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Abstract

The present postdoctoral thesis deals with digitally defined functions. Such a function is defined

via some digital expansion, such as the ubiquitous base-ten expansion, or more general, the

base-q expansion. Our goal is to better understand functions of this kind, from a combinatorial,

number theoretic, as well as from an analytical point of view.

The so-called sum-of-digits function sq in base q ≥ 2 will be our primary source of difficult

problems. The number sq(n), for a natural number n, is just the sum of all base-q digits of

n (which are integers and can be summed up). This quantity is also the minimal number of

powers of q needed to represent n as their sum:

sq(n) = min
{
k ≥ 0 : there exist d0, . . . , dk−1 ∈ N such that n = qd0 + · · ·+ qdk−1

}
.

Heuristically, the sum-of-digits function captures much of the complexity connected to digital

expansions, and there are numerous elementary questions that can be asked. The difficulty of

these questions ranges from trivial to intractable, and we are well advised to choose our research

problems from the “middle section”.

Contrary to the first impression that problems of this kind might give, there are questions

concerning digital expansions that are (a) easy to formulate but (b) non-trivial to answer, (c)

non-artificial, and (d) connected to other areas of pure mathematics, such as (harmonic) analysis,

Diophantine approximation, multiplicative number theory, the theory of dynamical systems, or

multiplicative number theory.

Examples that, in our opinion, satisfy all of these very vague criteria, include:

� How is the base-q expansion of a sum n + t of natural numbers related to the base-q

expansions of the summands n and t?

� How often does sq along a finite arithmetic progression attain a given value?

� At which positions n do we have (−1)sq(n) ̸= (−1)sq(n+r)? In particular (q = 2), we are

interested in the Thue–Morse sequence t(n) := s2(n) mod 2. Where do the “sign changes”

in t, corresponding to r = 1, take place?

� Do we have s2(n) = s3(n) infinitely often?

The four papers we are going to present in this thesis are concerned with these four items,

respectively. They give answers, or partial answers, to each of these four questions. Moreover,

they embed the research topic “digital expansions” into a broader picture by using methods

from various mathematical methods and highlighting further connections such as in (d) above.
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Chapter 1

Introduction

“Für die Entwicklung der logischen Wissenschaften wird es, ohne Rücksicht auf
etwaige Anwendungen, von Bedeutung sein, ausgedehnte Felder für Spekula-
tion über schwierige Probleme zu finden. Wir werden hier in dieser Abhand-
lung einige Untersuchungen aus einer Theorie über Zeichenreihen, die gewisse
Berührungspunkte mit der Zahlentheorie darbietet, mitteilen.”

Axel Thue, 1912 [158]

Thue would perhaps have been interested in observing that “Zeichenreihen” — strings of digits

— would be of fundamental importance later in the 20th century.

1.1 Included articles

We selected four of our relatively recent articles, three of which are single-authored, and one is

joint work with Michael Wallner (TU Wien). The contribution of each of the two authors to

that latter article can be estimated to be 50%.

All four papers are published or accepted for publication:

1. “The binary digits of n+ t”, with Michael Wallner,

Ann. Sc. Norm. Super. Pisa Cl. Sci., to appear;

2. “The level of distribution of the Thue–Morse sequence,

Compos. Math. 156 (2020), no. 12, 2560–2587;

3. “Gaps in the Thue–Morse word”,

J. Aust. Math. Soc., published online, to appear ;

4. “Collisions of digit sums in bases 2 and 3”,

Israel J. Math., accepted for publication (2022).

The full texts of these articles can be found in Chapters 2–5 below, and are also available

on arXiv.
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8 CHAPTER 1. INTRODUCTION

Remark 1. For reasons of brevity, we did not include the manuscript “Primes as sums of

Fibonacci numbers” (135 pages), written jointly with M. Drmota and C. Müllner, and recently

accepted (2022) for publication in Mem. Amer. Math. Soc.

https://www.ams.org/cgi-bin/mstrack/accepted_papers/memo

This preprint is available on arXiv.

Notation. For real x, we write

e(x) := exp(2πix), ∥x∥ := min
{
|x− n| : n ∈ Z

}
,

⌊x⌋ := max{n ∈ Z : n ≤ x}, {x} := x− ⌊x⌋.

In our papers, N denotes the set of nonnegative integers.

1.2 Digital expansions

Digital expansions owe their name to the Latin word digitus, meaning finger. Indeed, it is

certainly not a coincidence that using the decimal system — a positional system of numeration,

employing the number ten as base — is quite popular.

More generally, assume that q ≥ 2 is an integer. Every integer n ≥ 0 has a unique expansion

n =

ℓ−1∑
j=0

δjq
j , (1.2.1)

where ℓ ≥ 0 is an integer and
(
δ0, . . . , δℓ−1

)
∈ {0, . . . , q − 1}ℓ, and either ℓ = 0 or δℓ−1 ̸= 0.

Due to this uniqueness, we may write δj(n) for the base-q digit of n at index j, and ℓ(n) for the

quantity ℓ appearing in (1.2.1) — the length of the base-q expansion. We also set δj(n) = 0 for

j ≥ ℓ(n). Note that the base-q expansion of 0 is the empty string. This expansion has length 0.

The tuple
(
δ0(n), . . . , δℓ(n)−1(n)

)
∈ {0, . . . , q − 1}ℓ is called the base-q expansion of n, and

we use the notation

n =
(
δℓ(n)−1(n) · · · δ0(n)

)
q
.

For example, in the aforementioned decimal system, the base q is the number ten, and the

set of digits is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
Based on the base-q expansion, we define the sum-of-digits function in base q. Since the

digits of a natural number n in base q are natural numbers, we may form their sum, and define

sq(n) :=
∑
j≥0

δj(n).

In order to encounter the type of problems that we deal with in our papers, we do not need

to consider “large bases” such as ten. The case q = 2, and problems appearing when combining

this case with the next higher base q = 3, already provides plenty of research opportunities, and

intractable problems, too.

1.3 The binary digits of n+ t

The first paper we want to discuss is joint work with M. Wallner, and will appear in Ann. Sc.

Norm. Super. Pisa Cl. Sci. [153]. The accepted version of this paper can be found in

Chapter 2.

https://www.ams.org/cgi-bin/mstrack/accepted_papers/memo
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The binary sum-of-digits function s2 has a somewhat fractal appearance. For example, the

2λ+1-tuple Tλ+1, where Tµ :=
(
s2(0), . . . , s2

(
2µ − 1

))
, results from concatenating the 2λ-tuples

Tλ and Tλ + 1, where each value in the latter tuple is obtained from the corresponding entry in

the first tuple, by adding 1. The connection to fractal structures becomes even more apparent

when studying divisibility in Pascal’s triangle (see Figure 1.1 below). Assume that p is a prime

number. Legendre’s formula implies that

νp(n!) =
n− sp(n)

p− 1
, (1.3.1)

which relates the p-valuation of n! to the sum-of-digits function in base p. Here of course

νp(m) = max{k ≥ 0 : pk | m} for integers m ≥ 1. Using (2.1.2) thrice, we can express the

relation pj |
(
n+t
t

)
in the form of the identity

(p− 1) νp

((
n+ t

t

))
= sp(n) + sp(t)− sp(n+ t). (1.3.2)

In particular, we see that
(
n+t
t

)
is odd if and only if

s2(n+ t) = s2(n) + s2(t). (1.3.3)

This property can also be understood using Lucas’ congruence [98]. This well-known congruence

asserts that for t ≤ n and µ ≥ max
(
ℓ(n), ℓ(t)

)
, we have(

n

t

)
≡
(
δµ−1(n)

δµ−1(t)

)
· · ·
(
δ0(n)

δ0(t)

)
mod p.

Since p is a prime number, we have p ∤
(
n
t

)
if and only if none of the factors is divisible by p.

This, in turn, is equivalent to

δj(t) ≤ δj(n) for all i < µ,

which we denote by t ⪯ n for a moment.

For simplicity, we assume in the following that p = 2. In this case, we have t ⪯ n+ t if and

only if the supports of the sequences of digits of n and t are disjoint:

t ⪯ n+ t if and only if

for all j ≥ 0 :
(
δj(n), δj(t)

)
̸=
(
1, 1
)
.

(1.3.4)

The proof of this statement is direct and very easy, and does not involve carries.

It is well-known that marking the positions of odd entries in Pascal’s triangle generates, in

a certain sense, the Sierpiński triangle. Therefore, we see that this fractal can be understood

either by means of the sum-of-digits function in base 2 (1.3.3), or by checking “disjointness of

the digits” of n and t (1.3.4). This can also be formulated in terms of carries [91]. Let c(n, t) be

the number of carries arising in the addition n+ t. By Kummer’s paper, we have in particular

c(n, t) = ν2
(
n+t
n

)
. For the “base case” we have the following equivalent statements.

2 ∤
(
n+ t

t

)
if and only if

s2(n+ t) = s2(n) + s2(t) if and only if

t ⪯ n+ t if and only if

for all j ≥ 0 :
(
δj(n), δj(t)

)
̸=
(
1, 1
)

if and only if

c(n, t) = 0.

