2

G′

t

Ct {π(e + 1, t − 1,−t)| 0 ≤ e ≤ δt − t − 2} 2
[1, π(1, t − 1,−t), 1]

Dt {π(e + 1, t − 1,−t)| 0 ≤ e ≤ δt−1 − t} 2

Ht [2, π(t,−t, t), 1]
Ht {π(a − δt + t,−t, t) 2
It {π(a − δt + t,−t, t)} 2 a ≥ δt + 1

H′

t

Ht {π(a − δt + t, 0, 0)} 1
[1, π(0, t,−t), 2]

It {π(a − δt + t, 0, 0)} 1 a ≥ δt + 1

It [1, π(t,−t, t), 1] a ≥ δt + 1
Ht {π(e + t,−t, t)| 0 ≤ e ≤ a − δt − 1} 2 a ≥ δt + 1
It {π(e + t,−t, t)| 0 ≤ e ≤ a − δt − 1} 2 a ≥ δt + 1

I′

t

Ht {π(e, 0, 0)| 0 ≤ e ≤ a − 1 − δt + t} 1
[1, π(0, t,−t), 1]

It {π(e, 0, 0)| 0 ≤ e ≤ a − 1 − δt + t} 1
Qt [3, π(t − 1, 1 − t, t − 1), 1] Bt {π(a − δt + t, 1 − t, t − 1)} 2
Q′

t [1, π(0, t − 1, 1 − t), 3] Bt {π(b − 2 − δt−1 + t, 0, 0)} 1

Adjacency Table 5: The subgraph La,b(t) of the lattice boundary graph, where 2 ≤ t ≤ m(a, b)
(δt = t(a− b+2)). The vertices highlighted in grey correspond to elements of the lattice
translation set Γlat.

Edges
from to Label(s) Type

C1

A2 {π(e, 0, 0)| 0 ≤ e ≤ b − 3} 1
B2 {π(e, 0, 0)| 0 ≤ e ≤ 2b − a − 3} 1
Q2 {π(0, 0, 0)} 1

D1 A2 {π(b − 2, 0, 0)} 1

E1
E2 {π(a − b + 2, 0,−1)} 2
G2 {π(a − b + 2, 0,−1)} 2

G1

E2 {π(e+ 1, 0,−1)| 0 ≤ e ≤ a − b} 2
F2 {π(1, 0,−1)} 2
G2 {π(e+ 1, 0,−1)| 0 ≤ e ≤ a − b} 2

H1 A2 {π(b − 2,−1, 1)} 2

I1

A2 {π(e+ 1,−1, 1)| 0 ≤ e ≤ a − 4} 2
B2 {π(e + 1,−1, 1)| 0 ≤ e ≤ 2b − a − 4} 2
Q2 {π(1,−1, 1)} 2

Adjacency Table 6: The subgraph L′
a,b(1) of the lattice boundary graph.

to the previous example, (3.2) shows G
(B)
srs for σ3,1. When we compare the self-replicating tiling

induced by σ3,1 (Figure 4, left) with the self-replicating tiling induced by σ3,2 (Figure 3, left) we
see what this change of vertices means for the tiling. Indeed, the π(1,−1, 1)-translate of T (1) is
no longer neighbour of of T (1) but the π(0, 0, 1)-translate of T (2) is adjacent to T (2). The lattice
tiling is shown on the right in Figure 4. The Rauzy fractal has 6 neighbours.

[1,π(0,1,0),1]

[2,π(1,0,−1),1] [1,π(0,0,0),2]

[2,π(1,−1,0),1] [3,π(1,0,−1),1] [1,π(0,0,0),3]

[1,π(1,0,−1),1]

[1,π(0,1,−1),1] [1,π(0,0,1),2]

[3,π(0,1,−1),2] [2,π(0,0,1),2]

[2,π(1,−1,1),1] [1,π(0,1,−1),2] [1,π(0,0,1),1] (3.2)
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Edges
from to Label(s) Type

At

Et+1 {π(e, 0, 0)| 0 ≤ e ≤ δt − 1} 1
Ft+1 {π(0, 0, 0)} 1
Gt+1 {π(e, 0, 0)| 0 ≤ e ≤ δt − 1} 1

Bt
Et+1 {π(δt, 0, 0)} 1
Gt+1 {π(δt, 0, 0)} 1

Ct

At+1 {π(e, 0, 0)| 0 ≤ e ≤ a − δt − 1} 1
Bt+1 {π(e, 0, 0)| 0 ≤ e ≤ b − δt − 1} 1
Qt+1 {π(0, 0, 0)} 1

Dt At+1 {π(a − δt, 0, 0)} 1

Et
Et+1 {π(δt + 1 − t, t − 1,−t)} 2
Gt+1 {π(δt + 1 − t, t − 1,−t)} 2

E′

t

Et+1 {π(δt − t + 1, t − 1,−t)} 2
Gt+1 {π(δt − t + 1, t − 1,−t)} 2

Gt

Et+1 {π(e+ 2 − t, t − 1,−t)| 0 ≤ e ≤ δt − 2} 2
Ft+1 {π(2 − t, t − 1,−t)} 2
Gt+1 {π(e+ 2 − t, t − 1,−t)| 0 ≤ e ≤ δt − 2} 2

G′

t

Et+1 {π(e+ 1, t − 1,−t)| 0 ≤ e ≤ δt − t − 1} 2
Ft+1 {π(1, t − 1,−t)} 2
Gt+1 {π(e+ 1, t − 1,−t)| 0 ≤ e ≤ δt − t − 1} 2

Ht At+1 {π(a − δt − 1 + t,−t, t)} 2
H′

t At+1 {π(a − 1 − δt + t, 0, 0)} 1

It

At+1 {π(e+ t,−t, t)| 0 ≤ e ≤ a − δt − 2} 2
Bt+1 {π(e + t,−t, t)| 0 ≤ e ≤ b − δt − 2} 2
Qt+1 {π(t,−t, t)} 2

I′

t

At+1 {π(e, 0, 0)| 0 ≤ e ≤ a − 2 − δt + t} 1
Bt+1 {π(e, 0, 0)| 0 ≤ e ≤ b − 2 − δt + t} 1
Qt+1 {π(0, 0, 0)} 1

Adjacency Table 7: The subgraph L′
a,b(t) of the lattice boundary graph for 2 ≤ t ≤ m(a, b) − 1

(δt = t(a− b+ 2)).

Example 3.10. The case a = b also has a special behaviour. Here a vertex [2, π(0, 0, 0), 3] shows
up. For the Rauzy fractal this means that the subtiles T (2) and T (3) have common points. An
example can be found in [23], where the substitution σ4,4 is extensively studied (see [23, Figure 5.7]

for G
(B)
srs and [23, Figure 3.2] for the tilings). We have m(4, 4) = 2 and, hence, the self-replicating

boundary graph has 24 vertices.
By Theorem 3.4, the lattice boundary graph for this example has at least 24 vertices and the

Rauzy fractal has 10 neighbours in the lattice tiling. Thus, it is not homeomorphic to a disk. The
actual graph can be found in [23, Figure 5.3]. We see that in this case Conjecture 3.6 holds.

4. Some preparations

We collect here several theorems and lemmata needed for the proof of the main results of the
paper. The methods in this section are purely algebraic and similar results may be derived for
other types of substitutions.

As already mentioned at the end of Section 2, we first give an alternative definition of the self-
replicating boundary graph. Actually, the following theorem applies to each primitive unimodular
Pisot substitution. Note that the first two conditions 1. and 2. are the same as in Definition 2.1.

Theorem 4.1. The self replicated boundary graph G
(B)
srs equals the largest graph with

1. vertex set that consists of elements [i, γ, j] ∈ D with [γ, j] ∈ Γsrs;
2. an edge from [i, γ, j] to [i′, γ′, j′] if and only if there exist [i, γ, j] ∈ A × π(Z3) × A and

(p1, a1, s1), (p2, a2, s2) ∈ P such that






[i′, γ′, j′] = [i, γ, j] (Type 1) or [i′, γ′, j′] = [j,−γ, i] (Type 2),
a1 = i and p1a1s1 = σ(i),
a2 = j and p2a2s2 = σ(j),
hγ = γ + π(l(p2)− l(p1)).

The edge is labelled by

η =

{
πl(p1), if 〈l(p1),vβ〉 ≤ 〈l(p2) + x,vβ〉,
πl(p2) + γ, otherwise,
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ΠH0,0,0L

ΠH0,0,1L

ΠH0,1,0L

ΠH0,1,-1L

ΠH1,0,-1L

ΠH1,-1,0L

ΠH1,-1,1L

ΠH0,0,0L

ΠH-1,0,1L

ΠH-1,1,0L

ΠH0,1,-1L

ΠH1,0,-1L

ΠH1,-1,0L

ΠH0,-1,1L

Figure 4: The neighbours of the Rauzy fractal in the self-replicated (left) and the lattice (right)
tiling for σ3,1.

where x ∈ Z3 such that π(x) = γ;

3. every vertex lies on a path that ends up in a strongly connected component.

Proof. Denote by G the largest graph fulfilling Items 1., 2. and 3. from above. We want to prove

that G = G
(B)
srs . The edges are defined in the same way, hence, it suffices to prove that both graphs

have the same set of vertices.

By Proposition 2.3 for every vertex [i, γ, j] of G
(B)
srs we have [γ, j] ∈ Γsrs. Furthermore, G

(B)
srs is

finite by Proposition 2.2 and every vertex of G
(B)
srs lies on an infinite walk by Definition 2.1. This

implies that every vertex lies on a path ending up in a strongly connected component. Hence,

G
(B)
srs is a subgraph of G.

Now consider [i, γ, j] ∈ G. Obviously, [i, γ, j] ∈ G
(B)
srs as soon as γ satisfies (2.6). Indeed, the

other items of Definition 2.1 are easily seen to be fulfilled.
By Item 3. there exists a (finite) path from [i, γ, j] to a vertex belonging to a strongly connected

component of G. Therefore, there is an infinite path

[i, γ, j] −→ [i1, γ1, j1] −→ [i2, γ2, j2] −→ . . .

in G going through finitely many vertices. Using the relation hγk+1 = ±γk ± π(l(p
(k)
2 ) − l(p

(k)
1 ))

that holds for each edge of this walk and the fact that h is a contraction, one obtains that γ

satisfies (2.6).

