
Abstract

For a prime p and nonnegative integers j and n let $\vartheta_{p}(j, n)$ be the number of entries in the n-th row of Pascal's triangle that are exactly divisible by p^{j}. Moreover, for a finite sequence $w=w_{r-1} \cdots w_{0} \neq 0 \cdots 0$ in $\{0, \ldots, p-1\}$ we denote by $|n|_{w}$ the number of times that w appears as a factor (contiguous subsequence) of the base- p expansion $n_{\mu-1} \cdots n_{0}$ of n. It follows from the work of Barat and Grabner (Distribution of binomial coefficients and digital functions, J. London Math. Soc. (2) 64(3), 2001), that $\vartheta_{p}(j, n) / \vartheta_{p}(0, n)$ is given by a polynomial P_{j} in the variables X_{w}, where w are certain finite words in $\{0, \ldots, p-1\}$, and each variable X_{w} is set to $|n|_{w}$. This was later made explicit by Rowland (The number of nonzero binomial coefficients modulo p^{α}, J. Comb. Number Theory $3(1), 2011)$, independently from Barat and Grabner's work, and Rowland described and implemented an algorithm computing these polynomials P_{j}. In this paper, we express the coefficients of P_{j} using generating functions, and we prove that these generating functions can be determined explicitly by means of a recurrence relation. Moreover, we prove that P_{j} is uniquely determined, and we note that the proof of our main theorem also provides a new proof of its existence. Besides providing insight into the structure of the polynomials P_{j}, our results allow us to compute them in a very efficient way.

