An introduction to *p*-adic systems: A new kind of number system Mario Weitzer Graz University of Technology, Austria 19th ÖMG Congress and Annual DMV Meeting Salzburg, September 13, 2017 Let $$\frac{T_C}{T_C}: \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Let $$\frac{T_C}{T_C}: \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_C iteratively: Let $$\frac{T_C}{T_C}: \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_C iteratively: 17 Let $$\frac{T_C}{T_C}: \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_C iteratively: 17 $\xrightarrow{T_C}$ 26 Let $$\frac{T_C}{T_C}: \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_C iteratively: 17 $\xrightarrow{T_C}$ 26 $\xrightarrow{T_C}$ 13 Let $$\frac{T_C}{1}: \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_C iteratively: 17 $\xrightarrow{T_C}$ 26 $\xrightarrow{T_C}$ 13 $\xrightarrow{T_C}$ 20 Let $$T_C: \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_C iteratively: $17 \xrightarrow{T_C} 26 \xrightarrow{T_C} 13 \xrightarrow{T_C} 20 \xrightarrow{T_C} 10$ Let $$T_C : \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_C iteratively: 17 $\xrightarrow{T_C}$ 26 $\xrightarrow{T_C}$ 13 $\xrightarrow{T_C}$ 20 $\xrightarrow{T_C}$ 10 $\xrightarrow{T_C}$ 5 Let $$\frac{T_C}{T_C}: \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_C iteratively: 17 $\xrightarrow{T_C}$ 26 $\xrightarrow{T_C}$ 13 $\xrightarrow{T_C}$ 20 $\xrightarrow{T_C}$ 10 $\xrightarrow{T_C}$ 5 $\xrightarrow{T_C}$ 8 Let $$\overline{T_C}: \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_C iteratively: $17 \xrightarrow{T_C} 26 \xrightarrow{T_C} 13 \xrightarrow{T_C} 20 \xrightarrow{T_C} 10 \xrightarrow{T_C} 5 \xrightarrow{T_C} 8$ Let $$\overline{T_C}: \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_C iteratively: $17 \xrightarrow{T_C} 26 \xrightarrow{T_C} 13 \xrightarrow{T_C} 20 \xrightarrow{T_C} 10 \xrightarrow{T_C} 5 \xrightarrow{T_C} 8$ Let $$T_C : \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_C iteratively: $17 \xrightarrow{T_C} 26 \xrightarrow{T_C} 13 \xrightarrow{T_C} 20 \xrightarrow{T_C} 10 \xrightarrow{T_C} 5 \xrightarrow{T_C} 8$ Let $$T_C : \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_C iteratively: $17 \frac{T_C}{T_C} 26 \frac{T_C}{T_C} 13 \frac{T_C}{T_C} 20 \frac{T_C}{T_C} 10 \xrightarrow{T_C} 5 \frac{T_C}{T_C} 8$ Let $$T_C : \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_C iteratively: $17 \frac{T_C}{T_C} 26 \frac{T_C}{T_C} 13 \frac{T_C}{T_C} 20 \frac{T_C}{T_C} 10 \frac{T_C}{T_C} 5 \frac{T_C}{T_C} 8$ Let $$T_C : \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_C iteratively: $17 \xrightarrow{T_C} 26 \xrightarrow{T_C} 13 \xrightarrow{T_C} 20 \xrightarrow{T_C} 10 \xrightarrow{T_C} 5 \xrightarrow{T_C} 8$ Let $$\frac{T_C}{T_C}: \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Collatz conjecture: All orbits of T_C end up in the cycle (1,2) Let $$T_C : \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply $$T_C$$ iteratively: 17 $\frac{T_C}{\longrightarrow}$ 26 $\frac{T_C}{\longrightarrow}$ 13 $\frac{T_C}{\longrightarrow}$ 20 $\frac{T_C}{\longrightarrow}$ 10 $\frac{T_C}{\longrightarrow}$ 5 $\frac{T_C}{\longrightarrow}$ 8 $\frac{T_C}{\longrightarrow}$ 4 $\frac{T_C}{\longrightarrow}$ 2 $\frac{T_C}{\longrightarrow}$ 1 $\frac{T_C}{\longrightarrow}$ 2 $\frac{T_C}{\longrightarrow}$ 1 $\frac{T_C}{\longrightarrow}$... Collatz conjecture: All orbits of T_C end up in the cycle (1,2) Tested up to 2^{60} , open for 80 years Let $$T_C : \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Collatz conjecture: All orbits of T_C end up in the cycle (1,2) Tested up to 2^{60} , open for 80 years Question for ultimate behaviour: Extremely hard! Let $T_C : \mathbb{N} \to \mathbb{N}$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Collatz conjecture: All orbits of T_C end up in the cycle (1,2) Tested up to 2^{60} , open for 80 years Question for ultimate behaviour: Extremely hard! Cf.: $$T_2 : \mathbb{N}_0 \to \mathbb{N}_0$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Let $$T_C : \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Tested up to 2^{60} , open for 80 years Question for ultimate behaviour: Extremely hard! Cf.: $$T_2 : \mathbb{N}_0 \to \mathbb{N}_0$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_2 iteratively: Let $$T_C : \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Tested up to 2^{60} , open for 80 years Question for ultimate behaviour: Extremely hard! Cf.: $$T_2 : \mathbb{N}_0 \to \mathbb{N}_0$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_2 iteratively: 17 Let $$T_C : \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Tested up to 2^{60} , open for 80 years Question for ultimate behaviour: Extremely hard! Cf.: $$T_2 : \mathbb{N}_0 \to \mathbb{N}_0$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_2 iteratively: $17 \xrightarrow{T_2} 8$ Let $$T_C : \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Tested up to 2^{60} , open for 80 years Question for ultimate behaviour: Extremely hard! Cf.: $$T_2 : \mathbb{N}_0 \to \mathbb{N}_0$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_2 iteratively: $17 \xrightarrow{T_2} 8 \xrightarrow{T_2} 4$ Let $$T_C: \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Tested up to 2^{60} , open for 80 years Question for ultimate behaviour: Extremely hard! Cf.: $$T_2 : \mathbb{N}_0 \to \mathbb{N}_0$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_2 iteratively: $17 \xrightarrow{T_2} 8 \xrightarrow{T_2} 4 \xrightarrow{T_2} 2$ Let $$T_C : \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Tested up to 2^{60} , open for 80 years Question for ultimate behaviour: Extremely hard! Cf.: $$T_2 : \mathbb{N}_0 \to \mathbb{N}_0$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_2 iteratively: 17 $\xrightarrow{T_2}$ 8 $\xrightarrow{T_2}$ 4 $\xrightarrow{T_2}$ 2 $\xrightarrow{T_2}$ 1 Let $$T_C: \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ $$\begin{array}{c} \text{Apply } T_C \text{ iteratively: } 17 \xrightarrow{T_C} 26 \xrightarrow{T_C} 13 \xrightarrow{T_C} 20 \xrightarrow{T_C} 10 \xrightarrow{T_C} 5 \xrightarrow{T_C} 8 \\ \xrightarrow{T_C} 4 \xrightarrow{T_C} 2 \xrightarrow{T_C} 1 \xrightarrow{T_C} 2 \xrightarrow{T_C} 1 \xrightarrow{T_C} 1 \xrightarrow{T_C} \dots \end{array}$$ Tested up to 2^{60} , open for 80 years Question for ultimate behaviour: Extremely hard! Cf.: $$\frac{T_2}{}: \mathbb{N}_0 \to \mathbb{N}_0$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{n-1}{2} & \text{if } n