In the following lemma we estimate the number and shape of the predecessors of a given vertex
in the boundary graph. The computations are valid for every irreducible beta-substitution.

Lemma 4.2. Consider an edge from [i, π(x), j] to [i′, π(x′, y′, z′), j′] in the self-replicating bound-

ary graph G
(B)
srs . Then

x =
(
−
⌊
x′

(
β−2 + bβ−1

)
+ y′β−1

⌋
, x′, y′

)
(4.1)

if the edge is of Type 1 and

x =
(⌈
x′

(
β−2 + bβ−1

)
+ y′β−1

⌉
,−x′,−y′

)
(4.2)

if the edge is of Type 2.

Proof. If the edge is of Type 1, by the definition of G
(B)
srs and (2.2), we have

h(π(x′, y′, z′)) = π(M(x′, y′, z′)) = π(ax′ + by′ + z′, x′, y′) = π(x)− π(l(p1)) + π(l(p2)) (4.3)
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with σ(i′) = p1is2 and σ(j′) = p2js2.
Now observe that for every x1,x2 ∈ Q3 we have

π(x1) = π(x2) ⇐⇒ 〈x1,vβ〉 = 〈x2,vβ〉 ⇐⇒ x1 = x2.

The first equivalence can be obtained by considering Galois conjugates (cf. [23, Equation (2.5)]),
the second one is a consequence of the irreducibility of the substitution. In particular, this shows
that π is injective for integer vectors. Therefore (4.3) can only hold if

x = (ax′ + by′ + z′ − e2 + e1, x
′, y′) (4.4)

where l(p1) = (e1, 0, 0) and l(p2) = (e2, 0, 0) are integer vectors (by the shape of σa,b the prefixes

p1 and p2 consist of the symbols ε or 1 only). Since [i, π(x), j] is a vertex of G
(B)
srs we have

0 ≤ 〈x,vβ〉 < vj < 1 by Proposition 2.3. Applying this on (4.4) gives

0 ≤ 〈x,vβ〉 = 〈(ax′ + by′ + z′ − e2 + e1, x
′, y′),vβ〉

=ax′ + by′ + z′ − e2 + e1 + x′
(
β−2 + bβ−1

)
+ y′β−1 < 1.

Since ax′ + by′ + z′ − e2 + e1 is an integer we immediately obtain ax′ + by′ + z′ − e2 + e1 =
−
⌊
x′

(
β−2 + bβ−1

)
+ y′β−1

⌋
. Inserting this into (4.4) yields the assertion.

If the edge is of Type 2 we obtain, analogously to (4.4),

x = (−ax′ − by′ − z′ − e2 + e1,−x′,−y′) (4.5)

with σ(j′) = p1is2, σ(i
′) = p2js2, l(p1) = (e1, 0, 0) and l(p2) = (e2, 0, 0). The same considerations

as above yield

−ax′ − by′ − z′ − e2 + e1 = −
⌊
−x′

(
β−2 + bβ−1

)
− y′β−1

⌋
=

⌈
x′

(
β−2 + bβ−1

)
+ y′β−1

⌉

which gives (4.2).

An immediate consequence of Lemma 4.2 is the following corollary, that will be frequently used
in the algorithmic part of the proof of Theorem 3.2.

Corollary 4.3. For a predecessor [i, π(x), j] of a vertex [i′, γ′, j′] in the self-replicating boundary

graph G
(B)
srs , there are at most two possible choices for x. One is connected via an edge of Type 1,

another is connected via an edge of Type 2. Moreover, if a predecessor is of the form [i,0, j], then
all predecessors are of this shape.

Again, an analogue to Lemma 4.2, and therefore of Corollary 4.3, for G
(B)
lat does not exist and

makes the proof of Theorem 3.5 more complicated.

Notation 4.4. Given an edge from [i, π(x, y, z), j] to [i′, π(x′, y′, z′)), j′], we call the term ax′ +
by′+z′−x (when the edge is of Type 1) or the term ax′+by′+z′+x (when the edge is of Type 2),
respectively, the significant difference.

We are interested in the pairs (i, j), (i′, j′) inducing significant differences. This is shown in
Table 8.

There is an entry in the cell in row (i, j) and column (i′, j′) if there are p1, p2, s1, s2 ∈ A∗ such

that σ(i′) = p1is1 and σ(j′) = p2js2, i.e., if there are edges i
(p1,i,s1)
−−−−−→ i′ and j

(p2,j,s2)
−−−−−→ j′ in Γσ.

The corresponding entry is then a list of all possibilities for e2 − e1 with (e1, 0, 0) = l(p1) and
(e2, 0, 0) = l(p2).

Note that, by construction, n is an element of the list in row (i, j) and column (i′, j′) if and
only if −n is an element of the list in row (j, i) and column (j′, i′).

The use of this table is enlightened in the following lemma.
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(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)

(1, 1)
−a + 1, −a + 1, −a + 1, −b + 1, −b + 1, −b + 1, 0, . . . , 0, . . . ,

0
. . . , a − 1 . . . , b − 1 . . . , 0 . . . , a − 1 . . . , b − 1 . . . , 0 a − 1 b − 1

(1, 2) 1, . . . , a
a − b + 1,

a
. . . , a

(1, 3)
b − a + 1,

1, . . . , b b
. . . , b

(2, 1) −a, . . . ,−1
−a, . . . ,

−a
−a + b − 1

(2, 2) 0
(2, 3) b − a

(3, 1)
−b, . . . ,

−b, . . . ,−1 −b
a − b − 1

(3, 2) a − b

(3, 3) 0

Table 8: The Table shows all possible differences for the prefixes of the labels of the product graph
Γσ × Γσ

Lemma 4.5. Consider an edge from [i, π(x, y, z), j] to [i′, π(x′, y′, z′), j′] in the self-replicating

boundary graph G
(B)
srs . If the edge is of Type 1 then ax′ + by′+ z′− x is contained in the list in row

(i, j) and column (i′, j′) of Table 8. If the edge is of Type 2 then ax′ + by′ + z′ + x is contained in
the list in row (j, i) and column (i′, j′) of Table 8.

Proof. Let p1, p2 as in (2) of Definition 2.1. By the shape of the substitution we have l(p1) =
(e1, 0, 0) and l(p2) = (e2, 0, 0) with e1, e2 ≥ 0. Suppose the edge is of Type 1. By construction of
Table 8, e2 − e1 is an element of the list in row (i, j) and column (i′, j′) and by (4.4) we have that
e2 − e1 = ax′ + by′ + z′ − x.

If the edge is of Type 2, e1 − e2 is element of the list in row (j, i) and column (i′, j′). On the
other hand, (4.5) shows that ax′ + by′ + z′ + x = e1 − e2.

5. Proof of Theorem 3.2

The present section is devoted to the proof of Theorem 3.2. The first lemma (Lemma 5.1) shows
that the vertices of S(a, b) defined in Section 3.1 are really related to the self-replicating translation
set Γsrs, i.e., that S(a, b) satisfies Proposition 2.3. Its proof is purely algebraic. Afterwards, in
Lemma 5.2, we characterise the strongly connected component of the self-replicating boundary
graph. The proof uses alternatively algebraic and algorithmic methods. Finally we will use
Theorem 4.1 to prove Theorem 3.2.

Lemma 5.1. For each vertex [i, π(x), j] of S(a, b), [π(x), j] ∈ Γsrs.

Proof. By definition, [π(x), j] ∈ Γsrs if and only if 0 ≤ 〈x,vβ〉 < vj . Recall that vβ = (v1, v2, v3) =
(1, β − a, β2 − aβ − b).

For x = 0 the statement is trivial. If x 6= 0 we consider six cases.

Case 1. x = (0, 1, 0): Using (2.1) we see

0 ≤ 〈(0, 1, 0),vβ〉 = v2 < v1.

Thus [π(x), 1] ∈ Γsrs.

Case 2. x = (1,−1, 0): Again, (2.1) immediately yields

0 ≤ 〈(1,−1, 0),vβ〉 = v1 − v2 < v1,

hence [π(x), 1] ∈ Γsrs.

Case 3. x = (t,−t, t) (1 ≤ t ≤ m(a, b)): We have 〈(t,−t, t),vβ〉 = tc with

c := 〈(1,−1, 1),vβ〉 = 1− (β−2 + bβ−1) + β−1 =
a− b + 2

β + 1
.
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Hence,

〈(t,−t, t),vβ〉 = tc = t
a− b+ 2

β + 1
≥ 0

for each t ≥ 0. On the other hand, if a
a−b+2 ≥ 1, we have t ≤ a

a−b+2 . Then

〈(t,−t, t),vβ〉 ≤
a

a− b+ 2
c =

a

β + 1
< 1 = v1

since a < β. If a
a−b+2 < 1 (and therefore t = 1) we have b < 2 and, hence, b = 1. Thus

〈(t,−t, t),vβ〉 = c =
a− b+ 2

β + 1
=

a+ 1

β + 1
< 1.

In both cases, [π(x), 1] ∈ Γsrs.

Case 4. x = (2 − t, t− 1,−t) (1 ≤ t ≤ m(a, b)):

〈(2− t, t− 1,−t),vβ〉 = 1− (t− 1)
a− b+ 2

β + 1
− β−1 < 1.

On the other hand,

〈(2− t, t− 1,−t),vβ〉 =2− bβ−1 − β−2 − t
a− b+ 2

β + 1

=(1− bβ−1 − β−2

︸ ︷︷ ︸

>0

) + (1− t
a− b+ 2

β + 1
︸ ︷︷ ︸

>0

) > 0.

Thus [π(x), 1] ∈ Γsrs.

Case 5. x = (t− 1, 1− t, t) (1 ≤ t ≤ m(a, b)): We use the previous case to estimate

0 < v3 = 〈(0, 0, 1),vβ〉 ≤ 〈(t− 1, 1− t, t− 1),vβ〉
︸ ︷︷ ︸

≥0 by Case 3

+ 〈(0, 0, 1),vβ〉 = 〈(t− 1, 1− t, t),vβ〉

=− 1 + 〈(t,−t, t),vβ〉+ 〈(0, 1, 0),vβ〉 < 〈(0, 1, 0),vβ〉 = v2.

