A comparison of topologies on the fundamental group

Žiga Virk, Andreas Zastrow

IST Austria

Salzburg, September 12, 2017

Setting

(X, x_0) based path connected space.

- 1. path space $PX = \{ \alpha \colon (\mathbb{I}, 0) \to (X, x_0) \}$
- 2. loop space $LX = \{ \alpha \colon (\mathbb{I}, \partial \mathbb{I}) \to (X, x_0) \}$

Quotient via homotopy \sim :

- 1. universal covering space $\widetilde{X} = PX / \sim$
- 2. fundamental group $\pi_1(X,x_0)=LX/\sim$

How to topologize them?

Whisker and Lasso topology on π_1

Definition

Whisker basis neighborhood for $\alpha \in LX, x_0 \in U$ open:

```
N^{w}([\alpha], U) = \{ [\alpha * \delta] \mid \delta \subset U \}
```

Used for classical covering spaces (Spanier, ...).

Definition

For open cover \mathcal{U} of X (a normal) subgroup $\pi_1(\mathcal{U}, x_0) \leq \pi_1(X, x_0)$ is generated by $\beta * \delta * \beta^-$ with $\delta \subset U$ for some $U \in \mathcal{U}$. **Lasso** basis neighborhood for $\alpha \in LX$ and an open cover \mathcal{U} of X:

$$N^{\ell}([\alpha], \mathcal{U}) = [\alpha] * \pi_1(\mathcal{U}, x_0) = \pi_1(\mathcal{U}, x_0) * [\alpha]$$

Defined by Brodsky, Dydak, Labuz, Mitra. $\pi_1^{\ell}(X, x_0)$ is always a topological group.

CO and τ topologies

Definition

CO topology is the quotient of the compact open topology. Fabel: $\pi_1^{CO}(HE, 0)$ is not a topological group.

Definition

 τ is the strongest topology contained in *CO*, making $\pi_1^{\tau}(X, x_0)$ a topological group. Defined by Brazas. $\pi_1^{\tau}(X, x_0)$ is always a topological group. τ weaker than *CO*.

Topologies agree for semi-locally simply connected spaces.

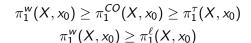
Comparison in the LPC case

$$\pi_1^w(X, x_0) \ge \pi_1^{CO}(X, x_0) \ge \pi_1^{\tau}(X, x_0) \ge \pi_1^{\ell}(X, x_0)$$

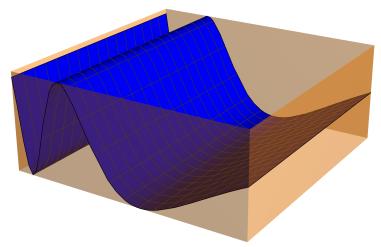
Strict inequalities obtained for *HE*. Use:

- ► Fischer, Zastrow: there exists an open subgroup G of π₁^{CO}(HE, x₀) which does not contain any nontrivial normal subgroup of π₁^{CO}(HE, x₀)
- Lasso topology is in a way uniform. CO is not

Comparison in general



No other relation holds.



- The comparison on \widetilde{X} is the same.
- Topology ~ on X is the strongest topology weaker than CO topology for which the action

$$\pi_1(X, x_0) \times \widetilde{X} \to \widetilde{X}$$

is continuous.

$$\quad \bullet \quad \tilde{\tau}|_{\pi_1(X,x_0)} = \tau$$

Fundamental grupoid?