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What do T¢ and T, have in common?

Both define a “number system” on N:
Give “name” to every element:
Infinite string over alphabet {0, 1} (orbit modulo 2)
“Name” of 17 w.r.t. T: usual base 2 expansion

(17,8,4,2,1,0,...)%2 = (1,0,0,0,1,0,...)
“Name” of 17 w.r.t. T¢:

(17,26,13,20,10,5,8,4,2,1,...)%2 = (1,0,1,0,0,1,0,0,0,1,...)
Notation: S (T¢)[17] = (17,26,13,20,...): Tc-sequence of 17
D(T¢)[17] = (1,0,1,0,0,1,...): Tc-(digit) expansion of 17
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Motivation

What do T¢ and T, have in common?
Both generalize to the 2-adic integers Zj:
TciZ2—>ZQ TQZZQ—)ZZ

g if n=0 mod 2 g if n=0 mod 2
n—q 2 ne {2

3ntl if n=1 mod 2 > ifn=1 mod 2

Block property still holds
Both are piecewise functions with branches for both residue classes mod 2
Definition
p-adic system: e piecewise function on Zp
e branches for all residue classes mod p
e block property
Notation: T¢ = (x,3x+ 1), T2 = (x,x — 1) = (x, x)

Subtract LSD before division by p if necessary: (x,x,x)(5) = 23= =1
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Let T=(T[0],..., T[p — 1]) be a p-adic system (T[r] : Zp — Zp)
e D(T) defines a bijection between Z, and {0, ..., p — 1}0:
the expansions of all p-adic integers are unique and every possible expansion occurs
e D(T) is uniquely determined by the expansions of the natural numbers:
D(T)(n)[0,k — 1] = D(T)(n% p*)[0, k — 1] for all n € Z, (N dense in Z,)
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If De{0,...,p—1}10xZs with
o D[n][0] =n%p
o D[m][0,k — 1] = D[n][0,k —1] < m=n mod p* (block property),
then D = D(T) for a “unique” p-adic system T

— T(6)=3 — TI0](6) € {6,7}
——

remember: (x,x—1)=(x,x)
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Basic properties of p-adic systems

Do they exist?

Let T = (T[0],..., T[p—1]), T[r] : Zp — Zp
W.lo.g.: T[r](n) =0 mod p (remember: (x,x — 1) = (x, x))
T is a p-adic system if and only if T[r] is (p, r)-suitable for all 0 < r < p:
T[r](m) = T[r](n) mod p¥ < m=n mod p¥ forall k,m,n
Special case: If T[r] € Z[x] is a polynomial, then
T[r] is (p, r)-suitable < gecd(p, T[r]'(r)) =1

One can always make T[r] (p, r)-suitable by
only changing the linear coefficient

Consequence: Yes, many exist!
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(x,3x +1)
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More examples of p-adic system

o Tpn=(x,...,x), Tc = (x,3x + 1)

o (7x3 —4x®> + x —6,3x" —x+1,x* + 6x + 2), (¥X2+%X—4,%X+5)

34/11 64805/2541

111 1 ﬂ o] 1
212 227/21 2053/231 210 111
313 47/1 608é121 311 11 0
4 |4 880/21 12621386/3087 410 0 0
5|5 60/11 64376/847 51 0 0
6|6 639/7 4346/77 6|0 1 O
7|7 73/11 777{121 711 1 1
8 | 8 3338/21 59723107/1029 8|10 0 1

2
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o
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More examples of p-adic system

o Tpn=(x,...,x), Tc = (x,3x + 1)
o (7x3 —4x®> + x —6,3x" —x+1,x* + 6x + 2), (¥X2+ %)(—47 %x+5)
e (ix? — 6x + 5i, x, x, x, x) where i> = —1, i.e. i =...31212 or i = ... 13233
e If PE€Z[x] is a p-permutation polynomial (P:Z/p¥Z — Z/p¥Z bijective for all k)
and P :7Z/pZ — 7./ pZ is the identity function,
then D(P) := (D(Tp)[P(n)])nez, defines a digit-table and thus a p-adic system

Example: P(x) = 10x? — 3x + 4 is a 2-permutation polynomial

1 1 ﬂ 1 0
2 38 210 111
3 85 311 0] 1
4 | 152 410 0/ 0
51 239 511 1 1
6 | 346 6|0 1 O
7| 473 711 0 O
8 | 620 8|10 0 1

bR [0 1 2

...
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Lemma: If f : Z, — Z, is (p, r)-suitable, then so is g : Zp — Zp, x — f(x) + px

Remember: f (p, r)-suitable f (f(m) = f(n) mod p* < m=n mod p¥)
< (x,...,x,f(x),x,...,x) is a p-adic system
~—~—
r-th position

Theorem: If f : Z, — Zp is (p, r)-suitable and f(n) =0 mod p for all n =r mod p,
then f has a unique root z € Zp with z=r mod p
Proof: Let T = (x,...,x,f(x)+ px,x,...,x)
T is a p-adic system
There is a unique z € Zp with z = r mod p such that D(T)[z] = (r,r,r,...).
Note: S(T)[n] ultimately periodic < D(T)[n] ultimately periodic
lengths of initial parts and periods are equal
So, z=T(z) = T[rl(z)/p = (f(z) + pz)/p, hence f(z) =0 O
Corollary: If P € Zp[x] with P(r) =0 mod p and gcd (p, P/(r)) =1,
then P has a unique root z € Z, with z = r mod p (Hensel's Lemmal)



What about the Collatz conjecture?