(5.1)

Hence [π(x), 1], [π(x), 2] ∈ Γsrs.

Case 6. x = (1 − t, t,−t) (1 ≤ t ≤ m(a, b)): By Case 3,

〈(1− t, t,−t),vβ〉 = 1− 〈(t,−t, t),vβ〉 > 0.

Lower estimation yields

〈(1− t, t,−t),vβ〉 =− (t− 1) 〈(1,−1, 1),vβ〉+ 〈(0, 1, 0),vβ〉 − 〈(0, 0, 1),vβ〉

< 〈(0, 1, 0),vβ〉 = v2.

This shows that [π(x), 1], [π(x), 2] ∈ Γsrs.

Later we will use the above lemma to prove that S(a, b) is contained in G
(B)
srs .

Showing the reverse inclusion will be more difficult. In the following lemma we start with the
strongly connected components. One can check directly from the definition that the graph S(a, b)
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containsm(a, b) strongly connected components. We will call their sets of vertices Ca,b(1), . . . , Ca,b(m(a, b)).
In particular, we have

Ca,b(1) := {[1, π(0, 1,−1), 1], [1, π(0, 1,−1), 2], [3, π(0, 1,−1), 2], [2, π(1, 0,−1), 1],

[3, π(1, 0,−1), 1], [2, π(1,−1, 0), 1], [2, π(1,−1, 1), 1]}

∪

{

{[1, π(0, 1, 0), 1], [1, π(1, 0,−1), 1]} if a 6= b

∅ otherwise

∪

{

{[1, π(1,−1, 1), 1]} if b ≥ 2

∅ otherwise
.

and, for t ∈ {2, . . . ,m(a, b)},

Ca,b(t) = {[2, π(t,−t, t), 1]} ∪

{

{[1, π(t,−t, t), 1]} if a > t(a− b+ 2)

∅ otherwise
.

The following lemma shows that the vertices of the strongly connected components of G
(B)
srs are

contained in the sets Ca,b(t). Actually, this forms the core of our further argumentation. The
proof makes alternatively use of algebraic estimations and combinatorial algorithms.

Lemma 5.2. The vertices of the strongly connected components of the self-replicating boundary

graph G
(B)
srs are contained in

⋃m(a,b)
t=1 Ca,b(t).

Proof. The vertices of the strongly connected components are exactly those vertices that are
contained in cycles. Therefore, consider a cycle of the self-replicating boundary graph pass-
ing the vertices [in, π(xn, yn, zn), jn], n ∈ {0, . . . , q − 1}. By Proposition 2.3, for every n ∈
{0, . . . , q − 1} we have [π(xn, yn, zn), jn] ∈ Γsrs and, by definition, [in, π(xn, yn, zn), jn] and
[in+1, π(xn+1, yn+1, zn+1), jn+1] (indices modulo q) satisfy 2. of Definition 2.1. Let

t := max
n∈{0,...,q−1}

‖(xn, yn, zn)‖∞ .

1. At first suppose that t ≥ 2. We start with proving that t ≤ m(a, b) and deduce that for
all n ∈ {0, . . . , q − 1} we have (xn, yn, zn) = (t,−t, t). We first claim that xn 6= −t for all
n ∈ {0, . . . , q − 1}. Suppose xn equals −t. Then, by the fact that [in, π(xn, yn, zn), jn] ∈ D,
we have

〈(xn, yn, zn),vβ〉 = −t+ yn(bβ
−1 + β−2) + znβ

−1 ≥ 0.

Since |yn| ≤ t, |zn| ≤ t and t ≥ 2 we necessarily have that yn and zn are positive and at
least one of them is strictly greater than 1. Furthermore, we have

yn(bβ
−1 + β−2)+znβ

−1 ≥ t ⇒

yn(aβ
−1 + bβ−2 + β−3) + zn(bβ

−1 + β−2) ≥ tβ−1 + ynaβ
−1 + znbβ

−1.

Using Lemma 4.2 we can estimate

|〈(xn+1, yn+1, zn+1),vβ〉| =|〈(yn, zn, zn+1),vβ〉|

≥
∣
∣yn(aβ

−1 + bβ−2 + β−3) + zn(bβ
−1 + β−2)

∣
∣−

∣
∣zn+1β

−1
∣
∣

≥tβ−1 + ynaβ
−1 + znbβ

−1 − tβ−1 = ynaβ
−1 + znbβ

−1 > 1,

which contradicts the assumption that [π(xn+1, yn+1, zn+1), jn+1] ∈ Γsrs. Therefore, for all
n ∈ {0, . . . , q − 1}, xn 6= −t.

By this consideration and Lemma 4.2, we may assume without loss of generality that x0 = t.
We have

〈(x0, y0, z0),vβ〉 = t(aβ−1 + bβ−2 + β−3

︸ ︷︷ ︸

=1

) + y0(bβ
−1 + β−2) + z0β

−1. (5.2)
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By the definition of t, it is clear that we have −t ≤ y0, z0 ≤ t. Suppose that −t+1 ≤ y0 ≤ t.
We will derive a contradiction. There are two cases.

Case 1. 0 ≤ y0 ≤ t: In this case (5.2) reduces to

〈(x0, y0, z0),vβ〉 ≥ t(a− 1)β−1 + tbβ−2 + tβ−3.

Our assumption that t ≥ 2 implies that, if a > 1, we have t(a− 1) ≥ a. Therefore

〈(x0, y0, z0),vβ〉 ≥ aβ−1 + tbβ−2 + tβ−3 > 1.

If a = 1 then b = 1, which is the classical Tribonacci case, it is easy to verify that

t(β−2 + β−3) ≥ 2(β−2 + β−3) > 1,

too. In both cases, this contradicts the fact that [π(x0, y0, z0), j0] ∈ Γsrs.

Case 2. −t+ 1 ≤ y0 ≤ −1: Here (5.2) gives

〈(x0, y0, z0),vβ〉 ≥ 1 + (t− 1)
(
(a− b− 1)β−1 + (b − 1)β−2 + β−3

)
+ (z0 + t− 1)β−1.

If a > b + 1 this expression is again greater than 1 since z0 ≥ −t. Also for a = b + 1
and z0 ≥ −t+ 1 as well as for a = b and z0 ≥ 0 we have 〈(x0, y0, z0),vβ〉 > 1. Thus we
have two subcases left.

• Suppose a = b + 1 and z0 = −t. Whenever the edge from [i0, π(x0, y0, z0), j0] to
[i1, π(x1, y1, z1), j1] is of Type 1, the significant difference is

ax1 + by1 + z1 − x0 ≥ −a.

Using (4.4) we obtain

z1 ≥ −ax1 − by1 + x0 − a = −ay0 − bz0 + x0 − a ≥ a+ bt+ t− a > t.

Similarly, if the edge is of Type 2, we deduce z1 < −t. In both cases this contradicts
the definition of t.

• The case a = b and −t ≤ z0 ≤ −1 is treated analogously.

Therefore the only possibility is y0 = −t. By Lemma 4.2 this implies that x1 = ±t. Thus,
by the beginning of this proof, x1 = t. We can prove in a similar way that y1 = −t. Now it
follows from Lemma 4.2 that the edge is necessarily of Type 2 and, hence, z0 = t. We infer
that (xn, yn, zn) = (t,−t, t) for all n ∈ {0, . . . , q − 1}.

Since all the edges are of Type 2, the significant difference is at− bt+ t+ t = t(a− b+2) ≤ a

by (4.5). This yields t ≤ a
a−b+2 and, since t is an integer, t =

⌊
a

a−b+2

⌋

= m(a, b), as it was

claimed.

Up to now we have proved that, for a cycle ([in, π(xn, yn, zn), jn])n∈{0,...,q−1} in G
(B)
srs , if we

set t := maxn∈{0,...,q−1} ‖(xn, yn, zn)‖∞ and suppose t ≥ 2, then t ≤ m(a, b) and for all n,
(xn, yn, zn) = (t,−t, t).

To determine the exact set of vertices we use Lemma 4.5. More precisely, for an edge of
Type 2 to exist from [i, π(t,−t, t), j] to [i′, π(t,−t, t), j′], the list in row (j, i) and column
(i′, j′) in Table 8 must necessarily contain t(a− b+2). Thus, we search in Table 8 for values
between 2(a− b+ 2) (t = 2) and a.

The cells of Table 8 contain all such pairs (i, j) → (i′, j′). Each cell represents a possible
edge. Note that several edges are possible only for special conditions on a, b and t - these
cells are marked with ∗ (for example, (1, 1) → (1, 1) is possible only for t(a − b + 2) < a).
We do not have to take care of edges (2, 3) → (2, 1) and (1, 3) → (2, 1), respectively, since
2(a− b+ 2) > a− b > a− b− 1.
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(1, 1) → (1, 1)∗ (2, 1) → (1, 1) (1, 1) → (1, 2)∗ (3, 1) → (1, 2)∗ (1, 1) → (2, 1)∗ (2, 1) → (2, 1)
(1, 1) → (2, 2)∗ (3, 1) → (2, 2)∗ (1, 1) → (3, 1)∗ (2, 1) → (3, 1)∗ (1, 1) → (3, 2)∗ (3, 1) → (3, 2)∗

Table 9

Table 9 induces a graph with 6 vertices and 12 edges. We want to determine its strongly
connected components since the vertices of our cycle are necessarily contained in them. This
can be done algorithmically. Since each vertex of a strongly connected component necessarily
has incoming as well as outgoing edges, we will successively remove vertices from our graph
that do not have incoming or outgoing edges with respect to Table 9 (where we do not
consider the ∗-tags for the moment). The complete process can be found in the Annex.

As a result of this algorithm we obtain the two vertices

[1, π(t,−t, t), 1] and [2, π(t,−t, t), 1].

The respective edges in Table 9 are highlighted in grey. Two of these edges have a ∗-tag
and we note that these edges are not possible for t(a − b + 2) = a. In this case, the vertex
[1, π(t,−t, t), 1] has no outgoing edge and thus cannot be a vertex of the strongly connected
component. Therefore, we have shown that the vertices of our cycle are contained in Ca,b(t)
with 2 ≤ t ≤ a

a−b+2 .