(1.3.5)
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Let us now study higher divisibility and assume that k ≥ 0. It is known [78] that the sets

Ak :=

{
(n, t) : 2k+1 ∤

(
n

t

)}
(1.3.6)

of entries in Pascal’s triangle not divisible by 2k+1 can be constructed by the following simple

iterative procedure (omitting precise definitions of the used terms).

k = 0: Start with the infinite discrete Sierpiński triangle, which is A0.

k ≥ 1: Into each triangular hole of Ak−1, insert a maximal discrete Sierpiński triangle, in order

to obtain Ak.

The following picture illustrates this procedure for the first 32 rows of Pascal’s triangle, and

k ≤ 2.

Figure 1.1: Binomial coefficients exactly divisible by 20( ), 21( ), or 22( ).

The blue hexagons in this picture correspond to binomial coefficients
(
n+t
t

)
exactly divisible

by 2, in other words, s2(n + t) + 1 = s2(n) + s2(t) (see (1.3.2)). Purple corresponds to exact

divisibility by 4, and the equation s2(n+ t) + 2 = s2(n) + s2(t).

It looked manageable at first to gain precise understanding of the occurrence of carries when

adding n and t, that is, the set

Cn,t :=
{
j ∈ N : a carry appears at index j in the addition n+ t

}
. (1.3.7)

This definition captures, intuitively, the “complexity” of the addition of integers.

We soon came to realize that the task of understanding the sets Cn,t is an infeasible one. In

this context, we would like to first highlight the paper [150] with M. Wallner, where a glimpse

of the apparent complexity of divisibility in Pascal’s triangle can be taken. In that paper, we

give a structural result concerning the quantities

ϑ(j, n) := #

{
t ≤ n : 2j |

(
n+ t

t

)
and 2j+1 ∤

(
n+ t

t

)}
(the number of terms in row n of Pascal’s triangle that are exactly divisible by 2j). We studied

an exact representation of ϑ(j, n) in terms of subword-counting functions

|n|w := #
{
j ≥ 0 : the word w appears at position j in the binary expansion of n

}
.
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For example, [150]

ϑ(1, n)2−s2(n) =
1

2
|n|10, and

ϑ(16, n)2−s2(n) =
1

21616!
|n|1610 + (872748 monomials),

where each of the 872748 additional monomials is a product of (at most 15) subword-counting

functions |·|w (see the Online Encyclopedia of Integer Sequences [140, A275012]). It is important

to note that such a representation by a polynomial in block-counting functions is unique, as soon

as only words w = 1w′0 are admitted [150, Proposition 2.1], moreover there does exist a poly-

nomial representation satisfying this restriction (see Barat–Grabner [12], and Rowland [134]).

Note that the first formula expresses the number of blue hexagons in Figure 1.1, while hexagons

“of color 16” do not appear before line 216 = 65536 in Pascal’s triangle.

Another, even more striking, illustration of the complexity of this topic is the very close

connection to the so-called Diatomic Sequence of Stern [154]. This 2-regular sequence (see

Allouche–Shallit [3]) is defined by the deceptively simple recurrence

a(0) = 0, a(1) = 1, a(2n) = s(n), a(2n+ 1) = a(n) + a(n+ 1). (1.3.8)

The connection to Pascal’s triangle can be seen from the formula

a(n+ 1) = #

{
(i, j) ∈ N2 : 2i+ j = n,

(
i+ j

i

)
is odd

}
. (1.3.9)

This identity can be proved using hyperbinary expansions of an integer, see Northshield, [125,

Theorem 4.1]. In other words, Stern’s sequence is given by diagonal sums across Pascal’s triangle

modulo 2 [126]. By the equivalence (1.3.5) and the definition (1.3.7) of Cn,t, we have

a(n+ 1) = # {i ≥ 0 : #Ci,n−2i = 0} . (1.3.10)

From this we see that results on the structure of carries occurring in the addition of integers

leads to a better understanding of Stern’s sequence.

Stern’s sequence a, in turn, is closely related to continued fractions (see Stern [154], Lehmer [93],

Lind [95], and Graham, Knuth, and Patashnik [77, Exercise 6.50]): if

n =
(
1k00k1 · · · 1kr−20kr−11kr

)
2
,

then an is the numerator of the rational represented by the continued fraction

[k0; k1, . . . , kr].

Therefore, it appears reasonable that “understanding carries occurring in the addition of inte-

gers” leads to “understanding the continued fraction expansion of rationals” (and consequently,

the Euclidean algorithm, Farey series, . . . ). From this we derive the following informal guideline.

We cannot expect to gain complete understanding of the set Cn,t. (1.3.11)

Due to the apparent difficulties connected to a precise understanding of carries, we have to

lower our expectations.

In the first paper [153] of this series, jointly with M. Wallner, we explore this topic by

investigating the inequality

s2(n+ t) ≥ s2(n). (1.3.12)
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Taking (1.3.11) to heart, we will not strive to fully characterize the set of pairs (n, t) such

that (1.3.12) is satisfied. Instead, we will only study the frequency of integers n such that this

inequality holds. In symbols, we set

ct := lim
N→∞

1

N
#
{
n < N : s2(n+ t) ≥ s2(n)

}
. (1.3.13)

T. W. Cusick conjectured [private communication, 2011, 2015] that for each t ≥ 0, we have

ct >
1

2
. (1.3.14)

Even though the behaviour of ct should be more admissible than Cn,t, we expect that the exact

form of the value ct will still be very difficult to grasp. We therefore content ourselves with

bounds and asymptotic statements [42,144,148,151–153].

Theorem 2.1.1 from Chapter 2 gives an almost-solution to Cusick’s (Hamming weight)

conjecture. We prove that ct > 1/2 if the binary expansion of t contains a sufficient number of

maximal blocks of 1s. That is, we have ct > 1/2 as soon as |t|01 > M , where M is an absolute,

effective constant.

The second theorem in that paper identifies a Gaussian behaviour within the family (δ(t, j))j∈Z
of densities

δ(t, j) := lim
N→∞

1

N
#
{
n < N : s2(n+ t)− s2(n) = j

}
.

The quality of this normal approximation increases with the number of maximal blocks of 1 in

the binary expansion of t.

Remark 2 (Relation to the main topic of this thesis). Cusick’s conjecture is firmly rooted in the

topic “Subsequences of digitally defined functions”. To see this, it suffices to note the following

items.

1. In Cusick’s conjecture, we may assume that t is odd, for the simple reason that c2t = ct [42].

2. We have s2(n+ t)− s2(n) ≤ s(t) (see (1.3.2)).

3. The relation s2(n+ t)− s2(n) = j is in fact periodic in n with some period 2q [17, 163].

Taking these points together, we see that Cusick’s conjecture is a question on the subsequence

a(t) :=
(
s2(nt)

)
n≥0

.

Namely, for t odd, we have

ct = lim
N→∞

1

N
#
{
0 ≤ n < N : a(t)(n+ 1) ≥ a(t)(n)

}
.

1.4 The level of distribution of the Thue–Morse sequence

The second paper under discussion is published in Compos. Math. [145], and can be found

in Chapter 3.

Section 2 we saw that Cusick’s conjecture can be formulated as a conjecture on arithmetic

subsequences of s2. In Chapter 3, we study arithmetic subsequences again, but with a different
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focus. In this chapter, we are interested in short arithmetic progressions, while Cusick’s con-

jecture is a question on long, in fact, infinite, arithmetic progressions (see Remark 2). Short

arithmetic progressions are, heuristically, more difficult to control than long ones. (The meaning

of “short” can be found in the formulation of Theorem 3.2.1.)

As a compensation, we simplify the function s2 by reducing it modulo 2, leading to the

Thue–Morse sequence

t(n) := s2(n) mod 2

=
(
011010011001011010010110011010011001011001101001 · · ·

)
.

(1.4.1)

This sequence is automatic [5], as it is generated by feeding the binary expansion of n ∈ N into

the following automaton.

0 1start

0

1

1

0

Figure 1.2: An automaton generating t

Each time we encounter the digit 0, we stay at the same node, and each time 1 is read, we

change sides. In this way, the number of 1s in binary is counted, modulo 2.

As a second simplification (of our problem to study digital expansions along short arithmetic

progressions), we only ask for the number of times each of the values 0 and 1 is attained by t

along our progression. Meanwhile, Cusick’s conjecture was concerned with consecutive values

of s2 along an arithmetic progression, more precisely, the difference s2((n+ 1)t)− s2(nt).
This setup leads us to the notion of the level of distribution, which is a prominent topic in

multiplicative number theory [67, 90, 164]. For example, the well-known Bombieri–Vinogradov

theorem states that the von Mangoldt function Λ has level of distribution (at least) 1/2. Loosely

speaking, this theorem asserts in particular that the number of prime numbers in an arithmetic

progression (
a, a+ q, . . . , a+ (N − 1)q

)
,

where a < q and gcd(a, q) = 1, is close to π(Nq)/φ(q), for most moduli q ≍ N(logN)−A. Any

improvement of the level of distribution beyond 1/2 would constitute substantial progress in

multiplicative number theory.