\equiv 1 \mod 2 \end{cases}$$ Apply T_2 iteratively: 17 $\xrightarrow{T_2}$ 8 $\xrightarrow{T_2}$ 4 $\xrightarrow{T_2}$ 2 $\xrightarrow{T_2}$ 1 $\xrightarrow{T_2}$ 0 Let $$T_C: \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Tested up to 2^{60} , open for 80 years Question for ultimate behaviour: Extremely hard! Cf.: $$T_2 : \mathbb{N}_0 \to \mathbb{N}_0$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_2 iteratively: 17 $\xrightarrow{T_2}$ 8 $\xrightarrow{T_2}$ 4 $\xrightarrow{T_2}$ 2 $\xrightarrow{T_2}$ 1 $\xrightarrow{T_2}$ 0 $\xrightarrow{T_2}$ 0 Let $$T_C: \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ $$\begin{array}{c} \text{Apply } T_C \text{ iteratively: } 17 \xrightarrow{T_C} 26 \xrightarrow{T_C} 13 \xrightarrow{T_C} 20 \xrightarrow{T_C} 10 \xrightarrow{T_C} 5 \xrightarrow{T_C} 8 \\ \xrightarrow{T_C} 4 \xrightarrow{T_C} 2 \xrightarrow{T_C} 1 \xrightarrow{T_C} 2 \xrightarrow{T_C} 1 \xrightarrow{T_C} 1 \xrightarrow{T_C} \dots \end{array}$$ Tested up to 2^{60} , open for 80 years Question for ultimate behaviour: Extremely hard! Cf.: $$T_2 : \mathbb{N}_0 \to \mathbb{N}_0$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Apply T_2 iteratively: $17 \xrightarrow{T_2} 8 \xrightarrow{T_2} 4 \xrightarrow{T_2} 2 \xrightarrow{T_2} 1 \xrightarrow{T_2} 0 \xrightarrow{T_2} 0 \xrightarrow{T_2} \dots$ Let $$T_C : \mathbb{N} \to \mathbb{N}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ $$\begin{array}{c} \text{Apply } T_C \text{ iteratively: } 17 \xrightarrow{T_C} 26 \xrightarrow{T_C} 13 \xrightarrow{T_C} 20 \xrightarrow{T_C} 10 \xrightarrow{T_C} 5 \xrightarrow{T_C} 8 \\ \xrightarrow{T_C} 4 \xrightarrow{T_C} 2 \xrightarrow{T_C} 1 \xrightarrow{T_C} 2 \xrightarrow{T_C} 1 \xrightarrow{T_C} 1 \xrightarrow{T_C} \dots \end{array}$$ Tested up to 2^{60} , open for 80 years Question for ultimate behaviour: Extremely hard! Cf.: $$T_2 : \mathbb{N}_0 \to \mathbb{N}_0$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ $\mathsf{Apply}\ \, \mathcal{T}_2\ \, \mathsf{iteratively:}\ \, \mathsf{17} \xrightarrow{\mathcal{T}_2} \mathsf{8} \xrightarrow{\mathcal{T}_2} \mathsf{4} \xrightarrow{\mathcal{T}_2} \mathsf{2} \xrightarrow{\mathcal{T}_2} \mathsf{1} \xrightarrow{\mathcal{T}_2} \mathsf{0} \xrightarrow{\mathcal{T}_2} \mathsf{0} \xrightarrow{\mathcal{T}_2} \ldots$ Question for ultimate behaviour: Trivial! What do T_C and T_2 have in common? What do T_C and T_2 have in common? Both define a "number system" on $\ensuremath{\mathbb{N}}$ What do T_C and T_2 have in common? Both define a "number system" on \mathbb{N} : Give "name" to every element ``` What do T_C and T_2 have in common? Both define a "number system" on \mathbb{N}: Give "name" to every element: Infinite string over alphabet \{0,1\} (orbit modulo 2) ``` ``` What do T_C and T_2 have in common? Both define a "number system" on \mathbb{N}: Give "name" to every element: Infinite string over alphabet \{0,1\} (orbit modulo 2) "Name" of 17 w.r.t. 17: usual base 2 expansion 17, ``` ``` What do T_C and T_2 have in common? Both define a "number system" on \mathbb{N}: Give "name" to every element: Infinite string over alphabet \{0,1\} (orbit modulo 2) "Name" of \frac{17}{4} w.r.t. \frac{17}{4}: usual base 2 expansion (17,8,4,2,1,0,\ldots)% 2=(1,0,0,0,1,0,\ldots) "Name" of \frac{17}{4} w.r.t. \frac{17}{4}: \frac{17}{4} ``` ``` What do T_C and T_2 have in common? Both define a "number system" on \mathbb{N}: Give "name" to every element: Infinite string over alphabet \{0,1\} (orbit modulo 2) "Name" of \mathbf{17} w.r.t. T_2: usual base 2 expansion (17,8,4,2,1,0,\ldots)\%\ 2=(1,0,0,0,1,0,\ldots) "Name" of \mathbf{17} w.r.t. T_C: (17,26,13,20,10,5,8,4,2,1,\ldots)\%\ 2=(1,0,1,0,0,1,0,0,0,1,\ldots) Notation: S(T_C)[17]=(17,26,13,20,\ldots): T_C-sequence of ``` ## Tables of sequences: | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | 01
12
23
34
45
56
67
78 | 0
0
0
1
1
1
1
1
2
2
2
2
3
3
3
3
4 | 0
0
0
0
0
0
1
1
1
1
1
1
1 | | |---|---|--|---|---|---| | : | : | ÷ | : | ÷ | • | | $S(T_2)$ | 0 | 1 | 2 | 3 | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | 2
1
5
2
8
3
11
4
14
5
7
20
7
23
8 | 1
2
8
1
4
5
17
2
7
8
26
3
10
11
35
4 | 2
1
4
2
2
8
26
1
11
4
3
5
5
17
53
2 | | |---|---|---|---|--|--| | $S(T_C)$ | 0 | 1 | 2 | 3 | | Tables of expansions: | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | 101010101010 | 0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0 | 0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1 | 0
0
0
0
0
0
0
1
1
1
1
1
1 | | |---|--------------|---|--|---|---| | : | : | : | : | : | · | | $D(T_2)$ | 0 | 1 | 2 | 3 | | Tables of expansions: | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | 1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1 | 0
1
1
0
0
1
1
0
0
1
1
0
0 | 0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
0 | 0
0
0
0
0
0
0
1
1
1
1
1
1
1 | | |---|---|---|---|--|---| | : | : | : | : | : | ٠ | | $D(T_2)$ | 0 | 1 | 2 | 3 | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | 1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0 | 0
1
1
0
0
1
1
0
0
0
1
1
1
0
0 | 1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0 | 0
1
0
0
0
0
0
1
1
1
1
1 | | |---|--|---|--|--|---| | : | : | : | : | : | ٠ | | $D(T_C)$ | 0 | 1 | 2 | 3 | | Tables of expansions: | _ | 123345677891011213144156 | 1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0 |
0
1
1
0
0
1
1
0
0
1
1
1
0
0
1
1
1
0
0
1
1
0
0
1 | 0
0
0
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
0
0 | 0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | 1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0 | 0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 1
0
0
1
0
1
1
0
0
1
1
0
0
1
1
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
1
0
0
0
0
0
0
1
1
1
1
1