2. We now treat the case of the possible strongly connected components whose vertices [i, π(x), j]
satisfy ‖x‖∞ ≤ 1. There are 27 Z3-vectors whose maximum norm is less or equal to 1. For
these vertices to belong to the self-replicating boundary graph we must have 0 ≤ 〈x,vβ〉 < 1.
Thus, we can restrict to

x ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1,−1), (1, 0,−1), (1,−1, 0), (1,−1, 1), (0, 1, 1), (−1, 1, 1)}.

The vectors (0, 1, 1) and (−1, 1, 1) can be excluded. Their possible successors in a strongly
connected component would have the form [i, π(1, 1, z′), j] with z′ ≥ −1. But then

〈(1, 1, z′),vβ〉 ≥ 1 + v2 − v3 > 1,

thus [π(1, 1, z′), j] is not in the set Γsrs, a contradiction.

The point x = (0, 0, 0) does not give rise to a strongly connected component for the following
reason. By Lemma 4.2, the only possible predecessor for a vertex of the form [i′,0, j′] is of
the shape [i,0, j]. By Lemma 4.5 the list in row (i, j) (row (j, i), respectively) and column
(i′, j′) in Table 8 must contain 0. Since by definition i 6= j and i′ 6= j′ we easily see that
such edges may only occur for (i, j) = (1, 3) and (i′, j′) = (1, 2) and for (i, j) = (2, 3) and
(i′, j′) = (1, 2). This leads to [1,0, 3] → [1,0, 2] and [2,0, 3] → [1,0, 2] as the only possible
edges in the strongly connected component. But combining these two edges does not give rise
to a component. Therefore, x = (0, 0, 0) cannot show up in a strongly connected component.

Since x = (0, 0, 0) does not induce vertices of a strongly connected component we can exclude
x = (0, 0, 1) completely (again, by Lemma 4.2).

By Lemma 4.2, the remaining five possibilities for x provide eight different shapes of edges
shown in Table 10.

Similarly as before we use Table 8 and write down all possible edges. Table 11 consists of
eight blocks corresponding to the eight shapes of edges, analogously to Table 9. The cells of
a block contain all pairs (i, j) → (i′, j′) with suitable significant difference found in Table 8,
according to Lemma 4.5. Again we mark a cell with ∗ when special conditions on a and b

are needed (for example, in Block 4 all cells are tagged, since for a = b the corresponding
significant difference b + 1 = a + 1 does not appear in any list in Table 8). Note that
[π(0, 1, 0), 2], [π(0, 1, 0), 3] 6∈ Γsrs. Hence, we do not write pairs (i, j) → (i′, j′) involving
these elements.
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Shape from to Type significant difference
1 [i, π(0, 1, 0), j] [i′, π(1, 0,−1), j′] Type 1 a− 1
2 [i, π(0, 1,−1), j] [i′, π(1,−1, 0), j′] Type 1 a− b

3 [i, π(0, 1,−1), j] [i′, π(1,−1, 1), j′] Type 1 a− b+ 1
4 [i, π(1, 0,−1), j] [i′, π(0, 1, 0), j′] Type 2 b+ 1
5 [i, π(1, 0,−1), j] [i′, π(0, 1,−1), j′] Type 2 b

6 [i, π(1,−1, 0), j] [i′, π(1, 0,−1), j′] Type 2 a

7 [i, π(1,−1, 1), j] [i′, π(1,−1, 0), j′] Type 2 a− b+ 1
8 [i, π(1,−1, 1), j] [i′, π(1,−1, 1), j′] Type 2 a− b+ 2

Table 10

Block 1 [i, π(0, 1, 0), j] −→ [i′, π(1, 0,−1), j′ ]
(1, 1) → (1, 1) (1, 1) → (1, 2)∗ (1, 1) → (1, 3)∗ (1, 1) → (2, 1) (1, 1) → (2, 2)∗ (1, 1) → (2, 3)∗
(1, 1) → (3, 1) (1, 1) → (3, 2)∗ (1, 1) → (3, 3)∗

Block 2 [i, π(0, 1,−1), j] −→ [i′, π(1,−1, 0), j′ ]
(1, 1) → (1, 1) (1, 2) → (1, 1)∗ (2, 2) → (1, 1)∗ (1, 1) → (1, 2)∗ (1, 3) → (1, 2)∗ (2, 3) → (1, 2)
(1, 1) → (1, 3)∗ (1, 1) → (2, 1) (3, 2) → (2, 1) (1, 1) → (2, 2)∗ (1, 3) → (2, 2)∗ (3, 3) → (2, 2)∗
(1, 1) → (2, 3)∗ (1, 1) → (3, 1) (1, 1) → (3, 2)∗ (1, 3) → (3, 2)∗ (1, 1) → (3, 3)∗

Block 3 [i, π(0, 1,−1), j] −→ [i′, π(1,−1, 1), j′ ]
(1, 1) → (1, 1)∗ (1, 2) → (1, 1) (1, 1) → (1, 2)∗ (1, 3) → (1, 2)∗ (1, 1) → (2, 1)∗ (1, 2) → (2, 1)
(1, 1) → (2, 2)∗ (1, 3) → (2, 2)∗ (1, 1) → (3, 1)∗ (1, 2) → (3, 1)∗ (1, 1) → (3, 2)∗ (1, 3) → (3, 2)∗

Block 4 [i, π(1, 0,−1), j] −→ [i′, π(0, 1, 0), j′ ]
(1, 1) → (1, 1)∗ (2, 1) → (1, 1)∗ (1, 1) → (2, 1)∗ (1, 3) → (2, 1)∗ (2, 1) → (2, 1)∗ (2, 3) → (2, 1)∗
(1, 1) → (3, 1)∗ (2, 1) → (3, 1)∗

Block 5 [i, π(1, 0,−1), j] −→ [i′, π(0, 1,−1), j′ ]
(1, 1) → (1, 1)∗ (2, 1) → (1, 1) (3, 1) → (1, 2) (1, 1) → (2, 1)∗ (1, 3) → (2, 1)∗ (2, 1) → (2, 1)∗
(2, 3) → (2, 1)∗ (3, 1) → (2, 2) (1, 1) → (3, 1)∗ (2, 1) → (3, 1)∗ (3, 1) → (3, 2)

Block 6 [i, π(1,−1, 0), j] −→ [i′, π(1, 0,−1), j′ ]
(2, 1) → (1, 1) (3, 1) → (1, 2)∗ (2, 1) → (2, 1) (3, 1) → (2, 2)∗ (2, 1) → (3, 1) (3, 1) → (3, 2)∗

Block 7 [i, π(1,−1, 1), j] −→ [i′, π(1,−1, 0), j′ ]
(1, 1) → (1, 1)∗ (2, 1) → (1, 1) (1, 1) → (1, 2)∗ (3, 1) → (1, 2)∗ (1, 1) → (2, 1)∗ (2, 1) → (2, 1)
(1, 1) → (2, 2)∗ (3, 1) → (2, 2)∗ (1, 1) → (3, 1)∗ (2, 1) → (3, 1)∗ (1, 1) → (3, 2)∗ (3, 1) → (3, 2)∗

Block 8 [i, π(1,−1, 1), j] −→ [i′, π(1,−1, 1), j′ ]
(1, 1) → (1, 1)∗ (2, 1) → (1, 1)∗ (1, 1) → (1, 2)∗ (3, 1) → (1, 2)∗ (1, 1) → (2, 1)∗ (2, 1) → (2, 1)∗
(1, 1) → (2, 2)∗ (3, 1) → (2, 2)∗ (1, 1) → (3, 1)∗ (2, 1) → (3, 1)∗ (1, 1) → (3, 2)∗ (3, 1) → (3, 2)∗

Table 11

Table 11 induces a graph with 36 vertices. Again, we determine the strongly connected com-
ponent algorithmically by successively removing vertices that have no incoming or outgoing
edges with respect to Table 11 (temporarily we ignore the ∗- tags). This is carefully executed
in the Annex.

As a result of this algorithm, we obtain the following vertices:

[1, π(0, 1, 0), 1], [1, π(0, 1,−1), 1], [1, π(0, 1,−1), 2], [3, π(0, 1,−1), 2], [1, π(1, 0,−1), 1],

[2, π(1, 0,−1), 1], [3, π(1, 0,−1), 1], [2, π(1,−1, 0), 1], [1, π(1,−1, 1), 1], [2, π(1,−1, 1), 1].

The corresponding edges in Table 11 are highlighted in grey.

We note that these vertices match with the vertices of Ca,b(1) for a > b > 1. Hence, in this
case the lemma is proved.

In the case b = 1, no type of edge that start in [1, π(1,−1, 1), 1] (shapes 7 and 8) exists
(observe the ∗-tags). Thus, the vertex [1, π(1,−1, 1), 1] cannot be contained in the strongly
connected components. This shows the lemma in the case a > b = 1.

Finally, suppose a = b and consider the ∗-tags in Block 4: edges of Shape 4 do not appear
in this case. Now notice that edges of this shape are the only incoming edges of the vertex
[1, π(0, 1, 0), 1]. Hence, we deduce that [1, π(0, 1, 0), 1] cannot be a vertex of the strongly
connected components in this case. The same applies to the vertex [1, π(1, 0,−1), 1] since it
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has no outgoing edge (∗-tags in Block 4 and Block 5). Thus, the lemma holds also for all
a = b ≥ 1.

Proof of Theorem 3.2. From Lemma 5.1 we know that for all vertices [i, γ, j] of S(a, b) we have
[γ, j] ∈ Γsrs. It is also easy to verify that all edges satisfy Item 2. of Theorem 4.1. Furthermore,
each vertex lies on a path ending in a strongly connected component. Therefore, S(a, b) is a

subgraph of G
(B)
srs .

Now we are going to check that G
(B)
srs is a subgraph of S(a, b). In Lemma 5.2 we showed that the

vertices of the strongly connected components of G
(B)
srs are contained in the sets Ca,b(1), . . . , Ca,b(m(a, b)).

Observe that S(a, b) contains all these vertices. The fact that every vertex in G
(B)
srs lies on a path

that ends up in a strongly connected component immediately implies that such a path passes a
vertex of S(a, b).

