
Abstract

Let s_{q} be the sum-of-digits function in base $q, q \geq 2$. If t is a positive integer, we denote by t^{R} the unique integer that is obtained from t by reversing the order of the digits of the proper representation of t in base q. In this work we prove that for all $\alpha \in \mathbb{R}$ and all positive integers t the correlation measure $$
\gamma(\alpha, t)=\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n<x} e^{2 \pi i \alpha\left(s_{q}(n+t)-s_{q}(n)\right)}
$$ satisfies $\gamma(\alpha, t)=\gamma\left(\alpha, t^{R}\right)$. From this we deduce that for all integers d the sets $\left\{n \in \mathbb{N}: s_{q}(n+t)-s_{q}(n)=d\right\}$ and $\left\{n \in \mathbb{N}: s_{q}\left(n+t^{R}\right)-s_{q}(n)=d\right\}$ have the same asymptotic density. The proof involves methods coming from the study of q-additive functions, linear algebra, and analytic number theory.

