ON A CONJECTURE OF CUSICK CONCERNING THE SUM OF DIGITS OF n AND n+t

M. DRMOTA , M. KAUERS , AND L. SPIEGELHOFER

Abstract. For a nonnegative integer t, let c_t be the asymptotic density of natural numbers n for which $s(n + t) \ge s(n)$, where s(n) denotes the sum of digits of n in base 2. We prove that $c_t > 1/2$ for t in a set of asymptotic density 1, thus giving a partial solution to a conjecture of T. W. Cusick stating that $c_t > 1/2$ for all t. Interestingly, this problem has several equivalent formulations, for example that the polynomial $X(X+1)\cdots(X+t-1)$ has less than 2^t zeros modulo 2^{t+1} . The proof of the main result is based on Chebyshev's inequality and the asymptotic analysis of a trivariate rational function using methods from analytic combinatorics.