Abstract

Integer sequences of the form $\lfloor n^c \rfloor$, where 1 < c < 2, can be locally approximated by sequences of the form $\lfloor n\alpha + \beta \rfloor$ in a very good way. Following this approach, we are led to an estimate of the difference

$$\sum_{n \le x} \varphi\left(\lfloor n^c \rfloor\right) - \frac{1}{c} \sum_{n \le x^c} \varphi(n) n^{\frac{1}{c} - 1},$$

which measures the deviation of the mean value of φ on the subsequence $\lfloor n^c \rfloor$ from the expected value, by an expression involving exponential sums. As an application we prove that for $1 < c \leq 1.42$ the subsequence of the Thue-Morse sequence indexed by $\lfloor n^c \rfloor$ attains both of its values with asymptotic density 1/2.