1 | | |---|--------------------------|--|--|---|--|--|---|--|---|---|--|--| | | $D(T_2)$ | 0 | 1 | 2 | 3 | | $D(T_C)$ | 0 | 1 | 2 | 3 | | First k digits of expansions of m and n coincide $\Leftrightarrow m \equiv n \mod 2^k$ (Block property) ## Motivation What do T_C and T_2 have in common? Both generalize to the 2-adic integers \mathbb{Z}_2 : $$\frac{T_C}{n}: \mathbb{Z}_2 \to \mathbb{Z}_2$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ $$\frac{T_2}{n}: \mathbb{Z}_2 \to \mathbb{Z}_2$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Both generalize to the 2-adic integers \mathbb{Z}_2 : $$\frac{T_C}{n}: \mathbb{Z}_2 \to \mathbb{Z}_2$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Block property still holds $$\frac{T_2}{n}: \mathbb{Z}_2 \to \mathbb{Z}_2$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Both generalize to the 2-adic integers \mathbb{Z}_2 : $$\frac{T_{C}}{n}: \mathbb{Z}_{2} \to \mathbb{Z}_{2} \qquad \qquad \frac{T_{2}}{n}: \mathbb{Z}_{2} \to \mathbb{Z}_{2}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ Block property still holds Both are piecewise functions with branches for both residue classes mod 2 Both generalize to the 2-adic integers \mathbb{Z}_2 : $$\frac{T_C}{n}: \mathbb{Z}_2 \to \mathbb{Z}_2$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ $$\frac{\mathbf{T_2}}{n}: \mathbb{Z}_2 \to \mathbb{Z}_2$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ ### Block property still holds Both are piecewise functions with branches for both residue classes mod 2 #### Definition p-adic system Both generalize to the 2-adic integers \mathbb{Z}_2 : $$\frac{T_C}{n}: \mathbb{Z}_2 \to \mathbb{Z}_2$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ $$\frac{\mathbf{T_2}}{n}: \mathbb{Z}_2 \to \mathbb{Z}_2$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ ### Block property still holds Both are piecewise functions with branches for both residue classes mod 2 #### Definition p-adic system: ullet piecewise function on \mathbb{Z}_p Both generalize to the 2-adic integers \mathbb{Z}_2 : $$\frac{T_C}{n}: \mathbb{Z}_2 \to \mathbb{Z}_2$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ $$\frac{T_2}{n}: \mathbb{Z}_2 \to \mathbb{Z}_2$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ ### Block property still holds Both are piecewise functions with branches for both residue classes mod 2 #### Definition - *p*-adic system: piecewise function on \mathbb{Z}_p - branches for all residue classes mod p Both generalize to the 2-adic integers \mathbb{Z}_2 : $$\frac{T_C}{n}: \mathbb{Z}_2 \to \mathbb{Z}_2$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ $$\frac{T_2}{n}: \mathbb{Z}_2 \to \mathbb{Z}_2$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2\\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ ### Block property still holds Both are piecewise functions with branches for both residue classes mod 2 #### Definition - *p*-adic system: piecewise function on \mathbb{Z}_p - branches for all residue classes mod p - block property Both generalize to the 2-adic integers \mathbb{Z}_2 : $$\frac{T_C}{T_C}: \mathbb{Z}_2 \to \mathbb{Z}_2 \qquad \qquad \frac{T_2}{T_2}: \mathbb{Z}_2 \to \mathbb{Z}_2$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ $$n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases}$$ ### Block property still holds Both are piecewise functions with branches for both residue classes mod 2 #### Definition *p*-adic system: \bullet piecewise function on \mathbb{Z}_p branches for all residue classes mod p • block property **Notation**: $$T_C = (x, 3x + 1), T_2 = (x, x - 1) = (x, x)$$ Both generalize to the 2-adic integers \mathbb{Z}_2 : $$\begin{array}{c} T_{C}: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2} \\ \\ n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{3n+1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases} \\ \\ n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \mod 2 \\ \frac{n-1}{2} & \text{if } n \equiv 1 \mod 2 \end{cases} \end{array}$$ ### **Block property** still holds Both are piecewise functions with branches for both residue classes mod 2 #### Definition *p*-adic system: \bullet piecewise function on \mathbb{Z}_p • branches for all residue classes mod p block property **Notation**: $$T_C = (x, 3x + 1)$$, $T_2 = (x, x - 1) = (x, x)$ Subtract LSD before division by p if necessary: $(x, x, x)(5) = \frac{5-2}{3} = 1$ Let $T=(T[0],\ldots,T[p-1])$ be a p-adic system $(T[r]:\mathbb{Z}_p o \mathbb{Z}_p)$ Let $T=(T[0],\ldots,T[p-1])$ be a p-adic system $(T[r]:\mathbb{Z}_p o \mathbb{Z}_p)$ • D(T) defines a bijection between \mathbb{Z}_p and $\{0,\ldots,p-1\}^{\mathbb{N}_0}$: Let $T=(T[0],\ldots,T[p-1])$ be a p-adic system $(T[r]:\mathbb{Z}_p o \mathbb{Z}_p)$ • D(T) defines a bijection between \mathbb{Z}_p and $\{0,\ldots,p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs | 1
2
3
4
5
6
7
8 | 1
0
1
0
1
0
1 | 0
1
1
0
0
1
1
0 | 1
0
0
1
0
1
1
0 | 0
1
0
0
0
0
0 | | |--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|---------------------------------|---| | : | : | : | : | : | ٠ | | $\overline{D(T)}$ | 0 | 1 | 2 | 3 | | ``` Let T=(T[0],\ldots,T[p-1]) be a p-adic system (T[r]:\mathbb{Z}_p o \mathbb{Z}_p) ``` - D(T) defines a bijection between \mathbb{Z}_p and $\{0, \dots, p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs - D(T) is uniquely determined by the expansions of the natural numbers: | 1
2
3
4
5
6
7
8 | 1
0
1
0
1
0
1
0 | 0
1
1
0
0
1
1
0 | 1
0
0
1
0
1
1
1 | 0
1
0
0
0
0
0
0 | | |--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---| | : | : | : | : | : | ٠ | | $\overline{D(T)}$ | 0 | 1 | 2 | 3 | | ``` Let T=(T[0],\ldots,T[p-1]) be a p-adic system (T[r]:\mathbb{Z}_p o \mathbb{Z}_p) ``` - D(T) defines a bijection between \mathbb{Z}_p and $\{0, \dots, p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs - D(T) is uniquely determined by the expansions of the natural numbers: $D(T)(n)[0, k-1] = D(T)(n \% p^k)[0, k-1]$ for all $n \in \mathbb{Z}_p$ (\mathbb{N} dense in \mathbb{Z}_p) | 1
2
3
4
5
6
7
8 |
1
0
1
0
1
0
1 | 0
1
1
0
0
1
1
0 | 1
0
0
1
0
1
1
0 | 0
1
0
0
0
0