Understanding the behaviour of the Thue–Morse sequence is certainly more manageable than

understanding prime numbers. In this case, it was already known that the value 0.5924, strictly

larger than 1/2, is an admissible level of distribution for the Thue–Morse sequence [64]. We were

able to obtain the (optimal) value 1, which is the content of the main theorem in our second

paper. The precise statement of this theorem (Theorem 3.2.1) is presented in Chapter 3 of this

thesis.

Roughly, this result states that for most moduli q ≍ NR, all of the numbers

#
{
n < N : t(a+ nq) = 0},

for a ≥ 0, are close to N/2.

The above-cited result [64] by Fouvry and Mauduit — the Thue–Morse sequence has level of

distribution α = 0.5924 — corresponds to R ≤ α/(1−α) ≈ 1.453. The substantial improvement
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contained in our theorem is the fact that R may be chosen arbitrarily large. This explains

the term “(very) short arithmetic progression”, as the common difference may be astronomical

compared to the number of terms.

In Chapter 3 we prove this theorem, which has the potential for significant impact on the

field.

Remark 3. We note that the proof strategy of Theorem 3.2.1 has been extended by M. Drmota,

C. Müllner, and the author, in order to handle the Zeckendorf sum-of-digits function z. We were

able to prove, in particular, the following statement [49, Theorem 1.1]:

Let k be a sufficiently large integer. There exists a prime number p that is the
sum of k pairwise different and non-consecutive Fibonacci numbers.

The paper containing this result is going to be published by Mem. Amer. Math. Soc.

1.5 Gaps in the Thue–Morse word

Chapter 4 is of a slightly different flavour, and concerns the paper [147], which will appear in

J. Aust. Math. Soc.

Let a be a digitally defined sequence over the alphabet A, and w a finite word in A. We

start with a property Pa,w(ℓ):

Pa,w(ℓ)⇐⇒ the word w appears at position ℓ in the sequence a.

The object of interest in this paper is the increasing sequence n = (nj)j≥0 of positions ℓ for

which this property holds. (The subsequence j 7→ a(nj) is constant.) We consider in particular

the increasing sequence n = (nj)j≥0 of positions in the Thue–Morse word at which the subword

01 appears. The main result of this chapter states that the sequence n is not k-regular, for every

k ≥ 2, in the sense of J.-P. Allouche and J. Shallit [3]. Thereby we answer a question of Shallit

in the affirmative.

In fact, what Shallit asked (private communication, 2019) was to prove that the gap sequence

B =
(
nj+1 − nj

)
j≥0

of occurrences of 01 in the Thue–Morse sequence is not automatic. Since the sequence of

partial sums of k-automatic sequences is k-regular, differences j 7→ f(j + 1)− f(j) of k-regular
sequences are again k-regular, and finite-valued k-regular sequences are k-automatic [3], these

two problems are equivalent. As a corollary to our method, we derive the result that the gap

sequence corresponding to any factor of the Thue–Morse sequence, of length at least two, is not

automatic. Here a factor of a word is any contiguous finite subsequence of that word.

Our proof of Theorem 4.1.1 is based on a close relation to the well-known ternary Thue–

Morse sequence A [2, 20, 84], see the definition by a morphism in (4.2.1). This sequence on

the letters {a, b, c} is in fact automatic, and we display a corresponding base-2 automaton in

Figure 1.3 below.
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a/a b/b

c/cb̄/b

start

0

1

0

1

0

1

0

1

Figure 1.3: An automaton generating A

Following the edges according to the binary expansion of an integer, we arrive at one of the

four nodes a, b, b̄, or c; applying the projection a 7→ a, b 7→ b, b̄ 7→ b, c 7→ c, we obtain the

sequence A on three symbols. (Note that applying the projection a 7→ 0, b̄ 7→ 0, b 7→ 1, c 7→ 1

instead, we obtain the Thue–Morse sequence!) The gap sequence B can be recovered from A,

replacing each occurrence of a by 33, each b by 4, and each c by 2.

A = a bca cba bcba ca bca cba ca bcba bca cba bcba ca bcba bca cb · · ·
B = 3342332433424332334233243323342433423324334243323342433423324 · · ·

Figure 1.4: A is automatic, while B is not

The gap sequence B is substitutive, or morphic, as a morphic image of an automatic se-

quence (Figure 1.4), see [5, Corollary 7.7.5]. Our main theorem, Theorem 4.1.1, states that the

gap sequence B is not automatic in any base.

The second part of our paper [147] is concerned with the discrepancy of the number of

occurrences of 01. This quantity is defined by

DN := #
{
0 ≤ n < N : tn = 0, tn+1 = 1

}
− N

3
.

To this end, we closely investigate the structure of A. More precisely, we study certain

rotations of letters, which transform A into the periodic word (abcabc · · · ). Understanding the

nested structure of these rotations is the subject of this part of the paper. In particular, we

represent the discrepancy by means of output sums of a transducer [83], and derive the corollary

that DN takes every value in 1
3Z infinitely often, see (4.3.22).

1.6 Collisions of digit sums in bases 2 and 3

In Chapter 5 we solve a long-standing folklore conjecture on the joint digital expansion of

natural numbers in bases 2 and 3. The corresponding paper [146] will be published in Israel J.

Math.

The following form of the conjecture — now a theorem (Theorem 5.1.1) — was formulated

at the latest towards the end of the last century.
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Conjecture 1. We have s2(n) = s3(n) infinitely often.

We list some values of the binary and the ternary sum-of-digits functions, where we highlight

collisions — integers n such that s2(n) = s3(n) — using boxes.

n s2(n) s3(n)

0 0 0

1 1 1

2 1 2

3 2 1

4 1 2

5 2 3

6 2 2

7 3 3

8 1 4

9 2 1

n s2(n) s3(n)

10 2 2

11 3 3

12 2 2

13 3 3

14 3 4

15 4 3

16 1 4

17 2 5

18 2 2

19 3 3

n s2(n) s3(n)

20 2 4

21 3 3

22 3 4

23 4 5

24 2 4

25 3 5

26 3 6

27 4 1

28 3 2

29 4 3

n s2(n) s3(n)

30 4 2

31 5 3

32 1 4

33 2 3

34 2 4

35 3 5

36 2 2

37 3 3

38 3 4

39 4 3

n s2(n) s3(n)

40 2 4

41 3 5

42 3 4

43 4 5

44 3 6

45 4 3

46 4 4

47 5 5

48 2 4

49 3 5

n s2(n) s3(n)

50 3 6

51 4 5

52 3 6

53 4 7

54 4 2

55 5 3

56 3 4

57 4 3

58 4 4

59 5 5

The sequence of collisions therefore begins as follows:

0, 1, 6, 7, 10, 11, 12, 13, 18, 19, 21, 36, 37, 46, 47, 58, 59, . . . ,

which is sequence A037301 in the OEIS [140].

An obvious question would be to decide whether there exist arbitrarily long sequences of con-

secutive collisions. It is easy to see, however, that there cannot exist five consecutive collisions.

To this end, assume that s2(n) = s3(n) for n ∈ A = {n0, . . . , n0+4}. Then {3ℓ, 3ℓ+1, 3ℓ+2} ⊆ A
for some ℓ, which implies

s2(3ℓ+ 2) = s3(3ℓ+ 2) = s3(3ℓ) + 2 = s2(3ℓ) + 2.

However, s2(m+ 2) ≤ s2(m) + 1 by (1.3.2), which is a contradiction.

Note that on the OEIS page for sequence A037301, an exhaustive search up to 329 in search

of five or more adjacent collisions is mentioned, an effort that would not have been necessary.
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Figure 1.5: blue: number of collisions up to N ; red: powers of 2; black: powers of 3

In Figure 1.5 we can clearly see that for N near powers of 2 and 3, there appear to be

fluctuations in the observed numbers of collisions up to N . Heuristically, this can be explained

as follows. For example, approaching a power of 2 from below, the number of digits 1 in binary

is above average. Since the expected sum of digits in base 3 is larger than the expected sum of

digits in base 2, this bias shifts the expected values closer to each other, and we expect more

collisions.

The main result of Chapter 5 — Theorem 5.1.1 — states that the number of collisions is

indeed infinite. More precisely, a lower bound of the form Nη, where η > 0, for the number of

collisions up to N is given: we have

#
{
n < N : s2(n) = s3(n)

}
≥ CNη

for some constants C, η > 0.

We would also like to highlight a connection to the base-12 expansion of n! [35, 36, 39].

By (2.1.2), the integer n ≥ 0 is a collision if and only if

ν2(n!) = n− s2(n) = 2
n− s3(n)

2
= 2 ν3(n!).

This is the case if and only if n! is exactly divisible by (22 · 31)k = 12k for some k, by which we

mean the property

12k | n! and gcd(12, n!/12k) = 1.
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In this case, and in this case only, the last significant base-12 digit of n!, in symbols, ℓ12(n!), is

an element of {1, 5, 7, 11}. Summarizing, we have the equivalences

s2(n) = s3(n) if and only if

ν2(n!) = 2 ν3(n!) if and only if

12k exactly divides n! for some k if and only if

ℓ12(n!) ∈ {1, 5, 7, 11}.

