
Abstract

Integer sequences of the form $\left\lfloor n^{c}\right\rfloor$, where $1<c<2$, can be locally approximated by sequences of the form $\lfloor n \alpha+\beta\rfloor$ in a very good way. Following this approach, we are led to an estimate of the difference $$
\sum_{n \leq x} \varphi\left(\left\lfloor n^{c}\right\rfloor\right)-\frac{1}{c} \sum_{n \leq x^{c}} \varphi(n) n^{\frac{1}{c}-1}
$$ which measures the deviation of the mean value of φ on the subsequence $\left\lfloor n^{c}\right\rfloor$ from the expected value, by an expression involving exponential sums. As an application we prove that for $1<c \leq 1.42$ the subsequence of the Thue-Morse sequence indexed by $\left\lfloor n^{c}\right\rfloor$ attains both of its values with asymptotic density $1 / 2$.