Tc =(x,3x+1)



What about the Collatz conjecture?

Tc =(x,3x+1)

Known periods on Z
Digit period (D(T¢)) ‘ Sequence period (S(T¢))

0 0

1,0 1,2

1 -1

1,1,0 —5,-7,-10

1,1,1,1,0,1,1,1,0,0,0 | —17,—25, —37, —55,—82, —41,—61, —91, —136, —68, —34



What about the Collatz conjecture?

Tc =(x,3x+1)

Known periods on Z
Digit period (D(T¢)) ‘ Sequence period (S(T¢))

0 0

1,0 1,2

1 -1

1,1,0 —5,-7,-10

1,1,1,1,0,1,1,1,0,0,0 | —17,—25, —37, —55,—82, —41,—61, —91, —136, —68, —34

Periods on Q
Every ultimately periodic digit expansion represents a rational number



What about the Collatz conjecture?

Tc =(x,3x+1)

Known periods on Z
Digit period (D(T¢)) ‘ Sequence period (S(T¢))

0 0

1,0 1,2

1 -1

1,1,0 —5,-7,-10

1,1,1,1,0,1,1,1,0,0,0 | —17,—25, —37, —55,—82, —41,—61, —91, —136, —68, —34

Periods on Q
Every ultimately periodic digit expansion represents a rational number
The rational number can be effectively computed from a given expansion



What about the Collatz conjecture?

Tc =(x,3x+1)

Known periods on Z
Digit period (D(T¢)) ‘ Sequence period (S(T¢))

0 0

1,0 1,2

1 -1

1,1,0 —5,-7,-10

1,1,1,1,0,1,1,1,0,0,0 | —17,—25, —37, —55,—82, —41,—61, —91, —136, —68, —34

Periods on Q

Every ultimately periodic digit expansion represents a rational number
The rational number can be effectively computed from a given expansion
(1,0,0,1) — (11/7,20/7,10/7,5/7)



What about the Collatz conjecture?

Tc =(x,3x+1)

Known periods on Z
Digit period (D(T¢)) ‘ Sequence period (S(T¢))

0 0

1,0 1,2

1 -1

1,1,0 —5,-7,-10

1,1,1,1,0,1,1,1,0,0,0 | —17,—25, —37, —55,—82, —41,—61, —91, —136, —68, —34

Periods on Q

Every ultimately periodic digit expansion represents a rational number
The rational number can be effectively computed from a given expansion
(1,0,0,1) — (11/7,20/7,10/7,5/7)

Open questions

e Do expansions of the integers admit other periods?



What about the Collatz conjecture?

Tc =(x,3x+1)

Known periods on Z
Digit period (D(T¢)) ‘ Sequence period (S(T¢))

0 0

1,0 1,2

1 -1

1,1,0 —5,-7,-10

1,1,1,1,0,1,1,1,0,0,0 | —17,—25, —37, —55,—82, —41,—61, —91, —136, —68, —34

Periods on Q

Every ultimately periodic digit expansion represents a rational number
The rational number can be effectively computed from a given expansion
(1,0,0,1) — (11/7,20/7,10/7,5/7)

Open questions
e Do expansions of the integers admit other periods?

o Are there rational numbers that have aperiodic expansions?



What about the Collatz conjecture?

Tc =(x,3x+1)

Known periods on Z
Digit period (D(T¢)) ‘ Sequence period (S(T¢))

0 0

1,0 1,2

1 -1

1,1,0 —5,-7,-10

1,1,1,1,0,1,1,1,0,0,0 | —17,—25, —37, —55,—82, —41,—61, —91, —136, —68, —34

Periods on Q

Every ultimately periodic digit expansion represents a rational number

The rational number can be effectively computed from a given expansion

(1,0,0,1) —s (11/7,20/7,10/7,5/7)

Open questions

e Do expansions of the integers admit other periods?

o Are there rational numbers that have aperiodic expansions?

o Interesting example: D((5x + 2,5x + 1))[n] aperiodic for all n € Z (expanding on Z)



What about the Collatz conjecture?
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Periods on Q

Every ultimately periodic digit expansion represents a rational number
The rational number can be effectively computed from a given expansion
(1,0,0,1) — (11/7,20/7,10/7,5/7)

Open questions

e Do expansions of the integers admit other periods?

o Are there rational numbers that have aperiodic expansions?

o Interesting example: D((5x + 2,5x + 1))[n] aperiodic for all n € Z (expanding on Z)
Remember: S(F)[n] ultimately periodic < D(F)[n] ultimately periodic
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Are they interesting?

® There is a p-adic system for which all rational numbers (in Z,) have finite expansions
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Thank you!