(1.6.1)

Together with J.-M. Deshouillers and M. Drmota (work in progress) we prove that the last

significant digit of n! in base 12 attains each of 1, 5, 7, and 11 infinitely many times, which is a

refinement of Conjecture 1.

Remark 4. We note that the proof of Theorem 5.1.1, and thus the solution of Conjecture 1,

heavily relies on arithmetic subsequences of s2 and s3, and thus fits nicely into the general

framework of this thesis. In fact, the problem greatly simplifies when the sequence n 7→ s2(n)−
s3(n), where n ∈ [N, 2N), is rarefied by a certain power 3ζ . According to (5.2.44), we will have

ζ ∼
(
1− log 3

2 log 2

)
logN

log 2
.

The simple heuristics behind this rarefaction is the following: along the arithmetic progression

3ζN∩ [N, 2N), the expected values of s2(n) and s3(n) will be similar (within few standard devi-

ations from each other), while the expected values on the interval [N, 2N), without rarefaction,

differ by many standard deviations. The technicalities surrounding this key argument are no-

table, but it should be kept in mind that it is really the essence of the proof. We will not

reproduce the details at this point, but postpone them to Chapter 5. Let us only note that we

were not able to prove the theorem without such an “expectation-adjusting rarefaction”.

Summarizing, passing to a suitable subsequence of a digitally defined function, the formerly

intractable Conjecture 1 becomes manageable.
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Abstract

The binary sum-of-digits function s counts the number of ones in the binary expansion of

a nonnegative integer. For any nonnegative integer t, T. W. Cusick defined the asymptotic

density ct of integers n ≥ 0 such that

s(n+ t) ≥ s(n).

In 2011, he conjectured that ct > 1/2 for all t — the binary sum of digits should, more often

than not, weakly increase when a constant is added. In this paper, we prove that there exists

an explicit constant M0 such that indeed ct > 1/2 if the binary expansion of t contains at least

M0 maximal blocks of contiguous ones, leaving open only the “initial cases” — few maximal

blocks of ones — of this conjecture. Moreover, we sharpen a result by Emme and Hubert (2019),

proving that the difference s(n+ t)− s(n) behaves according to a Gaussian distribution, up to

an error tending to 0 as the number of maximal blocks of ones in the binary expansion of t

grows.

2.1 Introduction and main result

The binary expansion of an integer is a fundamental concept occurring most prominently in num-

ber theory and computer science. Its close relative, the decimal expansion, is found throughout

everyday life to such an extent that “numbers” are often understood as being the same as a

string of decimal digits. However, it is difficult to argue — mathematically — that base ten

is special; in our opinion the binary case should be considered first when a problem on digits

occurs.

The basic problem we deal with is the (not yet fully understood) addition in base two. Let

us consider two simple examples: 10+ 1 = 11 and 11+ 1 = 100. The difference between these

two, and what makes the second one more complicated, is the occurrence of carries and their

19
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interactions via carry propagation. These carries turn the problem of addition into a complicated

case-by-case study and a complete characterization is unfortunately out of sight. In order to

approach this problem, we consider a parameter associated to the binary expansion — the

binary sum of digits s(n) of a nonnegative integer n. This is just the number of 1s in the binary

expansion of n, and equal to the minimal number of powers of two needed to write n as their

sum. While we are only dealing with this parameter instead of the whole expansion, we believe

that it already contains the main difficulties caused by carry propagation.

Cusick’s conjecture encodes these difficulties by simultaneously studying the sum-of-digits

function of n and n+ t. It states (private communication, 2011, 20151) that for all t ≥ 0,

ct > 1/2, (2.1.1)

where

ct = lim
N→∞

1

N

∣∣{0 ≤ n < N : s(n+ t) ≥ s(n)
}∣∣

is the proportion of nonnegative integers n such that n+ t contains it its binary representation

at least as many 1s as n.

This easy-to-state conjecture seems to be surprisingly hard to prove. Moreover, it has an

important connection to divisibility questions in Pascal’s triangle: the formula

s(n+ t)− s(n) = s(t)− ν2
((

n+ t

t

))
(2.1.2)

essentially due to Legendre links our research problem to the 2-valuation ν2 of binomial coeffi-

cients, which is defined by ν2(a) := max{e ∈ Z : 2e | a}. Note also that the last term in (2.1.2)

is the number of carries appearing in the addition n + t, a result that is due to Kummer [91].

The strong link expressed in (2.1.2), and the combination of simplicity and complexity, has been

a major motivation for our research.

In order to better understand the conjecture, we start with some simple examples. For

t = 0 we directly get c0 = 1. For t = 1 it suffices to consider the last two digits of n to obtain

c1 = 3/4. Note that in the two binary additions above we have t = 1, where the first one satisfies

s(n+1) ≥ s(n), while the second does not. For more values of ct we used the recurrence (2.1.5)

defined below and we verified ct > 1/2 for all t ≤ 230 numerically. In Figure 2.1 we illustrate

the first values of ct.

The full conjecture is still open, yet some partial results have been obtained [42,54–56,144,

148]. Among these, we want to stress a central limit-type result by Emme and Hubert [55], a

lower bound due to the first author [148], and an almost-all result by Drmota, Kauers, and the

first author [42] stating that for all ε > 0, we have

|{t < T : 1/2 < ct < 1/2 + ε}| = T −O
(

T

log T

)
.

(The symbol O is used for Big O notation throughout this paper.) Moreover, Cusick’s conjecture

is strongly connected to the Tu–Deng conjecture [159, 160] in cryptography, which is also still

open, yet with some partial results [29,34,60,61,152,159]. We presented this connection in [152],

in which we proved an almost-all result for the Tu–Deng conjecture and where we showed that

the full Tu–Deng conjecture implies Cusick’s conjecture.

1The conjecture was initially termed “Cusick problem” or “Question by Cusick” in the community, but in an
e-mail dated 2015 to the first author, Cusick upgraded it to “conjecture”.
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Figure 2.1: Cusick’s conjecture states that ct > 1/2 for all t ≥ 0, which is illustrated in this

figure for all t ≤ 213, and which we computationally confirmed for all t ≤ 230. In this paper we

prove that it holds for all t with sufficiently many blocks of 1s, so that only finitely many classes

(each class is concerned with those t having a fixed number of maximal blocks of 1s) remain

open.

The main theorem of this paper is the following near-solution to Cusick’s conjecture, which

significantly improves the previous results. Note that it happens repeatedly that difficult con-

jectures are (more easily) provable for sufficiently large integers and recently even two more

important ones have been resolved in this manner: Sendov’s conjecture [157] and the Erdős–

Faber–Lovász conjecture [86]. Our method will combine several techniques such as recurrence

relations, cumulant generating functions, and integral representations.

Theorem 2.1.1. There exists a constantM0 with the following property: If the natural number t

has at least M0 maximal blocks of 1s in its binary expansion, then ct > 1/2.

Remark 5. We note the important observation that all constants in this paper could be given

numerical values by following our proofs. In order to keep the technicalities at a minimum, we

decided not to compute them explicitly. In this paper, we do not rely on arguments making it

impossible to extract explicit values for our constants (such as certain proofs by contradiction).

We are dealing with effective results, without giving a precise definition of this term.

The central objects to tackle the conjecture are the asymptotic densities

δ(j, t) = lim
N→∞

1

N
#
{
0 ≤ n < N : s(n+ t)− s(n) = j

}
,

where j ∈ Z. The limit exists in our case; see Bésineau [18]. These densities lead to the useful

decomposition

ct =
∑
j≥0

δ(j, t). (2.1.3)

The sum on the right hand side is in fact finite, since δ(j, t) = 0 for j > s(t), which follows

from (2.1.2). Therefore we get equality in (2.1.3) — asymptotic densities are finitely additive.

Distinguishing between even and odd cases, one can show that the values δ(k, t) satisfy the

following recurrence [42,144,148]:

δ(j, 1) =

{
0, j > 1;

2j−2, j ≤ 1,
(2.1.4)
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and for t ≥ 0,
δ(j, 2t) = δ(j, t),

δ(j, 2t+ 1) =
1

2
δ(j − 1, t) +

1

2
δ(j + 1, t+ 1).

(2.1.5)

In particular, the recurrence shows that δ( , t) is a probability mass function for each t:∑
j∈Z

δ(j, t) = 1, (2.1.6)

and δ(j, t) ≥ 0 by definition. Furthermore, the set

{n ∈ N : s(n+ t)− s(n) = j}

defining δ(j, t) is a finite union of arithmetic progressions a+2mN, which can be seen along the

same lines.

Our second main result gives an asymptotic formula for the densities δ(j, t) and is obtained

in the course of establishing Theorem 2.1.1.

Theorem 2.1.2. For integers t ≥ 1, let us define

κ2(1) = 2; κ2(2t) = κ2(t); κ2(2t+ 1) =
κ2(t) + κ2(t+ 1)

2
+ 1.