0 | | |--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|---------------------------------|----| | : | : | : | : | : | ٠. | | $\overline{D(T)}$ | 0 | 1 | 2 | 3 | | Let $T=(T[0],\ldots,T[p-1])$ be a p-adic system $(T[r]:\mathbb{Z}_p o \mathbb{Z}_p)$ - D(T) defines a bijection between \mathbb{Z}_p and $\{0, \dots, p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs - D(T) is uniquely determined by the expansions of the natural numbers: $D(T)(n)[0, k-1] = D(T)(n \% p^k)[0, k-1]$ for all $n \in \mathbb{Z}_p$ (\mathbb{N} dense in \mathbb{Z}_p) - The sets of "p-digit tables" and p-adic systems are in one-to-one correspondence: Let $$T=(T[0],\ldots,T[p-1])$$ be a p -adic system $(T[r]:\mathbb{Z}_p \to \mathbb{Z}_p)$ - D(T) defines a bijection between \mathbb{Z}_p and $\{0,\ldots,p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs - D(T) is uniquely determined by the expansions of the natural numbers: $D(T)(n)[0, k-1] = D(T)(n \% p^k)[0, k-1]$ for all $n \in \mathbb{Z}_p$ (\mathbb{N} dense in \mathbb{Z}_p) - The sets of "p-digit tables" and p-adic systems are in one-to-one correspondence: If $D \in \{0, \dots, p-1\}^{\mathbb{N}_0 \times \mathbb{Z}_p}$ with | 1
2
3
4
5
6
7
8 | 1
0
1
0
1
0
1 | 0
1
1
0
0
1
1 | 1
0
0
1
0
1
1
0 | 0
1
0
0
0
0
0 | | |--------------------------------------|---------------------------------|---------------------------------|--------------------------------------|---------------------------------|---| | : | : | : | : | : | ٠ | | D | 0 | 1 | 2 | 3 | | Let $$T=(T[0],\ldots,T[p-1])$$ be a p -adic system $(T[r]:\mathbb{Z}_p o \mathbb{Z}_p)$ - D(T) defines a bijection between \mathbb{Z}_p and $\{0,\ldots,p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs - D(T) is uniquely determined by the expansions of the natural numbers: $D(T)(n)[0, k-1] = D(T)(n \% p^k)[0, k-1]$ for all $n \in \mathbb{Z}_p$ (\mathbb{N} dense in \mathbb{Z}_p) - The sets of "p-digit tables" and p-adic systems are in one-to-one correspondence: If $D \in \{0,\dots,p-1\}^{\mathbb{N}_0 \times \mathbb{Z}_p}$ with $\circ D[n][0] = n \% p$ | 1
2
3
4
5
6
7
8 | 1
0
1
0
1
0
1
0 | 0
1
1
0
0
1
1
0 | 1
0
0
1
0
1
1
0 | 0
1
0
0
0
0
0
0 | | |--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--| | | | • | • | · | | | D | 0 | 1 | 2 | 3 | | Let $$T=(T[0],\ldots,T[p-1])$$ be a p -adic system $(T[r]:\mathbb{Z}_p o \mathbb{Z}_p)$ - D(T) defines a bijection between \mathbb{Z}_p and $\{0,\ldots,p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs - D(T) is uniquely determined by the expansions of the natural numbers: $D(T)(n)[0, k-1] = D(T)(n \% p^k)[0, k-1]$ for all $n \in \mathbb{Z}_p$ (\mathbb{N} dense in \mathbb{Z}_p) - ullet The sets of "p-digit tables" and p-adic systems are in one-to-one correspondence: If $D\in\{0,\dots,p-1\}^{\mathbb{N}_0 imes\mathbb{Z}_p}$ with - $\circ D[n][0] = n \% p$ - $\circ D[m][0,k-1] = D[n][0,k-1] \quad \Leftrightarrow \quad m \equiv n \mod p^k \text{ (block property)},$ | 1
2
3
4
5
6
7
8 | 1
0
1
0
1
0
1 | 0
1
1
0
0
1
1
0 | 1
0
0
1
0
1
1
0 | 0
1
0
0
0
0
0 | | |--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|---------------------------------|----| | : | : | : | : | : | ٠. | | D | 0 | 1 | 2 | 3 | | Let $$T=(T[0],\ldots,T[p-1])$$ be a p -adic system $(T[r]:\mathbb{Z}_p o \mathbb{Z}_p)$ - D(T) defines a bijection between \mathbb{Z}_p and $\{0,\ldots,p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs - D(T) is uniquely determined by the expansions of the natural numbers: $D(T)(n)[0, k-1] = D(T)(n \% p^k)[0, k-1]$ for all $n \in \mathbb{Z}_p$ (\mathbb{N} dense in \mathbb{Z}_p) - ullet The sets of "p-digit tables" and p-adic systems are in one-to-one correspondence: If $D\in\{0,\dots,p-1\}^{\mathbb{N}_0 imes\mathbb{Z}_p}$ with - $\circ D[n][0] = n \% p$ - $\circ \ D[m][0,k-1] = D[n][0,k-1] \ \Leftrightarrow \ m \equiv n \ \text{mod} \ p^k \ (\text{block property}),$ then D = D(T) for a "unique" p-adic system T | 1
2
3
4
5
6
7
8 | 1
0
1
0
1
0
1 | 0
1
1
0
0
1
1
0 | 1
0
0
1
0
1
1
0 | 0
1
0
0
0
0
0 | | |--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|---------------------------------|----| | : | : | : | : | : | ٠. | | D | 0 | 1 | 2 | 3 | | Let $$T=(T[0],\ldots,T[p-1])$$ be a p -adic system $(T[r]:\mathbb{Z}_p o\mathbb{Z}_p)$ - D(T) defines a bijection between \mathbb{Z}_p and $\{0,\ldots,p-1\}^{\mathbb{N}_0}$: the expansions of all p-adic integers are unique and every possible expansion occurs - D(T) is uniquely determined by the expansions of the natural numbers: $D(T)(n)[0, k-1] = D(T)(n \% p^k)[0, k-1]$ for all $n \in \mathbb{Z}_p$ (\mathbb{N} dense in \mathbb{Z}_p) - ullet The sets of "p-digit tables" and p-adic systems are in one-to-one correspondence: If $D\in\{0,\dots,p-1\}^{\mathbb{N}_0 imes\mathbb{Z}_p}$ with $$o D[n][0] = n \% p$$ $$\circ \ D[m][0,k-1] = D[n][0,k-1] \ \Leftrightarrow \ m \equiv n \ \mathsf{mod} \ p^k \ (\mathsf{block} \ \mathsf{property}),$$ then D = D(T) for a "unique" p-adic system T | 1
2
3
4
5
6
7
8 | 1
0
1
0
1
0
1
0 | 0
1
0
0
1
1
0 | 1
0
0
1
0
1
1
0 | 0
1
0
0
0
0
0
1 |
\longrightarrow | T(6) = 3 | \longrightarrow | $T[0](6) \in \{6,7\}$ remember: $(x,x-1)=(x,x)$ | |--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|-----------------------|----------|-------------------|---| | \overline{D} | 0 | 1 | 2 | 3 | | | | | Let $$T=$$ ($T[0],\ldots,T[p-1]$), $T[r]:\mathbb{Z}_p \to \mathbb{Z}_p$ Let $$T=(T[0],\ldots,T[p-1]),\ T[r]:\mathbb{Z}_p\to\mathbb{Z}_p$$ W.l.o.g.: $\overline{T[r](n)}\equiv 0\mod p$ (remember: $(x,x-1)=(x,x)$) ``` Let T=(T[0],\ldots,T[p-1]),\ T[r]:\mathbb{Z}_p\to\mathbb{Z}_p W.l.o.g.: \overline{T[r](n)}\equiv 0 \mod p (remember: (x,x-1)=(x,x)) \overline{T} is a p-adic system if and only if \overline{T[r]} is (p,r)-suitable for all 0\leq r< p: ``` ``` Let T=(T[0],\ldots,T[p-1]),\ T[r]:\mathbb{Z}_p\to\mathbb{Z}_p W.l.o.g.: T[r](n)\equiv 0 \mod p (remember: (x,x-1)=(x,x)) T is a p-adic system if and only if T[r] is (p,r)-suitable for all 0\leq r< p: T[r](m)\equiv T[r](n)\mod p^k \iff m\equiv n\mod p^k for all k,m,n ``` ### Do they exist? ``` Let T = (T[0], \dots, T[p-1]), T[r] : \mathbb{Z}_p \to \mathbb{Z}_p W.l.o.g.: T[r](n) \equiv 0 \mod p (remember: (x, x-1) = (x, x)) T is a p-adic system if and only if T[r] is (p, r)-suitable for all 0 \le r < p: T[r](m) \equiv T[r](n) \mod p^k \iff m \equiv n \mod p^k \text{ for all } k, m, n ``` **Special case**: If $T[r] \in \mathbb{Z}_p[x]$ is a polynomial, then ``` Let T=(T[0],\ldots,T[p-1]),\ T[r]:\mathbb{Z}_p\to\mathbb{Z}_p W.I.o.g.: \overline{T[r](n)}\equiv 0 \mod p (remember: (x,x-1)=(x,x)) T is a p-adic system if and only if \overline{T[r]} is (p,r)-suitable for all 0\leq r< p: \overline{T[r](m)}\equiv \overline{T[r](n)}\mod p^k\Leftrightarrow m\equiv n\mod p^k for all k,m,n Special case: If \overline{T[r]}\in\mathbb{Z}_p[x] is a polynomial, then