Claim. No more edges (nor vertices) satisfying Items 1. and 2. of Theorem 4.1 can be added
to S(a, b).

Proving this claim will obviously prove the theorem. The proof of the claim runs along the
following algorithm. We go through all types of vertices of S(a, b) and investigate the possible
incoming edges:

• we use Lemma 4.2 to show that a predecessor [i, γ, j] of a vertex [i′, γ′, j′] can have at most
two different values for γ;

• we use Lemma 4.5 to determine i and j.

The computations are carried out in the Annex.

6. Proof of Theorem 3.4 and Theorem 3.5

The proof of Theorem 3.4 runs along the same line as the first part of the proof of Theorem 3.2.

Proof of Theorem 3.4. It is quite easy to see that L(a, b) is a subgraph of G
(B)
lat . Indeed, all vertices

lie on a finite path that ends in a vertex of G
(B)
srs . These vertices satisfy (2.6). Using a similar

argument as in the second part of the proof of Theorem 4.1, one can show that actually each
vertex of L(a, b) satisfies (2.6).

The lack of statements similar to Proposition 2.3 and Theorem 4.1 leads us to consider an

other strategy to prove that L(a, b) coincides with G
(B)
lat . The self-replicating boundary graph G

(B)
srs

gives us a list of all subtiles that intersect with the Rauzy fractal in the aperiodic tiling. We use
this information to construct a tube around the central tile, that isolates the central tile from the
remaining part of the tiling. To show that our graph L(a.b) is exactly the lattice boundary graph,
we will prove that the neighbours occurring in L(a, b) cover the whole tube. As a consequence, the
neighbour set cannot be bigger. In the last step we deduce the exact set of vertices and edges. We
illustrate this proof on behalf of an example (Example 6.1). Since the computation in the general
case seems to be difficult, we will then restrict to the most simple case, assuming that m(a, b) = 1.

According to Definition 2.4 and the prefix-suffix graph Γσ, the Rauzy fractal T is the solution
of a graph directed function system: for every i ∈ A,

T (i) =
⋃

σ(j)=pis

π(l(p)) + h(T (j)). (6.1)
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For convenience, we denote by B(i) the finite set

B(i) := {π(l(p)) + h(T (j))| ∃(p, i, s) ∈ P : σ(j) = pis}. (6.2)

Note that each B(i) is a finite set, in particular, |B(1)| = a + b + 1 and |B(2)| = |B(3)| = 1
(since T (2) and T (3) are, in fact, translated h-images of T (1) and T (2), respectively).

Now consider a vertex [i, γ, j] of the self-replicating boundary graph G
(B)
srs with γ 6= {0}.

By Proposition 2.4 (see also [23, Theorem 5.6]), this is equivalent to the fact that T (i)∩(T (j)+
γ) 6= ∅. Now we may wonder for which B ∈ B(j) we have T (i) ∩ (B + γ) 6= ∅. In other words, we
want a characterisation of the set

O([i, γ, j]) := {γ +B|B ∈ B(j), T (i) ∩ (B + γ) 6= ∅}.

Example 6.1. We explain the above definitions and the idea of the proof by considering the
substitution σ3,2, introduced in Example 3.8. Figure 5 shows again the central tile (subdivided
into the three subtiles T (1), T (2) and T (3)) and its neighbours in the self-replicating tiling (see
also Figure 3 left). The neighbours are subdivided with respect to (6.1) (grey boundaries). In
particular, we see that B(1) consists of 6 elements: 3 copies of smaller versions of T (1), 2 copies
of smaller versions of T (2) and 1 copy of a smaller version of T (3). B(2) and B(3) consist only of
a smaller version of T (1) and a smaller version of T (2), respectively.

Now we subdivide each neighbour γ+T (j) with respect to (6.1) and consider the subsets that
are adjacent to the central tile. These sets are highlighted in light grey and form our tube. In words
of our formalism, O([i, γ, j]) consists exactly of those (γ-translated) sets of B(j) that intersect with
T (i). For example, O([2, π(1,−1, 1), 1]) consists of three elements: one smaller copy of T (1) and
two smaller copies T (2). Note that the sets O([i, γ, j]) are not disjoint. Indeed, the only element
of O([1, π(1,−1, 1), 1]) (a smaller copy of T (2)) already appears in O([2, π(1,−1, 1), 1]).

We will show that all of this tube is covered by 6 neighbours of the central tile in the lattice
tiling. For our example this can be verified easily by looking at Figure 3 (right).

Figure 5: The idea of the proof of Theorem 3.5 on behalf of σ3,2.

Lemma 6.2. Let [i, γ, j] a vertex of the self-replicating boundary graph G
(B)
srs . Then the elements

of O([i, γ, j]) are given by the outgoing edges of [i, γ, j]. In particular,

O([i, γ, j]) ={η + h(γ′ + T (j′))| [i, γ, j]
η
→ [i′, γ′, j′] is an edge of Type 1}∪

{η′ + h(T (i′))| [i, γ, j]
η
→ [i′, γ′, j′] is an edge of Type 2}
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Proof. At first we show that each element of O([i, γ, j]) is contained in the set on the right hand
side of this equality. Let C = γ + π(l(p2)) + h(T (j′)) ∈ O([i, γ, j]). Thus T (i) ∩ C 6= ∅. The use
of (6.1) yields

⋃

B∈B(i)

B ∩ (γ + π(l(p2)) + h(T (j′))) 6= ∅.

Now, there must be at least one B = π(l(p1)) + h(T (i′)) ∈ B(i) that satisfies the equation.

π(l(p1)) + h(T (i′)) ∩ γ + π(l(p2)) + h(T (j′)) 6= ∅.

Suppose that γ = π(x). Hence,

T (i′) ∩ (h−1(π(x) + π(l(p2))− π(l(p1))) + T (j′)) 6= ∅. (6.3)

By (2.2) we have
T (i′) ∩ (π(M−1(x+ l(p2)− l(p1))) + T (j′)) 6= ∅.

Now note that 〈x,vβ〉 < vj = 〈l(j),vβ〉 . Since

β 〈l(j′),vβ〉 = 〈Ml(j′),vβ〉 = 〈l(σ(j′)),vβ〉 ≥ 〈l(j) + l(p2),vβ〉

we immediately see that
〈
M−1(x + l(p2)− l(p1)),vβ

〉
< vj′ . Analogously, we can show that

〈
M−1(x+ l(p2)− l(p1)),vβ

〉
> −vi′ .

However, we either have [i′,h−1(γ + π(l(p2)) − π(l(p1))), j
′] ∈ D and [h−1(γ + π(l(p2)) −

π(l(p1))), j
′] ∈ Γsrs or [j′,−h−1(γ + π(l(p2)) − π(l(p1))), i

′] ∈ D and [−h−1(γ + π(l(p2)) −
π(l(p1))), i

′] ∈ Γsrs. Remember that for a vertex [i, γ, j] of the boundary graph, we necessar-
ily have T (i) ∩ (T (j) + γ) 6= ∅. Together with (6.3), this leads to the conclusion that one of the

triples occurs as vertices in G
(B)
srs and we see that it has an incoming edge from [i, γ, j]. In the first

case it is of Type 1 and labelled by π(l(p1)), in the second case it is of Type 2 and labelled by
π(l(p2)) + γ. However, we see that

C ∈{η + h(γ′ + T (j′))| [i, γ, j]
η
→ [i′, γ′, j′] is an edge of Type 1}∪

{η′ + h(T (i)′)| [i, γ, j]
η
→ [i′, γ′, j′] is an edge of Type 2}.

To prove the reverse inclusion, consider an edge [i, γ, j]
η
→ [i′, γ′, j′]. We have T (i′) ∩ (γ′ +

T (j′)) 6= ∅. Suppose the edge is of Type 1. Then

h(T (i′)) ∩ (γ + π(l(p2))− π(l(p1)) + h(T (j′))) 6= ∅

by the definition of the self replicating boundary graph G
(B)
srs . Furthermore, we have η = π(l(p1)),

π(l(p1)) + h(T (i′)) ∈ B(i) and π(l(p2)) + h(T (j′)) ∈ B(j). Thus

T (i) ∩ (γ + π(l(p2)) + h(T (j′))) 6= ∅

and, hence,
γ + π(l(p2)) + h(T (j′)) = η + h(γ′ + T (j′)) ∈ O([i, γ, j]).

For edges of Type 2 the proof runs analogously.

Now, for each vertex [i, γ, j] we consider the set O([i, γ, j]). This set consists of the γ-translates
of all subsets of T (j) induced by the decomposition (6.2) that intersect with T (i). The union of the

elements of O([i, γ, j]) for all vertices of G
(B)
srs with γ 6= 0 gives the mentioned tube. In Lemma 6.4

we show that in the lattice tiling the neighbours of the Rauzy fractal induced by the elements
of {±π(0, 1,−1),±π(1, 0,−1),±π(1,−1, 0)} cover all of this tube. Lemma 6.3 is a preparation to
Lemma 6.4.
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Lemma 6.3. For all a ≥ b ≥ 1 we have

π(0, 1, 0) + T (2) ⊂ T (1).

Proof. By (6.1) for i = 2 we have T (2) = π(a, 0, 0) + h(T (1)). Hence, by (2.2) and the shape of
M,

π(0, 1, 0) + T (2) = π(M(1, 0, 0)) + h(T (1)) = h(π(1, 0, 0) + T (1)). (6.4)

Set

R :=

a−1⋃

k=0

(π(k, 0, 0) + h(T (1))) ∪
b−1⋃

k=0

(π(k, 0, 0) + h(T (2))).

Now we use again (6.1) to obtain

π(0, 1, 0) + T (2) =h(π(1, 0, 0) + T (1))

=h(π(1, 0, 0) +R) ∪ h(π(1, 0, 0) + h(T (3)))

=h(π(1, 0, 0) +R) ∪
[
h
(
π(1, 0, 0) + h(π(b, 0, 0)) + h2(π(a, 0, 0)) + h3(T (1))

)]
.