If the positive integer t has M maximal blocks of 1s in its binary expansion, and M is larger

than some constant M0, then we have

δ(j, t) =
1√

2πκ2(t)
exp

(
− j2

2κ2(t)

)
+O

(
M−1(logM)4

)
for all integers j. The multiplicative constant in the error term can be made explicit.

Concerning the effectiveness of the constants, we refer to the remark after Theorem 2.1.1.

We will see in Corollary 2.2.3 and in Lemma 2.2.4 that

M ≤ κ2(t) ≤ CM

for some constant C. Therefore, the main term dominates the error term for large M if

|j| ≤ 1

2

√
M logM.

Note that the factor 1/2 is arbitrary and any value ρ < 1 is good enough (for M larger than

some bound depending on ρ). Moreover, in the statement of Theorem 2.1.2, the lower bound

M > M0 is, in fact, not needed, as it can be taken care of by the constant C in the error

term. Simply choose C so large that the error term is greater than 1 (for example, C = M0 is

sufficient, since δ(j, t) ≤ 1). We decided to keep the theorem as it is, since we feel that increasing

a constant only for reasons of brevity is somewhat artificial.

Without giving a full proof we note that, by summation, this theorem can be used for proving

a statement comparing ∆(j, t) =
∑

j′≥j δ(j
′, t) and the Gaussian Φ

(
−j/

√
κ2(t)

)
. This leads to

a sharpening of the main result in Emme and Hubert [55]. By summing the asymptotic formula

in Theorem 2.1.2 from 0 to
√
M logM , we also obtain the following corollary.
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Corollary 2.1.3. There exists a constant C such that

ct ≥ 1/2− CM−1/2
(
logM

)5
for all t ≥ 1, where M is the number of maximal blocks of 1s in t.

The proof is straightforward, and left to the reader. This corollary is weaker than The-

orem 2.1.1, but we stated it here since it gives a quantitative version of the main theorem

in [148].

Notation. In this paper, 0 ∈ N. We will use Big O notation, employing the symbol O. We let

e(x) denote e2πix for real x. In our calculations, the number π will often appear with a factor

2. Therefore we use the abbreviation τ = 2π.

We consider blocks of 0s or 1s in the binary expansion of an integer t ∈ N. Writing “block

of 1s of length ν in t”, we always mean a maximal subsequence εµ = εµ+1 = · · · = εµ+ν−1 = 1

(where maximal means that εµ+ν = 0 and either µ = 0 or εµ−1 = 0). “Blocks of 0s of length ν

in t” are subsequences εµ = · · · = εµ+ν−1 = 0 such that εµ+ν = 1 and either µ = 0 or εµ−1 = 1.

We call blocks of zeros bordered by 1s on both sides “inner blocks of 0s”. For example, 2kn

and n have the same number of inner blocks of 0s. The number of blocks in t is the sum of the

number of blocks of 1s and the number of blocks of 0s.

All constants in this paper are absolute and effective. The letter C is often used for constants;

occurrences of C at different positions need not necessarily designate the same value.

In the remainder we give the proof of our main result, Theorem 2.1.1, followed by the proof

of Theorem 2.1.2.
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2.2 Proof of the main theorem

The proof of our main Theorem 2.1.1 is split into several parts. The main idea is to work

with the cumulant generating function of the probability distribution given by the densities

δ(j, t), which we define in Section 2.2.1. The crucial observation later on is that it is sufficient

to work with an approximation using only the cumulants up to order 5. This approximation

is analyzed in Section 2.2.2 and used in Section 2.2.3 inside an explicit integral representation

of ct to prove our main result up to an exceptional set of ts. It remains to prove that these

exceptional values, which are defined by the cumulants of order 2 and 3, satisfy an inequality

involving the cumulants of order 4 and 5. For this reason, we needed to choose an approximation

of the cumulant generating function up to order 5. Thus, in Section 2.2.4 we determine this

exceptional set and in Section 2.2.5 we prove bounds on the cumulants of order 4 and 5. Finally,

in Section 2.2.6 we combine all ingredients to prove the inequality.
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2.2.1 Characteristic function and cumulant generating function

We begin with the definition of the characteristic function of the probability distribution given

by the densities δ(j, t). In particular, we use the following variant, involving a scaling factor

τ = 2π. For t ≥ 0 and ϑ ∈ R we define

γt(ϑ) =
∑
j∈Z

δ(j, t) e(jϑ).

Since δ( , t) defines a probability distribution and |e(x)| ≤ 1 for real x, we may interchange

summation and integration by the dominated convergence theorem:

δ(j, t) =
∑
k∈Z

δ(k, t) ·
{

1, k = j;

0, k ̸= j

}
=
∑
k∈Z

δ(k, t)

∫ 1/2

−1/2

e((k − j)ϑ) dϑ

=

∫ 1/2

−1/2

e(−jϑ)
∑
k∈Z

δ(k, t) e(kϑ) dϑ =

∫ 1/2

−1/2

γt(ϑ) e(−jϑ) dϑ.
(2.2.1)

The recurrence (2.1.5) directly carries over to the characteristic functions. For all t ≥ 0, we have

γ2t(ϑ) = γt(ϑ),

γ2t+1(ϑ) =
e(ϑ)

2
γt(ϑ) +

e(−ϑ)
2

γt+1(ϑ),
(2.2.2)

and in particular

γ1(ϑ) =
e(ϑ)

2− e(−ϑ)
. (2.2.3)

Therefore, for all t ≥ 1, we have

γt(ϑ) = ωt(ϑ)γ1(ϑ),

where ωt is a trigonometric polynomial such that ωt(0) = 1. These polynomials satisfy the same

recurrence relation as γt. In particular, noting also that the denominator 2− e(−ϑ) is nonzero
near ϑ = 0, we have Re γt(ϑ) > 0 for ϑ in a certain disk

Dt = {ϑ ∈ C : |ϑ| < r(t)},

where r(t) > 0. It follows that

Kt = log ◦ γt (2.2.4)

is analytic in Dt and therefore there exist complex numbers κj(t) for j ∈ N such that

γt(ϑ) = exp(Kt(ϑ)) = exp

∑
j≥0

κj(t)

j!
(iτϑ)j

 (2.2.5)

for all ϑ ∈ Dt. These numbers κj(t) are the cumulants of the probability distribution defined

by δ( , t) (up to a scaling by τ); see, e.g., [19]. They are real numbers since characteristic

functions are Hermitian: γt(ϑ) = γt(−ϑ). The real-valuedness also follows directly from the fact

that cumulants are defined via the logarithm of the moment generating function, which has real

coefficients. The cumulant κ2(t) is the variance: we have

κ2(t) =
∑
j∈Z

j2δ(j, t). (2.2.6)
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For t = 0, we have κj(t) = 0 for all j ≥ 0, as δ(k, 0) = 1 if k = 0 and δ(k, 0) = 0 otherwise. The

recurrence (2.2.2) shows that

γt(ϑ) = 1 +O(ϑ2)

at 0, which implies κ0(t) = κ1(t) = 0. Let us write

xj = κj(t), yj = κj(t+ 1), and zj = κj(2t+ 1). (2.2.7)

Next, we will express the coefficients zj as functions of the coefficients xj and yj . Therefore

we substitute the cumulant representation from (2.2.5) for γt(ϑ) into the recurrence (2.2.2) and

obtain that these quantities are related via the fundamental identity

exp
(z2
2
(iτϑ)2 +

z3
6
(iτϑ)3 + · · ·

)
=

1

2
exp
(

iτϑ+
x2
2
(iτϑ)2 +

x3
6
(iτϑ)3 + · · ·

)
+

1

2
exp
(
−iτϑ+

y2
2
(iτϑ)2 +

y3
6
(iτϑ)3 + · · ·

)
,

(2.2.8)

valid for ϑ ∈ D = Dt ∩ Dt+1 ∩ D2t+1. From this equation, we derive the following lemma by

comparing coefficients of the appearing analytic functions.

Lemma 2.2.1. Assume that t ≥ 0 and let xj, yj, and zj be defined by (2.2.7). We have

z2 =
x2 + y2

2
+ 1; (2.2.9)

z3 =
x3 + y3

2
+

3

2
(x2 − y2); (2.2.10)

z4 =
x4 + y4

2
+ 2(x3 − y3) +

3

4
(x2 − y2)2 − 2; (2.2.11)

z5 =
x5 + y5

2
+

5

2
(x4 − y4) +

5

2
(x2 − y2)(x3 − y3)− 10(x2 − y2). (2.2.12)

In particular,

κ2(1) = 2, κ3(1) = −6, κ4(1) = 26, κ5(1) = −150. (2.2.13)

Proof. Extracting the coefficient of ϑ2 in (2.2.8), we obtain

z2 =
1

(iτ)2
[ϑ2]

(
1 + i τϑ+

x2
2
(iτϑ)2 +

1

2

(
i τϑ+

x2
2
(iτϑ)2

)2
+ 1− i τϑ+

y2
2
(iτϑ)2 +

1

2

(
−i τϑ+

y2
2
(iτϑ)2

)2)
=
x2 + y2

2
+ 1,

where [xk]
∑
fkx

k = fk denotes the coefficient extraction operator and this gives (2.2.9).