T[r] is (p,r)-suitable \Leftrightarrow \gcd(p,T[r]'(r))=1 ``` #### Do they exist? ``` Let T = (T[0], \ldots, T[p-1]), T[r] : \mathbb{Z}_p \to \mathbb{Z}_p W.I.o.g.: T[r](n) \equiv 0 \mod p (remember: (x, x-1) = (x, x)) T is a p-adic system if and only if T[r] is (p, r)-suitable for all 0 \le r < p: T[r](m) \equiv T[r](n) \mod p^k \Leftrightarrow m \equiv n \mod p^k \text{ for all } k, m, n ``` Special case: If $T[r] \in \mathbb{Z}_p[x]$ is a polynomial, then T[r] is (p,r)-suitable $\Leftrightarrow \gcd(p,T[r]'(r))=1$ One can always make T[r] (p,r)-suitable by only changing the linear coefficient #### Do they exist? Let $$T = (T[0], \dots, T[p-1])$$, $T[r] : \mathbb{Z}_p \to \mathbb{Z}_p$ W.l.o.g.: $T[r](n) \equiv 0 \mod p$ (remember: $(x, x-1) = (x, x)$) T is a p -adic system if and only if $T[r]$ is (p, r) -suitable for all $0 \le r < p$: $$T[r](m) \equiv T[r](n) \mod p^k \iff m \equiv n \mod p^k \text{ for all } k, m, n$$ Special case: If $T[r] \in \mathbb{Z}_p[x]$ is a polynomial, then T[r] is (p,r)-suitable $\Leftrightarrow \gcd(p,T[r]'(r))=1$ One can always make T[r] (p,r)-suitable by only changing the linear coefficient Consequence: Yes, many exist! # More examples of *p*-adic system • $$T_n = (x, ..., x), T_C = (x, 3x + 1)$$ | :
123
44
56
78 | 1
2
3
4
5
6
7
8 | :
2
1
5
2
8
3
11
4 | 1
2
8
1
4
5
17
2 | | 12
3
4
5
6
7
8 | :
1
0
1
0
1
0
1
0
: | 0
1
1
0
0
1
1
1
0 | 1
0
0
1
0
1
1
0 |
_ |
----------------------------|--------------------------------------|--|---------------------------------------|--|----------------------------------|--|---|--------------------------------------|-------| | $S(T_C)$ | 0 | 1 | 2 | | $D(T_C)$ | 0 | 1 | 2 | | • $T_n = (x, ..., x), T_C = (x, 3x + 1)$ • $(7x^3 - 4x^2 + x - 6, 3x^7 - x + 1, x^2 + 6x + 2), (\frac{32}{7}x^2 + \frac{11}{3}x - 4, \frac{13}{11}x + 5)$ | 12345678 | 1
2
3
4
5
6
7
8 | 34/11
227/21
47/11
880/21
60/11
639/7
73/11
3338/21 | 64805/2541
2053/231
608/121
12621386/3087
64376/847
4346/77
777/121
59723107/1029 | | | 123345678 | :
1
0
1
0
1
0
1
0 | 0
1
1
0
0
1
1
0 | 1
1
0
0
0
0
1
1 | | |----------|--------------------------------------|--|--|-------|---|-----------|---|--------------------------------------|--------------------------------------|-------| | S(T) | . 0 | · · · 1 | | · · · | - | D(T) | | 1 | 2 |
- | - $T_n = (x, ..., x), T_C = (x, 3x + 1)$ - $(7x^3 4x^2 + x 6, 3x^7 x + 1, x^2 + 6x + 2), (\frac{32}{7}x^2 + \frac{11}{3}x 4, \frac{13}{11}x + 5)$ - $(ix^2 6x + 5i, x, x, x, x)$ where $i^2 = -1$, i.e. i = ...31212 or i = ...13233 - $T_n = (x, ..., x), T_C = (x, 3x + 1)$ - $(7x^3 4x^2 + x 6, 3x^7 x + 1, x^2 + 6x + 2), (\frac{32}{7}x^2 + \frac{11}{3}x 4, \frac{13}{11}x + 5)$ - $(ix^2 6x + 5i, x, x, x, x)$ where $i^2 = -1$, i.e. i = ... 31212 or i = ... 13233 - If $P \in \mathbb{Z}[x]$ is a p-permutation polynomial $(P: \mathbb{Z}/p^k\mathbb{Z} \to \mathbb{Z}/p^k\mathbb{Z}$ bijective for all k) - $T_n = (x, ..., x), T_C = (x, 3x + 1)$ - $(7x^3 4x^2 + x 6, 3x^7 x + 1, x^2 + 6x + 2), (\frac{32}{7}x^2 + \frac{11}{2}x 4, \frac{13}{11}x + 5)$ - $(ix^2 6x + 5i, x, x, x, x)$ where $i^2 = -1$, i.e. i = ... 31212 or i = ... 13233 - If $P \in \mathbb{Z}[x]$ is a p-permutation polynomial $(P : \mathbb{Z}/p^k\mathbb{Z} \to \mathbb{Z}/p^k\mathbb{Z})$ bijective for all k) and $P : \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ is the identity function, - $T_n = (x, ..., x), T_C = (x, 3x + 1)$ - $(7x^3 4x^2 + x 6, 3x^7 x + 1, x^2 + 6x + 2), (\frac{32}{7}x^2 + \frac{11}{3}x 4, \frac{13}{11}x + 5)$ - $(ix^2 6x + 5i, x, x, x, x)$ where $i^2 = -1$, i.e. i = ... 31212 or i = ... 13233 - If $P \in \mathbb{Z}[x]$ is a p-permutation polynomial $(P: \mathbb{Z}/p^k\mathbb{Z} \to \mathbb{Z}/p^k\mathbb{Z})$ bijective for all k) and $P: \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ is the identity function, - then $D(P) := (D(T_P)[P(n)])_{n \in \mathbb{Z}_p}$ defines a digit-table and thus a p-adic system - $T_n = (x, ..., x), T_C = (x, 3x + 1)$ - $(7x^3 4x^2 + x 6, 3x^7 x + 1, x^2 + 6x + 2), (\frac{32}{7}x^2 + \frac{11}{3}x 4, \frac{13}{11}x + 5)$ - $(ix^2 6x + 5i, x, x, x, x)$ where $i^2 = -1$, i.e. i = ... 31212 or i = ... 13233 - If $P \in \mathbb{Z}[x]$ is a p-permutation polynomial $(P: \mathbb{Z}/p^k\mathbb{Z} \to \mathbb{Z}/p^k\mathbb{Z})$ bijective for all k) and $P: \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ is the identity function, then $D(P) := (D(T_p)[P(n)])_{n \in \mathbb{Z}_p}$ defines a digit-table and thus a p-adic system Example: $P(x) = 10x^2 - 3x + 4$ is a 2-permutation polynomial | 1
2
3
4
5
6
7
8 | 11
38
85
152
239
346
473
620 | :
1
2
3
4
5
6
7
8 | 1
0
1
0
1
0
1
0 | 1
1
0
0
1
1
0
0 | 0
1
1
0
1
0
0
1 | | |--------------------------------------|---|---|--------------------------------------|--------------------------------------|--------------------------------------|--| | • | : | : | : | : | : | | | P | | $\overline{D(P)}$ | 0 | 1 | 2 | | Are they useful? ### Are they useful? **Lemma**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p,r)-suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$ ### Are they useful? **Lemma**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$ Remember: f(p,r)-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \iff m \equiv n \mod p^k)$ ### Are they useful? **Lemma**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$ Remember: f(p, r)-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$ $\Leftrightarrow (x, \dots, x, f(x), x, \dots, x)$ is a p-adic system f(x) = f(x) ### Are they useful? **Lemma**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$ Remember: f(p, r)-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$ $\Leftrightarrow (x, \dots, x, f(x), x, \dots, x)$ is a p-adic system r-th position **Theorem**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, ### Are they useful? **Lemma**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$ Remember: f(p, r)-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$ $\Leftrightarrow (x, \dots, x, f(x), x, \dots, x)$ is a p-adic system **Theorem**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ ### Are they useful? **Lemma**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$ Remember: f(p,r)-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$ $\Leftrightarrow (x,\ldots,x,\underbrace{f(x)}_{r\text{-th position}},x,\ldots,x)$ is a p-adic system **Theorem**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ Proof: Let $T := (x, \dots, x, f(x) + px, x, \dots, x)$ ### Are they useful? **Lemma**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$ Remember: f(p, r)-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$ $\Leftrightarrow (x, \dots, x, f(x), x, \dots, x)$ is a p-adic system **Theorem**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ Proof: Let T := (x, ..., x, f(x) + px, x, ..., x)T is a p-adic system ### Are they useful? **Lemma**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$ Remember: f(p, r)-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$ $\Leftrightarrow (x, \dots, x, f(x), x, \dots, x)$ is a p-adic system **Theorem**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ Proof: Let $T := (x, \dots, x, f(x) + px, x, \dots, x)$ T is a p-adic system There is a unique $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ such that $D(T)[z] = (r, r, r, \ldots)$. ### Are they useful? **Lemma**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$ Remember: f(p, r)-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$ $\Leftrightarrow (x, \dots, x, f(x), x, \dots, x)$ is a p-adic system **Theorem**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ Proof: Let $T := (x, \dots, x, f(x) + px, x, \dots, x)$ T is a p-adic system There is a unique $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ such that $D(T)[z] = (r, r, r, \ldots)$. Note: S(T)[n] ultimately periodic $\Leftrightarrow D(T)[n]$ ultimately periodic #### Are they useful? ``` Lemma: If f: \mathbb{Z}_p \to \mathbb{Z}_p is (p, r)-suitable, then so is g: \mathbb{Z}_p \to \mathbb{Z}_p, x \mapsto f(x) + px Remember: f(p, r)-suitable \stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k) \Leftrightarrow (x, \dots, x, f(x), x, \dots, x) is a p-adic system r-th position ``` **Theorem**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ Proof: Let $T := (x, \dots, x, f(x) + px, x, \dots, x)$ $$T$$ is a $\frac{p\text{-adic system}}{p\text{-adic system}}$ There is a unique $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ such that $\frac{D(T)[z] = (r, r, r, \ldots)}{D(T)[n]}$. Note: $S(T)[n]$ ultimately periodic lengths of initial parts and periods are equal #### Are they useful? So, z = T(z) ``` Remember: f\left(p,r\right)-suitable \overset{\text{Def}}{\Leftrightarrow} \left(f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k\right)
\Leftrightarrow \left(x,\ldots,x,f(x),x,\ldots,x\right) is a p-adic system \begin{array}{c} r\text{-th position} \end{array} Theorem: If f:\mathbb{Z}_p \to \mathbb{Z}_p is (p,r)-suitable and f(n) \equiv 0 \mod p for all n \equiv r \mod p, then f has a unique root z \in \mathbb{Z}_p with z \equiv r \mod p Proof: Let T:=\left(x,\ldots,x,f(x)+px,x,\ldots,x\right) T is a p-adic system There is a unique z \in \mathbb{Z}_p with z \equiv r \mod p such that D(T)[z] = (r,r,r,\ldots). Note: S(T)[n] ultimately periodic \Leftrightarrow D(T)[n] ultimately periodic lengths of initial parts and periods are equal ``` **Lemma**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$ #### Are they useful? **Lemma**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto \frac{f(x) + px}{f(x) + px}$ Remember: f(p, r)-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$ \Leftrightarrow $(x, \dots, x, \underbrace{f(x)}_{r\text{-th position}}, x, \dots, x)$ is a p-adic system **Theorem:** If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ Proof: Let $$T := (x, \dots, x, f(x) + px, x, \dots, x)$$ T is a p-adic system There is a unique $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ such that $D(T)[z] = (r, r, r, \ldots)$. Note: S(T)[n] ultimately periodic $\Leftrightarrow D(T)[n]$ ultimately periodic lengths of initial parts and periods are equal So, $$z = T(z) = T[r](z)/p$$ #### Are they useful? **Lemma**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$ Remember: f(p,r)-suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$ $\Leftrightarrow (x,\ldots,x,f(x),x,\ldots,x)$ is a p-adic system **Theorem**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ Proof: Let $$T := (x, ..., x, f(x) + px, x, ..., x)$$ T is a p-adic system There is a unique $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ such that $D(T)[z] = (r, r, r, \ldots)$. Note: S(T)[n] ultimately periodic $\Leftrightarrow D(T)[n]$ ultimately periodic lengths of initial parts and periods are equal So, $z = T(z) = T[r](z)/p = \frac{(f(z) + pz)/p}{(f(z) + pz)/p}$ #### Are they useful? ``` Remember: f(p,r)-suitable \stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k) \Leftrightarrow (x,\ldots,x,\underbrace{f(x)},x,\ldots,x) is a p-adic system Theorem: If f:\mathbb{Z}_p \to \mathbb{Z}_p is (p,r)-suitable and f(n) \equiv 0 \mod p for all n \equiv r \mod p, then f has a unique root z \in \mathbb{Z}_p with z \equiv r \mod p Proof: Let T:=(x,\ldots,x,f(x)+px,x,\ldots,x) T is a p-adic system There is a unique z \in \mathbb{Z}_p with z \equiv r \mod p such that D(T)[z]=(r,r,r,\ldots). ``` Note: S(T)[n] ultimately periodic $\Leftrightarrow D(T)[n]$ ultimately periodic lengths of initial parts and periods are equal So, z = T(z) = T[r](z)/p = (f(z) + pz)/p, hence f(z) = 0 **Lemma**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable, then so is $g: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x) + px$ #### Are they useful? ``` Lemma: If f: \mathbb{Z}_p \to \mathbb{Z}_p is (p,r)-suitable, then so is g: \mathbb{Z}_p \to \mathbb{Z}_p, x \mapsto f(x) + px Remember: f(p,r)-suitable \stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k) \Leftrightarrow (x,\dots,x,\underbrace{f(x)},x,\dots,x) is a p-adic system ``` r-th positio **Theorem**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ Proof: Let $$T := (x, \dots, x, f(x) + px, x, \dots, x)$$ T is a p-adic system There is a unique $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ such that $D(T)[z] = (r, r, r, \ldots)$. Note: S(T)[n] ultimately periodic $\Leftrightarrow D(T)[n]$ ultimately periodic lengths of initial parts and periods are equal So, $$z = T(z) = T[r](z)/p = \frac{(f(z) + pz)/p}{p}$$, hence $\frac{f(z) = 0}{p}$ Corollary: If $P \in \mathbb{Z}_p[x]$ with $P(r) \equiv 0 \mod p$ and $\gcd(p, P'(r)) = 1$, then P has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ #### Are they useful? ``` Lemma: If f: \mathbb{Z}_p \to \mathbb{Z}_p is (p, r)-suitable, then so is g: \mathbb{Z}_p \to \mathbb{Z}_p, x \mapsto f(x) + px ``` Remember: $$f(p, r)$$ -suitable $\stackrel{\text{Def}}{\Leftrightarrow} (f(m) \equiv f(n) \mod p^k \Leftrightarrow m \equiv n \mod p^k)$ $\Leftrightarrow (x, \dots, x, \underbrace{f(x)}_{r\text{-th position}}, x, \dots, x)$ is a p -adic system **Theorem**: If $f: \mathbb{Z}_p \to \mathbb{Z}_p$ is (p, r)-suitable and $f(n) \equiv 0 \mod p$ for all $n \equiv r \mod p$, then f has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ Proof: Let $$T := (x, ..., x, f(x) + px, x, ..., x)$$ T is a p-adic system There is a unique $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ such that $D(T)[z] = (r, r, r, \ldots)$. Note: S(T)[n] ultimately periodic $\Leftrightarrow D(T)[n]$ ultimately periodic lengths of initial parts and periods are equal So, $$z = T(z) = T[r](z)/p = \frac{(f(z) + pz)/p}{p}$$, hence $\frac{f(z) = 0}{p}$ **Corollary**: If $P \in \mathbb{Z}_p[x]$ with $P(r) \equiv 0 \mod p$ and $\gcd(p, P'(r)) = 1$, then P has a unique root $z \in \mathbb{Z}_p$ with $z \equiv r \mod p$ (Hensel's Lemma!) $T_C = (x, 3x + 1)$ ## $T_C = (x, 3x + 1)$ ### Known periods on \mathbb{Z} | Trilowii perious on Z | | |---------------------------------|--| | Digit period $(D(T_C))$ | Sequence period $(S(T_C))$ | | 0 | 0 | | 1,0 | 1,2 | | 1 | -1 | | 1, 1, 0 | -5, -7, -10 | | 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0 | -17, -25, -37, -55, -82, -41, -61, -91, -136, -68, -34 | ## $T_C = (x, 3x + 1)$ ### Known periods on \mathbb{Z} | Digit period $(D(T_C))$ | Sequence period $(S(T_C))$ | |---------------------------------|--| | 0 | 0 | | 1,0 | 1,2 | | 1 | -1 | | 1, 1, 0 | -5, -7, -10 | | 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0 | -17, -25, -37, -55, -82, -41, -61, -91, -136, -68, -34 | ### Periods on $\mathbb Q$ Every ultimately periodic digit expansion represents a rational number ## $T_C = (x, 3x + 1)$ ### Known periods on $\mathbb Z$ | Digit period $(D(T_C))$ | Sequence period $(S(T_C))$ | |---------------------------------|--| | 0 | 0 | | 1,0 | 1,2 | | 1 | -1 | | 1, 1, 0 | -5, -7, -10 | | 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0 | -17, -25, -37, -55, -82, -41, -61, -91, -136, -68, -34 | ### Periods on $\mathbb Q$ Every ultimately periodic digit expansion represents a rational number The rational number can be effectively computed from a given expansion ## $T_C = (x, 3x + 1)$ ### Known periods on $\mathbb Z$ | · · · · · · · · · · · · · · · · · · · | | | | | |---------------------------------------|--|--|--|--| | Digit period $(D(T_C))$ | Sequence period $(S(T_C))$ | | | | | 0 | 0 | | | | | 1,0 | 1,2 | | | | | 1 | -1 | | | | | 1, 1, 0 | -5, -7, -10 | | | | | 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0 | -17, -25, -37, -55, -82, -41, -61, -91, -136, -68, -34 | | | | #### Periods on Q Every ultimately periodic digit expansion represents a rational number The rational number can be effectively computed from a given expansion $$(1,0,0,1) \longrightarrow (11/7,20/7,10/7,5/7)$$ ## $T_C = (x, 3x + 1)$ ### Known periods on \mathbb{Z} | Digit period $(D(T_C))$ | Sequence period $(S(T_C))$ | |---------------------------------|--| | 0 | 0 | | 1,0 | 1,2 | | 1 | -1 | | 1, 1, 0 | -5, -7, -10 | | 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0 | -17, -25, -37, -55, -82, -41, -61, -91, -136, -68, -34 | #### Periods on Q Every ultimately periodic digit expansion represents a rational number The rational number can be effectively computed from a given expansion $(1,0,0,1) \longrightarrow (11/7,20/7,10/7,5/7)$ ### Open questions • Do expansions of the integers admit other periods? ### $T_C = (x, 3x + 1)$ #### Known periods on \mathbb{Z} | Digit period $(D(T_C))$ | Sequence period $(S(T_C))$ | |---------------------------------|--| | 0 | 0 | | 1,0 | 1,2 | | 1 | -1 | | 1, 1, 0 | -5, -7, -10 | | 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0 | -17, -25, -37, -55, -82, -41, -61, -91, -136, -68, -34 | #### Periods on Q Every ultimately periodic digit expansion represents a rational number The rational number can be effectively computed from a given expansion $(1,0,0,1) \longrightarrow (11/7,20/7,10/7,5/7)$ #### Open questions - Do expansions of the integers admit other periods? - Are there rational numbers that have aperiodic expansions? ### $T_C = (x, 3x + 1)$ ### Known periods on \mathbb{Z} | · · · · · · · · · · · · · · · · · · · | | | | | |---------------------------------------|--|--|--|--| | Digit period $(D(T_C))$ | Sequence period $(S(T_C))$ | | | | | 0 | 0 | | | | | 1,0 | 1,2 | | | | | 1 | -1 | | | | | 1, 1, 0 | -5, -7, -10 | | | | | 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0 | -17, -25, -37, -55, -82, -41, -61, -91, -136, -68, -34 | | | | #### Periods on Q Every ultimately periodic digit expansion represents a rational number The rational number can be effectively computed from a given expansion $$(1,0,0,1) \longrightarrow (11/7,20/7,10/7,5/7)$$ #### Open questions - Do expansions of the integers admit
other periods? - Are there rational numbers that have aperiodic expansions? - Interesting example: D((5x+2,5x+1))[n] aperiodic for all $n \in \mathbb{Z}$ (expanding on \mathbb{Z}) ### $T_C = (x, 3x + 1)$ #### Known periods on \mathbb{Z} | Digit period $(D(T_C))$ | Sequence period $(S(T_C))$ | |---------------------------------|--| | 0 | 0 | | 1,0 | 1,2 | | 1 | -1 | | 1, 1, 0 | -5, -7, -10 | | 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0 | -17, -25, -37, -55, -82, -41, -61, -91, -136, -68, -34 | #### Periods on Q Every ultimately periodic digit expansion represents a rational number The rational number can be effectively computed from a given expansion $(1,0,0,1) \longrightarrow (11/7,20/7,10/7,5/7)$ #### Open questions - Do expansions of the integers admit other periods? - Are there rational numbers that have aperiodic expansions? - Interesting example: D((5x + 2, 5x + 1))[n] aperiodic for all $n \in \mathbb{Z}$ (expanding on \mathbb{Z}) Remember: S(F)[n] ultimately periodic $\Leftrightarrow D(F)[n]$ ultimately periodic ### Are they