Now observe that

π(1, 0, 0) + h(π(b, 0, 0)) + h2(π(a, 0, 0)) = π((I3 + bM+ aM2)(1, 0, 0)) = h3(π(1, 0, 0)), (6.5)

(where I3 denotes the 3 × 3 identity matrix) since x3 − ax2 − bx − 1 is the characteristic (and
minimal) polynomial of M. Hence,

π(0, 1, 0) + T (2) = h(π(1, 0, 0) +R) ∪ h4(π(1, 0, 0) + T (1)).

Iterating this procedure, we obtain

π(0, 1, 0) + T (2) =

∞⋃

n=0

h3n+1(π(1, 0, 0) +R) (6.6)

since h is a contraction. Now we claim that h(π(1, 0, 0) +R) ⊂ T (1). By definition of R we have

h(π(1, 0, 0) +R) =

a⋃

k=1

(h(π(k, 0, 0)) + h2(T (1))) ∪
b⋃

k=1

(h(π(k, 0, 0)) + h2(T (2))). (6.7)

On the other hand, by (6.1), we have

T (1) ⊃h(T (1)) ∪ h(T (2)) ∪ h(T (3))

=
a−1⋃

k=0

(h(π(k, 0, 0)) + h2(T (1))) ∪
b−1⋃

k=0

(h(π(k, 0, 0)) + h2(T (2))) ∪ (h(π(0, 0, 0)) + h2(T (3)))

∪ (h(π(a, 0, 0)) + h2(T (1))) ∪ (h(π(b, 0, 0)) + h2(T (2)))

which contains the set (6.7) and thus yields the claim. Observing that T (1) ⊃ h3i(T (1)) and that
by the claim h3i+1(π(1, 0, 0)+R) ⊂ h3i(T (1)) for all i ∈ N we obtain the assertion from (6.6).

Lemma 6.4. Let m(a, b) = 1. For each O ⊂ O([i, γ, j]) of each vertex [i, γ, j] of G
(B)
srs with γ 6= 0

there exists a vertex [i′, γ′, j′] of L(a, b) with [γ′, j′] ∈ Γlat\({0}×A) such that one of the following
conditions hold:

1. i = i′ and O ⊂ γ′ + T (j′);

2. i = j′ and O ⊂ −γ′ + T (i′).
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Proof. We prove the lemma by analysing the vertices of G
(B)
srs one by one. Since for every

O ∈ O([i, γ, j]) we have O ⊂ γ + T (j) the lemma holds for all vertices [i, γ, j] with γ ∈
{π(0, 1,−1), π(1, 0,−1), π(1,−1, 0)}. Indeed, these vertices appear in L(a, b) too. Thus, we have
6 more vertices to investigate.

[1, π(0, 0, 1), 1]: For convenience, define the 3 sets

C :={π(k, 0, 1) + h(T (1))| b− 1 ≤ k ≤ a− 2},

D :={π(a− 1, 0, 1) + h(T (1))},

E :={π(b− 1, 0, 1) + h(T (2))}.

Using Lemma 6.2 we easily obtain that

O([1, π(0, 0, 1), 1]) = C ∪D ∪ E.

We claim that the vertices [i′, π(1, 0,−1), 1] for i′ ∈ {1, 2, 3} cover all elements of C, D and
E according to (2). Indeed, the triples are vertices of L(a, b), [π(1, 0,−1), 1] ∈ Γlat \ {0}×A
and at the third position we find 1. Furthermore, by (6.1), we have that

−π(1, 0,−1) + B(1) ⊃ {π(k, 0, 1) + h(T (1))| b − 1 ≤ k ≤ a− 1} = C

−π(1, 0,−1) + B(2) = {π(a− 1, 0, 1) + h(T (1))} = D

−π(1, 0,−1) + B(3) = {π(b− 1, 0, 1) + h(T (2))} = E,

which proves the claim.

[i, π(0, 0, 1), 2]: The vertex with i = 1 always occurs while i = 2 only exists for a = b. However,
we have

O([1, π(0, 0, 1), 2]) = O([2, π(0, 0, 1), 2]) = {π(a, 0, 1) + h(T (1))}.

Now (6.1) and Lemma 6.3 yield

π(a, 0, 1) + h(T (1)) = π(0, 0, 1) + T (2) ⊂ π(0,−1, 1) + T (1).

Since [1, π(0, 1,−1), 1] as well as [1, π(0, 1,−1), 2] occur in L(a, b) the case is accomplished.

[1, π(0, 1, 0), 1]: Note that [2, (1,−1, 0), 1] is a vertex of L(a, b). Also,

O([1, π(0, 1, 0), 1]) = {π(a− 1, 1, 0) + h(T (1))} = {π(−1, 1, 0) + T (2)},

where we used (6.1). This proves the lemma in this case.

[1, π(1,−1, 1), 1]: We have for b ≥ 2

O([1, π(1,−1, 1), 1]) ={π(k,−1, 1) + h(T (1))| 1 ≤ k ≤ b− 2}

∪ {π(k,−1, 1) + h(T (2))| 1 ≤ k ≤ b− 1}.

(there is nothing to prove for b = 1). Using (6.1) we easily obtain that π(0,−1, 1) + T (1)
covers all elements of O([1, π(1,−1, 1), 1]). This finishes the case since [1, π(0, 1,−1), 1] is a
vertex of L(a, b).

[2, π(1,−1, 1), 1]: We have

O([2, π(1,−1, 1), 1]) = {π(b − 1,−1, 1) + h(T (1)), π(b − 1,−1, 1) + h(T (2)),

π(b,−1, 1) + h(T (2))}.

Now observe that {π(b − 1, 0, 0) + h(T (1)), π(b − 1, 0, 0) + h(T (2))} ⊂ B(1) and B(3) =
{(π(b, 0, 0)+h(T (2))}. Hence, the lemma is proved since [3, π(0, 1,−1), 2] and [1, π(0, 1,−1), 2]
are vertices of L(a, b).
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We are finally able to prove Theorem 3.4. However, we will exactly go through the proof to
show which conditions we need.

Proof of Theorem 3.5. We already know from Theorem 3.4 that L(a, b) is a subgraph of G
(B)
lat .

Thus, we just have to prove that L(a, b) contains G
(B)
lat . At first we show that each vertex

[̃i, γ̃, j̃] of G
(B)
lat with [γ̃, j̃] ∈ Γlat \ {0} × A is also a vertex of L(a, b). Let ξ ∈ γ̃ + T (j̃) ∩ T (̃i).

The tiles are the closure of their interiors, hence, there exists a sequence (ξn)n∈N of interior points
of γ̃ + T (j̃) that converges to ξ. For each n ∈ N we can find an εn > 0 such that the open ball
K(ξn, εn) is completely contained in the interior of γ̃ + T (j̃). Since σ has the tiling property, we
conclude that none of the ξn is contained in T (̃i).

Now consider the aperiodic tiling induced by σ. We use the covering property to deduce that
each of the ξn is contained in some translate of the self-replicating tiling. By the local finiteness,
there are only finitely many possibilities. Thus, suppose that γ+T (j) (with [γ, j] ∈ Γsrs) contains
ξn for infinitely many n ∈ N. By the above considerations and, again, by the tiling property we
conclude that γ 6= 0. Since γ + T (j) is compact and contains an infinite subsequence of ξn, it
necessarily includes the limit point ξ, too. Thus, γ+T (j)∩T (̃i) 6= ∅ which makes [̂i, γ, j] a vertex

of G
(B)
srs . Furthermore, as γ+T (j) includes points of the sequence (ξn)n∈N, it necessarily intersects

with the respective neighbourhoods K(ξn, ǫn). This shows that int (γ+T (j))∩ int (γ̃+T (j̃)) 6= ∅.
Now divide the subtile T (j) with respect to (6.1). Then there must be at least one B ∈ B(j)

such that γ + B includes ξn for infinitely many n ∈ N. Similarly as before we have int (γ + B) ∩
int (γ̃+T (j̃)) 6= ∅ and ξ ∈ γ+B. The latter relation yields γ+B ∈ O([̃i, γ, j]). By Lemma 6.4 there
exists a vertex [i′, γ′, j′] ∈ L(a, b) with [γ, j′] ∈ Γlat\{0}×A such that i′ = ĩ and γ+B ⊂ γ′+T (j′)
or j′ = ĩ and γ+B ⊂ −γ′+T (i′). We claim that, in fact, the first relation holds. Indeed, suppose
the second relation would hold. Then

int (γ̃ + T (j̃)) ∩ int (−γ′ + T (i′)) 6= ∅

and, by the tiling property of σ, γ̃ + T (j̃) = −γ′ + T (i′). Hence, [j̃,−γ̃, ĩ] would be a vertex of

L(a, b). But [̃i, γ̃, j̃] is a vertex of that G
(B)
lat with γ̃ 6= {0}. Thus, by definition, 〈x,vβ〉 > 0 where

γ̃ = π(x). The same consideration apply for L(a, b) which shows that [j̃,−γ̃, ĩ] impossibly can be a
vertex of L(a, b). Therefore, the first relation must hold necessarily. Now, the same considerations
yield that [̃i, γ̃, j̃] is a vertex of L(a, b).

From the first part of the proof we can deduce that, whenever [i′, γ′, j′] with [γ′, j′] ∈ Γlat \

{0} × A is a vertex of G
(B)
lat , it is also a vertex of L(a, b). Note that these 7 vertices (or only 6

vertices if a = b < 4) are also vertices of G
(B)
srs . By Definition 2.1, G

(B)
srs contains all infinite paths

starting from one of these vertices. Since L(a, b) also contains all of these paths, we conclude that

L(a, b) contains G
(B)
lat .

7. Comments

Wewant to say a few words on possible proofs of Conjecture 3.6. For a, b that satisfym(a, b) ≤ k

for a given constant k the same strategy seems to work. But it requires additional assertions in the
spirit of Lemma 6.3. The following considerations may yield another strategy. The sets O([i, γ, j])
induce a neighbourhood of the central tile. By Lemma 6.2 it corresponds to the paths of length 1

of G
(B)
srs . One may obtain a smaller neighbourhood by considering a refinement of O([i, γ, j]). This

would lead us to investigate longer paths of G
(B)
srs . This will involve very lengthy hand calculations.

We should rather use a computational implementation.
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ANNEX - Execution of the algorithmic proofs

Here we carefully execute the algorithmic parts of our proofs.