Similarly, we handle the higher coefficients. We proceed with [ϑ3]Kt(ϑ). From (2.2.8) we

obtain by collecting the cubic terms

z3 =
3

(iτ)3

(
x3
6
(iτ)3 + 2

1

2

x2
2
(iτ)3 +

1

6
(iτ)3 +

y3
6
(iτ)3 − 2

1

2

y2
2
(iτ)3 − 1

6
(iτ)3

)
=
x3 + y3

2
+

3

2
(x2 − y2),
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which is (2.2.10). For the next coefficient [ϑ4]Kt(ϑ), we have to take the quadratic term of the

exponential on the left hand side of (2.2.8) into account. This yields, inserting the recurrence

for z2 obtained before,

[
ϑ4
]
exp

(z2
2
(iτϑ)2 +

z3
6
(iτϑ)3 +

z4
24

(iτϑ)4
)
= τ4

(
z4
24

+
z22
8

)
= τ4

(
z4
24

+
1

8
+
x2 + y2

8
+

(x2 + y2)
2

32

)
.

The coefficient of ϑ4 of the right hand side of (2.2.8) gives, collecting the quartic terms,

τ4

2

(
x4
24

+
1

2

(
x3
3

+
x22
4

)
+

1

6

(
3
x2
2

)
+

1

24

+
y4
24

+
1

2

(
−y3

3
+
y22
4

)
+

1

6

(
3
y2
2

)
+

1

24

)
= τ4

(
x4 + y4

48
+
x3 − y3

12
+
x22 + y22

16
+
x2 + y2

16
+

1

24

)
.

Equation (2.2.11) follows. Finally, we need the quintic terms. The left hand side of (2.2.8)

yields [
ϑ5
]
exp

(z2
2
(iτϑ)2 +

z3
6
(iτϑ)3 +

z4
24

(iτϑ)4 +
z5
120

(iτϑ)5
)
= (iτ)5

( z5
120

+
z2z3
12

)
= (iτ)5

(
z5
120

+
1

12

(
x2 + y2

2
+ 1

)(
x3 + y3

2
+

3

2
(x2 − y2)

))
,

while the right hand side of (2.2.8) yields

(iτ)5

2

(
x5
120

+
1

2

(
2
x2x3
12

+ 2
x4
24

)
+

1

6

(
3
x3
6

+ 3
x22
4

)
+

1

24

(
4
x2
2

)
+

1

120

+
y5
120

+
1

2

(
2
y2y3
12
− 2

y4
24

)
+

1

6

(
3
y3
6
− 3

y22
4

)
− 1

24

(
4
y2
2

)
− 1

120

)
= (iτ)5

(
x5 + y5
240

+
x4 − y4

48
+
x3 + y3

24
+
x2x3 + y2y3

24
+
x22 − y22

16
+
x2 − y2

24

)
,

which implies (2.2.12) after a short calculation. Finally, we compute the values κ2(1), . . . , κ5(1)

by substituting t = 0 in (2.2.9)–(2.2.12).

In the following, we are not concerned with the original definition of κj , involving a disk

Dt with potentially small radius. Instead, we only work with the recurrences (2.2.9)–(2.2.12),

which we restate here explicitly as a main result of this section:

κj(2t) = κj(t) for all j ≥ 0;

κ2(2t+ 1) =
1

2

(
κ2(t) + κ2(t+ 1)

)
+ 1;

κ3(2t+ 1) =
1

2

(
κ3(t) + κ3(t+ 1)

)
+

3

2

(
κ2(t)− κ2(t+ 1)

)
;

κ4(2t+ 1) =
1

2

(
κ4(t) + κ4(t+ 1)

)
+ 2
(
κ3(t)− κ3(t+ 1)

)
(2.2.14)
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+
3

4

(
κ2(t)− κ2(t+ 1)

)2 − 2;

κ5(2t+ 1) =
1

2

(
κ5(t) + κ5(t+ 1)

)
+

5

2

(
κ4(t)− κ4(t+ 1)

)
+

5

2

(
κ2(t)− κ2(t+ 1)

)(
κ3(t)− κ3(t+ 1)

)
− 10

(
κ2(t)− κ2(t+ 1)

)
,

for all integers t ≥ 0. Note that κ2(t) is obviously nonnegative, since it is a variance; this can

also easily be seen from this recurrence.

Remarks. Let us discuss some properties and other appearances of κj(t).

1. The sequence κ2 is 2-regular [3, 6, 7]. More precisely, we define

B0 =

 1 0 0

1/2 1/2 1

0 0 1

 , B1 =

1/2 1/2 1

0 1 0

0 0 1

 (2.2.15)

and

S(n) =

S1(n)

S2(n)

S3(n)

 =

 κ2(n)

κ2(n+ 1)

1

 .

Then for all n ≥ 0, the recurrence yields

S(2n) = B0S(n), S(2n+ 1) = B1S(n). (2.2.16)

Thus κ2 is 2-regular, compare to [3, Theorem 2.2, item (e)].

In this manner, we can also prove 2-regularity of κ3, κ4, κ5. Considering for example the

case κ5, we introduce a sequence Sℓ for each term that occurs in one of the recurrence

formulas (2.2.14), such as κ2(n)κ3(n + 1); we see that it is sufficient to consider two

16× 16-matrices.

2. The sequence dt = κ2(t)/2 appears in another context too: it is the discrepancy of the van

der Corput sequence [43,143], and it satisfies d1 = 1, d2t = dt, d2t+1 = (dt+dt+1+1)/2. We

do not know yet if this connection between our problem and discrepancy is a meaningful

one. After all, it is no big surprise that one of the simplest 2-regular sequences occurs in

two different problems concerning the binary expansion.

3. By the same method of proof (or alternatively, by concatenating the power series for log

and γt(ϑ)) the list in Lemma 2.2.1 can clearly be prolonged indefinitely. For the proof of

our main theorem, however, we only need the terms up to κ5. Without giving a rigorous

proof, we note that this also shows that κj is 2-regular for all j ≥ 0. Note the important

property that lower cumulants always appear as differences; we believe that this behavior

persists for higher cumulants.

4. More explicit values of κj(1) can be easily computed from the closed form (2.2.3). Note

that by (2.1.4) we know that these numbers are the cumulants of a geometric distri-

bution with parameter p = 1/2 and given by the OEIS sequence http://oeis.org/

A000629A000629 with many other combinatorial connections.

In the next section we analyze an approximation of the cumulant generating function γt(ϑ)

anticipating the fact that it captures all important properties for the subsequent proof.

http://oeis.org/A000629
http://oeis.org/A000629
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2.2.2 An approximation of the cumulant generating function

Let us define the following approximation of γt. Set

γ∗t (ϑ) = exp

 ∑
2≤j≤5

κj(t)

j!
(iτϑ)j

 . (2.2.17)

We are going to replace γt by γ
∗
t , and for this purpose we have to bound the difference

γ̃t(ϑ) = γt(ϑ)− γ∗t (ϑ).

Clearly, we have γ̃2t(ϑ) = γ̃t(ϑ). Moreover,

γ̃2t+1(ϑ) =
e(ϑ)

2

(
γ̃t(ϑ) + γ∗t (ϑ)

)
+

e(−ϑ)
2

(
γ̃t+1 + γ∗t+1(ϑ)

)
− γ∗2t+1(ϑ)

=
e(ϑ)

2
γ̃t(ϑ) +

e(−ϑ)
2

γ̃t+1(ϑ) + ξt(ϑ),

(2.2.18)

where

ξt(ϑ) =
e(ϑ)

2
γ∗t (ϑ) +

e(−ϑ)
2

γ∗t+1(ϑ)− γ∗2t+1(ϑ). (2.2.19)

We prove the following rough bounds on differences of the cumulants κj .

Lemma 2.2.2. We have

|κ2(t+ 1)− κ2(t)| ≤ 2; (2.2.20)

|κ3(t+ 1)− κ3(t)| ≤ 6; (2.2.21)

|κ4(t+ 1)− κ4(t)| ≤ 28; (2.2.22)

|κ5(t+ 1)− κ5(t)| ≤ 240. (2.2.23)

Proof. We prove these statements by induction, inserting the recurrences (2.2.14). We have

κ2(2t+ 1)− κ2(2t) =
κ2(t) + κ2(t+ 1)

2
+ 1− κ2(t) =

κ2(t+ 1)− κ2(t)
2

+ 1

and

κ2(2t+ 2)− κ2(2t+ 1) = κ2(t+ 1)− κ2(t) + κ2(t+ 1)

2
+ 1 =

κ2(t+ 1)− κ2(t)
2

− 1.

