# ON A CONJECTURE OF CUSICK CONCERNING THE SUM OF DIGITS OF $n$ AND $n+t$ 

M. DRMOTA , M. KAUERS , AND L. SPIEGELHOFER


#### Abstract

For a nonnegative integer $t$, let $c_{t}$ be the asymptotic density of natural numbers $n$ for which $s(n+t) \geq s(n)$, where $s(n)$ denotes the sum of digits of $n$ in base 2 . We prove that $c_{t}>1 / 2$ for $t$ in a set of asymptotic density 1 , thus giving a partial solution to a conjecture of T. W. Cusick stating that $c_{t}>1 / 2$ for all $t$. Interestingly, this problem has several equivalent formulations, for example that the polynomial $X(X+1) \cdots(X+t-1)$ has less than $2^{t}$ zeros modulo $2^{t+1}$. The proof of the main result is based on Chebyshev's inequality and the asymptotic analysis of a trivariate rational function using methods from analytic combinatorics.