interesting? • There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions ### Are they interesting? - There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions - There is a p-adic system for which the natural numbers have ultimately periodic expansions with pairwise different periods ### Are they interesting? (Things get arbitrarily neat or nasty) - There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions - There is a *p*-adic system for which the natural numbers have ultimately periodic expansions with pairwise different periods ### Are they interesting? - There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions - There is a *p*-adic system for which the natural numbers have ultimately periodic expansions with pairwise different periods (Things get arbitrarily neat or nasty) $$T = (a_0 + b_0 x, \dots, a_{p-1} + b_{p-1} x), \ a_i, b_i \in \mathbb{Z}$$ ### Are they interesting? - There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions - There is a p-adic system for which the natural numbers have ultimately periodic expansions with pairwise different periods (Things get arbitrarily neat or nasty) For p-adic systems defined by linear polynomials with integer coefficients: $$T = (a_0 + b_0 x, \dots, a_{p-1} + b_{p-1} x), a_i, b_i \in \mathbb{Z}$$ • Every ultimately periodic expansion comes from a rational number ### Are they interesting? - There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions - There is a p-adic system for which the natural numbers have ultimately periodic expansions with pairwise different periods (Things get arbitrarily neat or nasty) $$T = (a_0 + b_0 x, \dots, a_{p-1} + b_{p-1} x), a_i, b_i \in \mathbb{Z}$$ - Every ultimately periodic expansion comes from a rational number - Conjectures: ### Are they interesting? - There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions - There is a p-adic system for which the natural numbers have ultimately periodic expansions with pairwise different periods (Things get arbitrarily neat or nasty) $$T = (a_0 + b_0 x, \dots, a_{p-1} + b_{p-1} x), a_i, b_i \in \mathbb{Z}$$ - Every ultimately periodic expansion comes from a rational number - Conjectures: - o All rational numbers have ultimately periodic expansions $\Leftrightarrow b_0 \cdots b_{p-1} < p^p$ ### Are they interesting? - There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions - There is a p-adic system for which the natural numbers have ultimately periodic expansions with pairwise different periods (Things get arbitrarily neat or nasty) $$T = (a_0 + b_0 x, \dots, a_{p-1} + b_{p-1} x), a_i, b_i \in \mathbb{Z}$$ - Every ultimately periodic expansion comes from a rational number - Conjectures: - All rational numbers have ultimately periodic expansions $\Leftrightarrow b_0 \cdots b_{p-1} < p^p$ - Expansions of integers admit only finitely many different periods ### Are they interesting? - There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions - There is a p-adic system for which the natural numbers have ultimately periodic expansions with pairwise different periods (Things get arbitrarily neat or nasty) For p-adic systems defined by linear polynomials with integer coefficients: $$T = (a_0 + b_0 x, \dots, a_{p-1} + b_{p-1} x), a_i, b_i \in \mathbb{Z}$$ - Every ultimately periodic expansion comes from a rational number - Conjectures: - All rational numbers have ultimately periodic expansions $\Leftrightarrow b_0 \cdots b_{p-1} < p^p$ - Expansions of integers admit only finitely many different periods For p = 2: ### Are they interesting? - There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions - There is a p-adic system for which the natural numbers have ultimately periodic expansions with pairwise different periods (Things get arbitrarily neat or nasty) For p-adic systems defined by linear polynomials with integer coefficients: $$T = (a_0 + b_0 x, \dots, a_{p-1} + b_{p-1} x), a_i, b_i \in \mathbb{Z}$$ - Every ultimately periodic expansion comes from a rational number - Conjectures: - o All rational numbers have ultimately periodic expansions $\Leftrightarrow b_0 \cdots b_{p-1} < p^p$ - o Expansions of integers admit only finitely many different periods For p = 2: • $$D(a_0 + xb_0, a_1 + xb_1)[n] = D(0 + xb_0, 1 + xb_1)[\frac{n(b_0 - 2) + a_0}{a_1(b_0 - 2) - a_0(b_1 - 2)}]$$ for all $n \in \mathbb{Z}_2$ ### Are they interesting? - There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions - There is a p-adic system for which the natural numbers have ultimately periodic expansions with pairwise different periods (Things get arbitrarily neat or nasty) For p-adic systems defined by linear polynomials with integer coefficients: $$T = (a_0 + b_0 x, \dots, a_{p-1} + b_{p-1} x), a_i, b_i \in \mathbb{Z}$$ - Every ultimately periodic expansion comes from a rational number - Conjectures: - o All rational numbers have ultimately periodic expansions $\Leftrightarrow b_0 \cdots b_{p-1} < p^p$ - o Expansions of integers admit only finitely many different periods For p = 2: • $D(a_0 + xb_0, a_1 + xb_1)[n] = D(0 + xb_0, 1 + xb_1)[\frac{n(b_0 - 2) + a_0}{a_1(b_0 - 2) - a_0(b_1 - 2)}]$ for all $n \in \mathbb{Z}_2$ In particular: Whether or not all rational numbers have ultimately periodic expansions does not depend on constant coefficients a_i ### Are they interesting? - There is a p-adic system for which all rational numbers (in \mathbb{Z}_p) have finite expansions - There is a p-adic system for which the natural numbers have ultimately periodic expansions with pairwise different periods (Things get arbitrarily neat or nasty) For p-adic systems defined by linear polynomials with integer coefficients: $$T = (a_0 + b_0 x, \dots, a_{p-1} + b_{p-1} x), a_i, b_i \in \mathbb{Z}$$ - Every ultimately periodic expansion comes from a rational number - Conjectures: - o All rational numbers have ultimately periodic expansions $\Leftrightarrow b_0 \cdots b_{p-1} < p^p$ - o Expansions of integers admit only finitely many different periods For p = 2: • $D(a_0 + xb_0, a_1 + xb_1)[n] = D(0 + xb_0, 1 + xb_1)[\frac{n(b_0 - 2) + a_0}{a_1(b_0 - 2) - a_0(b_1 - 2)}]$ for all $n \in \mathbb{Z}_2$ In particular: Whether or not all rational numbers have ultimately periodic expansions does not depend on constant coefficients a_i