Then, by induction, the first statement is an easy consequence. Next, we consider the second

inequality. From (2.2.14) we get

κ3(2t+ 1)− κ3(2t) =
κ3(t+ 1)− κ3(t)

2
− 3

2

(
κ2(t+ 1)− κ2(t)

)
,

κ3(2t+ 2)− κ3(2t+ 1) =
κ3(t+ 1)− κ3(t)

2
+

3

2

(
κ2(t+ 1)− κ2(t)

)
,

and using the first part and induction, the claim follows. Concerning (2.2.22),

κ4(2t+ 1)− κ4(2t) =
κ4(t+ 1)− κ4(t)

2
+ 2
(
κ3(t)− κ3(t+ 1)

)
+

3

4

(
κ2(t)− κ2(t+ 1)

)2 − 2,
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and the last three summands add up to a value bounded by 14 in absolute value, using the first

two estimates and the fact that all cumulants are real numbers. An analogous statement for

κ4(2t+ 2)− κ4(2t+ 1) holds. This implies the third line. Finally,

κ5(2t+ 1)− κ5(2t) =
κ5(t+ 1)− κ5(t)

2
+

5

2

(
κ4(t)− κ4(t+ 1)

)
+

5

2

(
κ2(t)− κ2(t+ 1)

)(
κ3(t)− κ3(t+ 1)

)
− 10

(
κ2(t)− κ2(t+ 1)

)
,

and the sum of the last three summands is bounded by 120 in absolute value. In complete

analogy to the above, this implies (2.2.23).

Corollary 2.2.3. There exists a constant C such that for all t having M blocks of 1s we have

|κ2(t)| ≤ CM, |κ3(t)| ≤ CM, |κ4(t)| ≤ CM, |κ5(t)| ≤ CM.

Proof. We proceed by induction on the number of blocks of 1s in t. Appending 0r to the binary

expansion, there is nothing to show by the identity κj(2t) = κj(t). We append a block of 1s of

length r: Using the following (trivial) identity

κj
(
2rt+ 2r − 1

)
= κj(t) +

(
κj
(
2rt+ 2r − 1

)
− κj(t+ 1)

)
− (κj(t)− κj(t+ 1)) ,

and since κj
((
2rt + 2r − 1

)
+ 1

)
= κj(t + 1) due to κj(2t) = κj(t), the result follows by

Lemma 2.2.2.

The following lower bound is [143, Lemma 3.1], and essentially contained in [43]; see also [55].

Lemma 2.2.4. Let M be the number of blocks of 1s in t. Then κ2(t) ≥M .

We prove the following upper bound for γ̃t(ϑ), using the recurrence (2.2.14) as an essential

input. This proposition is the central property in our proof of the main theorem, showing the

crucial uniformity of our approximation.

Proposition 2.2.5. There exists a constant C such that for |ϑ| ≤ min
(
M−1/6, τ−1

)
we have∣∣γ̃t(ϑ)∣∣ ≤ CMϑ6,∣∣ξt(ϑ)∣∣ ≤ Cϑ6,

where M is the number of blocks of 1s in t.

Proof. From (2.2.17) and (2.2.18) we see that by construction γ̃t(ϑ) = O(ϑ6) and ξt(ϑ) = O(ϑ6)
as the Taylor coefficients at ϑ = 0 of γt(ϑ) and γ

′
t(ϑ) up to ϑ5 are the same. It remains to show

that the constants are effective and uniform in t. To begin with, there is a constant C such

that (2.2.24) holds for t ∈ {0, 1}; a numerical value can be extracted from the first few γ̃t(ϑ)

and ξt(ϑ), which have explicit expansions.

We proceed by induction on the length L of the binary expansion of t. As induction hypoth-

esis, we choose the following strengthened statement:∣∣γ̃t(ϑ)∣∣ ≤ 2CMϑ6;∣∣γ̃t+1(ϑ)
∣∣ ≤ 2CMϑ6;∣∣ξt(ϑ)∣∣ ≤ Cϑ6

for all t whose binary expansion has a length bounded by L, and for all real

ϑ satisfying |ϑ| ≤ 1/τ and |ϑ| ≤M−1/6, where M is the number of blocks in

t.

(2.2.24)
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Note that in this proof, and in this proof only, we use the total number of blocks instead of the

number of blocks of 1s because this works well with the induction statement. The statement of

the proposition is not changed by this, since the numbers of blocks of 0s and blocks of 1s differ

at most by one.

The statement holds for t ∈ {0, 1}. We therefore assume that (2.2.24) holds for all t whose

binary expansion has a length strictly less than L, where L ≥ 2. Our strategy is now to first

prove the inequalities for γ̃t(ϑ) and γ̃t+1(ϑ), and after that the one for ξt(ϑ). In order to make

the interplay between the statements in the induction hypothesis explicit, we rewrite (2.2.18)

as a matrix recurrence for t ≥ 1:(
γ̃2t(ϑ)

γ̃2t+1(ϑ)

)
= A0

(
γ̃t(ϑ)

γ̃t+1(ϑ)

)
+

(
0

ξt(ϑ)

)
with A0 =

(
1 0

e(ϑ)
2

e(−ϑ)
2

)
;

(
γ̃2t+1(ϑ)

γ̃2t+2(ϑ)

)
= A1

(
γ̃t(ϑ)

γ̃t+1(ϑ)

)
+

(
ξt(ϑ)

0

)
with A1 =

(
e(ϑ)
2

e(−ϑ)
2

0 1

)
.

The idea is now to use these relations to reduce the length of t. For this purpose, we regard the

run of 0s or 1s at the very right of the binary expansion of t.

First, if we have a run of 0s, we can write t = 2kt′, where t′ is odd. Iterating the first matrix

equation above, we accumulate powers of A0:(
γ̃2kt′(ϑ)

γ̃2kt′+1(ϑ)

)
= Ak

0

(
γ̃t′(ϑ)

γ̃t′+1(ϑ)

)
+
∑

0≤j<k

Ak−1−j
0

(
0

ξ2ℓt′(ϑ)

)

= Ak
0

(
γ̃t′(ϑ)

γ̃t′+1(ϑ)

)
+

(
0

E0(ϑ)

)
,

where, due to e(ϑ)j = e(jϑ), we have

E0(ϑ) =
∑

0≤j<k

e(−(k − 1− j)ϑ)
2k−1−j

ξ2jt′(ϑ),

which satisfies ∣∣E0(ϑ)
∣∣ ≤ 2 max

0≤j<k

∣∣ξ2jt′(ϑ)∣∣.
Now, the binary length of 2jt′ is strictly less than the binary length of t, therefore we can use

our hypothesis in order to conclude that |E0(ϑ)| ≤ 2Cϑ6. Moreover, the number M ′ of blocks

(of 0s or 1s) in t′ is the number M of blocks in t decreased by one (since t′ is odd). By the

hypothesis and the fact that A0 has row-sum norm equal to 1, we obtain |γ̃t(ϑ)
∣∣ ≤ 2CMϑ6 and

|γ̃t+1(ϑ)
∣∣ ≤ 2CMϑ6 for t = 2kt′.

Second, appending a block of 1s to an even integer t′, we obtain from the second matrix

equation (
γ̃2kt′+2k−1(ϑ)

γ̃2k(t′+1)(ϑ)

)
= Ak

1

(
γ̃t′(ϑ)

γ̃t′+1(ϑ)

)
+

(
E1(ϑ)

0

)
,

where

E1(ϑ) =
∑

0≤j<k

e(−(k − 1− j)ϑ)
2k−1−j

ξ2jt′+2j−1(ϑ)
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satisfies ∣∣E1(ϑ)
∣∣ ≤ 2 max

0≤j<k

∣∣ξ2jt′+2j−1(ϑ)
∣∣.

As above, we have by our induction hypothesis E1(ϑ) ≤ 2Cϑ6. Then, since the integer t′ has

one block less than t and since A1 has row-sum norm equal to 1, we can use our induction

hypothesis (2.2.24) and get |γ̃t(ϑ)
∣∣ ≤ 2CMϑ6 and |γ̃t+1(ϑ)

∣∣ ≤ 2CMϑ6 for t = 2kt′ + 2k − 1.

It remains to consider the inequality for ξt(ϑ). We start by dividing Equation (2.2.19) by

γ∗t (ϑ). This gives

ξt(ϑ)

γ∗t (ϑ)
=

e(ϑ)

2
+

e(−ϑ)
2

exp

( ∑
2≤j≤5

κj(t+ 1)− κj(t)
j!

(iτϑ)j
)

− exp

( ∑
2≤j≤5

κj(2t+ 1)− κj(t)
j!

(iτϑ)j
) (2.2.25)

As observed before, we have ξt(ϑ) = O(ϑ6) and consequently, dividing by the power series

γ∗t (ϑ) = 1 + O(ϑ2), we see that the series of the right hand side also belongs to O(ϑ6). Next,

we get by the triangle inequality and the induction hypothesis∣∣γ∗t (ϑ)∣∣ ≤ ∣∣γt(ϑ)∣∣+ ∣∣γ̃t(ϑ)∣∣ ≤ 1 + 2CMϑ6

and since ϑ ≤M−1/6, we obtain ∣∣γ∗t (ϑ)∣∣ = O(1).
Now we turn our attention to the right hand side of (2.2.25), where we will treat each

summand separately. The first term e(ϑ)/2 has (i τ)k/(2 · k!) as coefficients; since τϑ ≤ 1, the

contribution of the coefficients for k ≥ 6 is bounded by

1

2

∑
k≥6

(τϑ)k

k!
≤ 1

2
(τϑ)6(e− 163/60) <

1

1234
(τϑ)6.