7.1. Algorithmic parts of Lemma 5.2.

Table 9 and Table 11, respectively, represent edges between several vertices. We will determine
the strongly connected components algorithmically by successively deleting vertices that have no
incoming nor outgoing edges.

We start with Table 9. It induces 6 vertices shown in Table 12.

[1, π(t,−t, t), 1] [1, π(t,−t, t), 2] [2, π(t,−t, t), 1] [2, π(t,−t, t), 2] [3, π(t,−t, t), 1] [3, π(t,−t, t), 2]

Table 12

We will now repeat the following two steps:

a) find vertices that have no incoming (outgoing, respectively) edge and delete the respective
cells in Table 12;

b) delete the cells in Table 9 that correspond to edges that end (start, respectively) in vertices
that we deleted in a);

until we cannot find suitable vertices in a) any more.
The application reads as follows4.

Step 1a) remove [1, π(t,−t, t), 2], [2, π(t,−t, t), 2] and [3, π(t,−t, t), 2] since none of these vertices has
an outgoing edge;

Step 1b) remove (1, 1) → (1, 2), (3, 1) → (1, 2), (1, 1) → (2, 2), (3, 1) → (2, 2), (1, 1) → (3, 2) and
(3, 1) → (3, 2);

Step 2a) remove [3, π(t,−t, t), 1] since the vertex has no outgoing edge;

Step 2b) remove (1, 1) → (3, 1) and (2, 1) → (3, 1);

What remains are the vertices and edges that are highlighted in grey in Table 12 and Table 9,
respectively.

The edges denoted in Table 11 induce the 36 vertices given in Table 13.

[1, π(0, 1, 0), 1] [2, π(0, 1, 0), 1] [3, π(0, 1, 0), 1]
[1, π(0, 1,−1), 1] [1, π(0, 1,−1), 2] [1, π(0, 1,−1), 3] [2, π(0, 1,−1), 1] [2, π(0, 1,−1), 2] [2, π(0, 1,−1), 3]
[3, π(0, 1,−1), 1] [3, π(0, 1,−1), 2] [3, π(0, 1,−1), 3]
[1, π(1, 0,−1), 1] [1, π(1, 0,−1), 2] [1, π(1, 0,−1), 3] [2, π(1, 0,−1), 1] [2, π(1, 0,−1), 2] [2, π(1, 0,−1), 3]
[3, π(1, 0,−1), 1] [3, π(1, 0,−1), 2] [3, π(1, 0,−1), 3]
[1, π(1,−1, 0), 1] [1, π(1,−1, 0), 2] [1, π(1,−1, 0), 3] [2, π(1,−1, 0), 1] [2, π(1,−1, 0), 2] [2, π(1,−1, 0), 3]
[3, π(1,−1, 0), 1] [3, π(1,−1, 0), 2] [3, π(1,−1, 0), 3]
[1, π(1,−1, 1), 1] [1, π(1,−1, 1), 2] [2, π(1,−1, 1), 1] [2, π(1,−1, 1), 2] [3, π(1,−1, 1), 1] [3, π(1,−1, 1), 2]

Table 13

We use the same procedure as before:

a) find vertices that have no incoming (outgoing, respectively) edge and delete the respective
cells in Table 13;

b) delete the cells in the respective blocks in Table 11 that correspond to edges that end (start,
respectively) in vertices that we deleted in a);

4Of course, the order for the removal of vertices is not specified. We present an order that requires a few steps
only. However, the algorithm always terminates and necessarily yields the same result but more steps might be
necessary.
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until we cannot find suitable vertices in a) any more.
Application yields:

Step 1a) remove [2, π(0, 1, 0), 1] and [3, π(0, 1, 0), 1] since none of these vertices has an outgoing edge;

Step 1b) remove (1, 1) → (2, 1), (1, 3) → (2, 1), (2, 1) → (2, 1), (2, 3) → (2, 1), (1, 1) → (3, 1), (2, 1) →
(3, 1) from Block 4

Step 2a) remove [1, π(1,−1, 0), 1], [1, π(1,−1, 0), 2], [1, π(1,−1, 0), 3], [2, π(1,−1, 0), 2], [2, π(1,−1, 0), 3],
[3, π(1,−1, 0), 2], [3, π(1,−1, 0), 3] since none of these vertices has an outgoing edge;

Step 2b) remove (1, 1) → (1, 1), (1, 2) → (1, 1), (2, 2) → (1, 1), (1, 1) → (1, 2), (1, 3) → (1, 2), (2, 3) →
(1, 2), (1, 1) → (1, 3), (1, 1) → (2, 2), (1, 3) → (2, 2), (3, 3) → (2, 2), (1, 1) → (2, 3), (1, 1) →
(3, 2), (1, 3) → (3, 2), (1, 1) → (3, 3) from Block 2 and (1, 1) → (1, 1), (2, 1) → (1, 1),
(1, 1) → (1, 2) , (3, 1) → (1, 2), (1, 1) → (2, 2), (3, 1) → (2, 2), (1, 1) → (3, 2), (3, 1) → (3, 2)
from Block 7;

Step 3a) remove [1, π(0, 1,−1), 3] since the vertices has no incoming edge;

Step 3b) remove (1, 3) → (1, 2), (1, 3) → (2, 2), (1, 3) → (3, 2) from Block 3;

Step 4a) remove [2, π(0, 1,−1), 1], [2, π(0, 1,−1), 2], [2, π(0, 1,−1), 3], [3, π(0, 1,−1), 1], [3, π(0, 1,−1), 3]
since none of these vertices has an outgoing edge;

Step 4b) remove (1, 1) → (2, 1), (1, 3) → (2, 1), (2, 1) → (2, 1), (2, 3) → (2, 1), (3, 1) → (2, 2), (1, 1) →
(3, 1), (2, 1) → (3, 1) from Block 5;

Step 5a) remove [1, π(1, 0,−1), 2], [1, π(1, 0,−1), 3], [2, π(1, 0,−1), 2], [2, π(1, 0,−1), 3], [3, π(1, 0,−1), 2],
[3, π(1, 0,−1), 3] since none of these vertices has an outgoing edge;

Step 5b) remove (1, 1) → (1, 2), (1, 1) → (1, 3), (1, 1) → (2, 2), (1, 1) → (2, 3), (1, 1) → (3, 2), (1, 1) →
(3, 3) from Block 1 and (3, 1) → (1, 2), (3, 1) → (2, 2), (3, 1) → (3, 2) from Block 6;

Step 6a) remove [3, π(1,−1, 0), 1] since the vertices has no outgoing edge;

Step 6b) remove (1, 1) → (3, 1) from Block 2 and (1, 1) → (3, 1), (2, 1) → (3, 1) from Block 7;

Step 7a) remove [1, π(1,−1, 1), 2], [2, π(1,−1, 1), 2], [3, π(1,−1, 1), 2] since none of these vertices has
an outgoing edge;

Step 7b) (1, 1) → (1, 2), (1, 1) → (2, 2), (1, 1) → (3, 2) from Block 3 and (1, 1) → (1, 2), (3, 1) → (1, 2),
(1, 1) → (2, 2), (3, 1) → (2, 2), (1, 1) → (3, 2), (3, 1) → (3, 2) from Block 8;

Step 8a) remove [3, π(1,−1, 1), 1] since the vertices has no outgoing edge;

Step 8b) remove (1, 1) → (3, 1) and (1, 2) → (3, 1) from Block 3 and (1, 1) → (3, 1), (2, 1) → (3, 1)
from Block 8;

The resulting vertices and edges are highlighted in grey in Table 13 and Table 11, respectively.

7.2. Algorithmic part of Proof of Theorem 3.2.

Remember that we wish to prove the following claim.
Claim. No more edges (nor vertices) satisfying Items 1. and 2. of Theorem 4.1 can be added

to S(a, b).
We carry out the following algorithm. We go through all types of vertices of S(a, b) and

investigate the possible incoming edges:

• we use Lemma 4.2 to show that a predecessor [i, γ, j] of a vertex [i′, γ′, j′] can obtain at most
two different values for γ;

• we use Lemma 4.5 to determine i and j.

The #-letters refer to the names of the vertices we used in Ajacency Table 1 to 3.

Vertices of the form [i′, π(0, 0, 0), j′]: By Lemma 4.2 the only possible incoming edges have an
initial vertex of the shape [i, π(0, 0, 0), j]. Moreover, i < j by the definition of the self-
replicating boundary graph. We have to investigate the following pairs.
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(i′, j′) = (1, 2) (#J1): We use Table 8 to find out the possible edges. In column (1, 2) there
occur three lists that may include 0. The list in line (1, 1) is not relevant since i = j = 1
is not allowed. Hence, we only consider (i, j) = (1, 3) or (i, j) = (2, 3). For a = b row
(1, 3) contains strictly positive values only, hence, this edge cannot occur in this case.
For a 6= b we consult Γσ and see that there is only one edge from 3 to 2 labelled by
(1b, 3, ε).

Hence, we have only one possible edge [1, π(0, 0, 0), 3]
π(b,0,0)
−−−−−→ [1, π(0, 0, 0), 2] (#K1 →

#J1, Type 1). Analogously, (i, j) = (2, 3) gives one edge from [2, π(0, 0, 0), 3] (#L1)
labelled by π(a, 0, 0) provided that a = b. In both cases the edges can already be found
in Adjacency Table 1.

(i′, j′) = (1, 3) (#K1) or (2, 3) (#L1): These vertices cannot have any incoming edge since
in columns (1, 3) and (2, 3) of Table 8 the only list including 0 is the one in row (1, 1),
which is not relevant here.

Vertices of the form [i′, π(0, 0, 1), j′]: Similar as above, [i, π(0, 0, 0), j] with i < j is the only
type of predecessor. The significant difference equals 1 and, thus, we are looking for the
entry 1 in Table 8. In particular,

(i′, j′) = (1, 1) (#A1): Since i < j we see by Table 8 that (i, j) = (1, 2) (#J1) is the only
possibility and gives only one edge (which is already included in S(a, b)).

(i′, j′) = (1, 2) (#B1): In column (1, 2) of Table 8 the only row that contains 1 is the row
(1, 3). The corresponding edge starts in [1, π(0, 0, 0), 3] (#K1) and is contained in
S(a, b).

(i′, j′) = (2, 2) (#M1): Similarly as before, row (1, 3) is the only row that contains 1 in
column (2, 2) of Table 8. The corresponding edge (#K1 → #M1) is contained in
S(a, b) provided that [2, π(0, 0, 1), 2] is contained in S(a, b), i.e., b = 1.

The vertex [1, π(0, 1, 0), 1] (#N1): By Lemma 4.2 the incoming edges of Type 1 start in vertices
of the form [i, π(0, 0, 1), j] with the significant difference b > 0. In the corresponding column
of Table 8 we find that row (1, 2) includes b. The associated edge (#B1 → #N1) is already
included in S(a, b). Row (1, 1) includes b provided that a 6= b, and in Γσ there are a − b

possibilities to choose edges (p1, 1, s1) and (p2, 1, s2) from 1 to 1 such that l(p2) − l(p1) =
(b, 0, 0). All the edges (#A1 → #N1) appear in S(a, b). All incoming edges of Type 2
start from vertices of the type [i, π(1, 0,−1), j]. Now observe that we already collected all
possibilities in Block 4 in Table 11 in Lemma 5.2. There are two cells whose right entry
equals (1, 1). Their left entries give the possible pairs (i, j). The first one is (1, 1) (#G1)
and yields a− b− 1 edges (hence, edges only if a ≥ b+ 2), the other one is (2, 1) (#E1) and
yields one edge provided that a 6= b. The edges are included in S(a, b).

Vertices of the form [i′, π(0, 1,−1), j′]: The incoming edges of Type 1 have initial vertices of
the shape [i, π(0, 0, 1), j] with significant difference b − 1 ≥ 0. As [π(0, 0, 1), 3] 6∈ Γsrs we
conclude that j 6= 3.

(i′, j′) = (1, 1) (#C1): S(a, b) includes a − b − 1 edges that start in [1, π(0, 0, 1), 1] (#A1).
There is also another edge that starts in [1, π(0, 0, 1), 2] (#B1) if b > 1, and in [2, π(0, 0, 1), 2]
(#M1) if b = 1. By Table 8 and Γσ there is no other possibility.

(i′, j′) = (1, 2) (#D1) or (3, 2) (#O1): By Table 8 the only possibility is (i, j) = (1, 1)
(#A1) since j = 3 is not allowed.

We already investigated the incoming edges of Type 2 in the proof of Lemma 5.2. They are
of Shape 5, start in vertices of the form [i, (1, 0,−1), j] and Block 5 gives the possible pairs.
All 4 cells that we find there correspond to edges that are included in S(a, b) (#E1 → #C1,
#F1 → #D1, #F1 → #O1, #G1 → #C1).
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The vertex [2, π(1,−1, 0), 1] (#P1) and vertices of the form [i′, π(1, 0,−1), j′] (#E1, #F1, #G1):
In the blocks 1, 2, 6 and 7 of Table 11 in Lemma 5.2 we can check that actually all possible
incoming edges are already included in S(a, b).

Vertices of the form [i′, π(t,−t, t), j′]: The incoming edges of Type 1 have initial vertices of the
shape [i, π(1− t, t,−t), j] with significant difference t(a− b+2)− 1 = δt− 1 > a− b, those of
Type 2 start in vertices of the form [i, π(t,−t, t), j] with significant difference t(a− b+ 2) =
δt > a− b + 1 > 0. We already studied the latter ones detailed in Lemma 5.2. We see that
there cannot be other incoming edges than those that are included in S(a, b). For examining
the possible edges of Type 1 we investigate the three vertices of the present form.

(i′, j′) = (1, 1) (#It for t = 1, . . . ,m(a, b)): Note that column (1, 1) of Table 8 shows two
lists that include strictly positive entries: the rows (1, 1) and (1, 2). The first one gives
a− δt + 1 edges starting from [1, π(1 − t, t,−t), 1] (#Ct). The other one gives an edge
starting from [1, π(1− t, t,−t), 2] (#Dt).

(i′, j′) = (2, 1) (#Ht for t = 1, . . . ,m(a, b)): Again, we consult Table 8 and find two lists
with suitable entries, (1, 1) and (1, 2). They give the edges that are included in S(a, b).

(i′, j′) = (3, 1) (#Qt+1 for t = 1, . . . ,m(a, b)− 1): Note that t ≤ m(a, b) − 1 induces that
δt < a. Thus, in Table 8 the only row of interest is (1, 1). It gives the edge starting
from [1, π(1− t, t,−t), 1] (#Ct).

Vertices of the form [i′, π(2− t, t− 1,−t), j′] (for t = 2, . . . ,m(a, b)): Incoming edges of Type
1 can only start at vertices of the form [i, π(t − 2, 2 − t, t− 1), j] with significant difference
a− (t− 1)(a− b+ 2) = a− δt−1 > 0, those of Type 2 start at vertices of the form [i, π(3−
t, t− 2, 1− t), j] with significant difference a− (t− 1)(a− b+ 2) + 1 = a− δt−1 + 1 > 0.

(i′, j′) = (1, 1) (#Gt): The two rows which have positive entries in column (1, 1) of Table 8 are
(1, 1) and (1, 2). They induce the a − δt−1 + 1 edges of Type 1 starting at [1, π(t − 2, 2 −
t, t − 1), 1] (#At−1) and the single edge of Type 1 starting at [1, π(t − 2, 2 − t, t − 1), 2]
(#Bt−1) that are included in S(a, b). On the other hand, the edges of Type 2 start in
[1, π(3− t, t− 2, 1− t), 1] (#Gt−1) and [2, π(3− t, t− 2, 1− t), 1] (#Et−1) and are included
in S(a, b), too.

(i′, j′) = (2, 1) (#Et): In Table 8 we find in column (2, 1) that the rows (1, 1) and (1, 2) yield the
edges of Type 1 (starting in #At−1 and #Bt−1) that are included in S(a, b). Note that by
the definition of m(a, b) we have a− (t− 1)(a− b+2) > a− b+2 > a− b and, hence, neither
(i, j) = (3, 1) nor (i, j) = (3, 2) come into question. For edges of Type 2 we only have the
possibilities (i, j) = (1, 1) (#Gt−1) and (i, j) = (2, 1) (#Et−1) and obtain edges that already
are contained in S(a, b). For the same reason as before, (i, j) cannot be (1, 3) or (2, 3).

(i′, j′) = (3, 1) (#Ft): Similar as before, we see that there is always one incoming edge of Type 1
starting at [1, π(t−2, 2−t, t−1), 1] (#At−1) and of Type 2 starting at [1, π(3−t, t−2, 1−t), 1]
(#Gt−1). Since a− δt−1 < a− (t−1)(a− b+2)+1 ≤ a−1 < a we cannot have (i, j) = (1, 2)
(Type 1) or (i, j) = (2, 1) (Type 2), respectively.

Vertices of the form [i′, π(t− 1, 1− t, t), j′] (for t = 2, . . . ,m(a, b)): The incoming edges orig-
inate in [i, π(2−t, t−1, 1−t), j] (Type 1 with significant difference (t−1)(a−b+2) = δt−1) and
[i, π(t−1, 1−t, t−1), j] (Type 2 with significant difference (t−1)(a−b+2)+1 = δt−1+1 > 1).
Note that δt−1 ≤ b− 2.

(i′, j′) = (1, 1) (#At): Analogously as before we easily find that the only possible incoming edges
of Type 1 are a − δt−1 edges starting at [1, π(2 − t, t − 1, 1 − t), 1] (#Ct−1) and one edge
starting at [1, π(2 − t, t − 1, 1 − t), 2] (#Dt−1). The incoming edges of Type 2 start at
[1, π(t− 1, 1− t, t− 1), 1] (#It−1, a− δt−1 − 1 edges) and [2, π(t− 1, 1− t, t− 1), 1] (#Ht−1,
one edge).
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(i′, j′) = (1, 2) (#Bt): In Table 8 we find that the lists in row (1, 1) and (1, 3) include suitable
values. Indeed, [1, π(2− t, t−1, 1− t), 1] (#Ct−1) is the origin of b−δt−1 edges of Type 1. By
(5.1) we see that [π(2− t, t− 1, 1− t), 3] 6∈ Γsrs and, hence, j = 3 is no option. On the other
hand, for the the edges of Type 2 we have one edge starting at [3, π(t−1, 1−t, t−1), 1] (#Qt)
besides the b − δt−1 − 1 incoming edges that have their origin in [1, π(t − 1, 1 − t, t − 1), 1]
(#It−1).

Vertices of the form [i′, π(1− t, t,−t), j′] (for t = 2, . . . ,m(a, b)): The incoming edges of Type
1 have initial vertices of the form [i, π(t−1, 1− t, t), j] with significant difference a− t(a−b+
2)+1 = a−δt+1 > 0, those of Type 2 originate in vertices of the shape [i, π(2−t, t−1,−t), j]
with significant difference a− t(a− b+ 2) + 2 = a− δt + 2 > 2 > 0.

(i′, j′) = (1, 1) (#Ct): We see that for an edge of Type 1 we must have (i, j) ∈ {(1, 1), (1, 2)} and,
respectively, (i, j) ∈ {(1, 1), (2, 1)} for an edge of Type 2. All possible edges (from #At,
#Bt, #Gt, #Et) are included in S(a, b).

(i′, j′) = (1, 2) (#Dt): (i, j) = (1, 1) (#At) is the only option for edges of Type 1. (i, j) = (1, 3) is
not possible since [π(t−1, 1−t, t), 3] 6∈ Γsrs (see (5.1)). (i, j) = (1, 1) (#Gt) and (i, j) = (3, 1)
(#Ft) give the only possibilities for edges of Type 2. Since all these edges are contained in
S(a, b) we finally showed the claim.
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[9] V. Berthé, A. Siegel, W. Steiner, P. Surer, and J. M. Thuswaldner, Fractal tiles
associated with shift radix systems, Adv. Math., 226 (2011), pp. 139–175.

[10] V. Canterini, Connectedness of geometric representation of substitutions of Pisot type, Bull.
Belg. Math. Soc. Simon Stevin, 10 (2003), pp. 77–89.

31



[11] V. Canterini and A. Siegel, Automate des préfixes-suffixes associé à une substitution
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