Next, we want to show that the contribution of the second term (i.e., the product of two

exponentials) and the third term are each bounded by C(τϑ)6. By Lemma 2.2.2, an upper

bound for the coefficients of the second term is given by the coefficients of

f(ϑ) = exp
(
2
(
(τϑ) + · · ·+ (τϑ)5

))
.

Clearly, the term ϑk in the j-fold product (ϑ + ϑ2 + · · · + ϑ5)j appears at most 5j times, but

only for j ≥ k/5. Therefore the coefficient [ϑk]f(ϑ) is bounded by

τk
∑

k/5≤j≤k

2j
5j

j!
≤ τk

∑
j≥k/5

10j

j!
.

Consequently, as we only need to consider coefficients of ϑk with k ≥ 6, and since |τϑ| ≤ 1, we

get ∑
k≥6

ϑk
[
ϑk
]
f(ϑ) ≤ (τϑ)6

∑
k≥6

∑
j≥k/5

10j

j!
≤ 5(τϑ)6

∑
j≥1

10jj

j!
≤ C ′ϑ6

for some absolute constant C ′. The same holds for the third exponential in (2.2.25), as |κj(2t+
1)−κj(t)| = |κj(2t+1)−κj(2t)| ≤ 240. Collecting these results we get an absolute and effective

constant C such that |ξt(ϑ)| ≤ Cϑ6 as long as ϑ ≤M−1/6 and |τϑ| ≤ 1.
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2.2.3 An integral representation of ct

We use the following representation of the values ct.

Proposition 2.2.6 ([148, Proposition 2.1]). Let t ≥ 0. We have

ct =
1

2
+
δ(0, t)

2
+

1

2

∫ 1/2

−1/2

Im γt(ϑ) cot(πϑ) dϑ, (2.2.26)

where the integrand is a bounded, continuous function.

We split the integral at the points ±ϑ0, where ϑ0 = M−1/2R. Here M is the number of

blocks of 1s in t and R is a small parameter to be chosen in a moment. For now, we assume

that

8 ≤ R ≤M1/3 and ϑ0 ≤ 1/τ (2.2.27)

for technical reasons as, among others, we need to apply Proposition 2.2.5. Note that under

these hypotheses,

ϑ0 ≤M−1/6,

so that the proposition will be applicable. We will choose R = logM ; then (2.2.27) will be

satisfied for large M . The tails of the above integral will be estimated using the following

lemma.

Lemma 2.2.7 ([148, Lemma 2.7]). Assume that t ≥ 1 has at least M = 2M ′ + 1 blocks of 1s.

Then

|γt(ϑ)| ≤
(
1− ϑ2

2

)M ′

≤ exp

(
−M

′ϑ2

2

)
≤ 2 exp

(
−Mϑ2

4

)
for |ϑ| ≤ 1/2.

We have cot(x) = 1/x + O(1) for x ≤ 1/2. The contribution of the tail can therefore be

bounded by ∫ 1/2

M−1/2R

exp

(
−Mϑ2

4

)
cot(πϑ) dϑ ≤ 1

π
I +O (J) ,

where

I =

∫ ∞

M−1/2R

exp

(
−Mϑ2

4

)
dϑ

ϑ

and

J =

∫ ∞

M−1/2R

exp

(
−Mϑ2

4

)
dϑ.

The integral J is bounded by

O
(
exp
(
−M(M−1/2R)2/4

))
= O

(
exp
(
−R2/4

))
.

In order to estimate I, we write

I ≤
∑
j≥0

∫ 2j+1ϑ0

2jϑ0

exp

(
−Mϑ2

4

)
dϑ

2jϑ0
≤
∑
j≥0

exp

(
−4jR2

4

)
.

Using the hypothesis R ≥ 1, this is easily shown to be bounded by O
(
exp
(
−R2/4

))
by a

geometric series. For |ϑ| ≤ ϑ0, we replace γt(ϑ) by γ∗t (ϑ) in the integral in (2.2.26), using
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Proposition 2.2.5. Noting the hypotheses (2.2.27), we obtain |γt(ϑ) − γ∗t (ϑ)| ≪ M |ϑ|6, where
M is the number of blocks in t. Therefore∫ 1/2

−1/2

Im γt(ϑ) cot(πϑ) dϑ =

∫ ϑ0

−ϑ0

Im γt(ϑ) cot(πϑ) dϑ+O
(
exp
(
−R2/4

))
=

∫ ϑ0

−ϑ0

Im γ∗t (ϑ) cot(πϑ) dϑ+O

(
M

∫ ϑ0

0

ϑ5 dϑ

)
+O

(
exp
(
−R2/4

))
(2.2.28)

=

∫ ϑ0

−ϑ0

Im γ∗t (ϑ) cot(πϑ) dϑ+O(E),

where, due to ϑ0 =M−1/2R, we have

E =M−2R6 + exp
(
−R2/4

)
.

Similarly, combining (2.2.1) with the above reasoning, we get

δ(0, t) =

∫ ϑ0

−ϑ0

Re γ∗t (ϑ) dϑ+O(E). (2.2.29)

Next we return to the definition of γ∗t (ϑ) from (2.2.17). By the Taylor expansion of exp, using

Corollary 2.2.3, we have for |ϑ| ≤ ϑ0

γ∗t (ϑ) = exp

(
−κ2(t)

(τϑ)2

2

)
×
(
1 +

κ3(t)

6
(iτϑ)3 +

κ4(t)

24
(iτϑ)4 +

κ5(t)

120
(iτϑ)5

+
1

72
κ3(t)

2(iτϑ)6 +
1

144
κ3(t)κ4(t)(iτϑ)

7 +
1

1296
κ3(t)

3(iτϑ)9
)

+O
(
M2ϑ8 +M3ϑ10

)
+ iO

(
M2ϑ9 +M3ϑ11

)
,

where both error terms are real. We note that cot(πϑ) = 2/(τϑ)− τϑ/6 +O(ϑ3) for |ϑ| ≤ 1/2.

Splitting into real and imaginary summands, of which there are three and four, respectively, we

obtain by (2.2.28) and (2.2.29)

ct =
1

2
+

1

2

∫ ϑ0

−ϑ0

exp

(
−κ2(t)

(τϑ)2

2

)(
1 +

κ4(t)

24
(τϑ)4 − 1

72
κ3(t)

2(τϑ)6

+

(
−1

6
κ3(t)(τϑ)

3 +
1

120
κ5(t)(τϑ)

5 − 1

144
κ3(t)κ4(t)(τϑ)

7

+
1

1296
κ3(t)

3(τϑ)9
)
cot(πϑ)

)
dϑ+O

(
E + E2

)
=

1

2
+

1

2

∫ ϑ0

−ϑ0

exp

(
−κ2(t)

(τϑ)2

2

)(
1 +

κ4(t)

24
(τϑ)4 − κ3(t)

2

72
(τϑ)6 − κ3(t)

3
(τϑ)2

+
κ5(t)

60
(τϑ)4 − κ3(t)κ4(t)

72
(τϑ)6 +

κ3(t)
3

648
(τϑ)8 +

κ3(t)

36
(τϑ)4

)
dϑ+O

(
E + E2

)
,

where

E2 =

∫ ϑ0

−ϑ0

(
Mϑ6 +M2ϑ8 +M3ϑ10

)
dϑ≪M−5/2R11.

We extend the integration limits again, introducing an error

E3 ≪
∫ ∞

M−1/2R

exp

(
−κ2(t)

ϑ2

2

)(
1 +Mϑ2 +Mϑ4 +M2ϑ6 +M3ϑ8

)
.

In order to estimate this, we use the following lemma.
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Lemma 2.2.8. For real numbers a > 0 and δ ≥ 0, and integers j ≥ 0, we define

Ij =

∫ ∞

δ

xj exp(−ax2).

Then

I2 ≪
δ

a
exp
(
−aδ2

)
,

I4 ≪
(
δ3

a
+

δ

a2

)
exp
(
−aδ2

)
,

I6 ≪
(
δ5

a
+
δ3

a2
+

δ

a3

)
exp
(
−aδ2

)
,

I8 ≪
(
δ7

a
+
δ5

a2
+
δ3

a3
+

δ

a4

)
exp
(
−aδ2

)
.

Proof. We have
∂

∂x
xm exp

(
−ax2

)
=
(
mxm−1 − 2axm+1

)
exp
(
−ax2

)
,

therefore

Im+1 = −x
m

2a
exp(−ax2)

∣∣∣∞
δ

+
m

2a
Im−1.

Noting that I0 ≪ exp
(
−aδ2

)
, we obtain the above estimates by recurrence.

We insert a = κ2(t)/2 and δ = ϑ0. By Lemma 2.2.4 we have a ≥ M/2 > 0, and by our

hypothesis (2.2.27) we have R ≤ M1/6, which implies in particular that δ = M−1/2R ≤ 1. By

these estimates and Lemma 2.2.8, we obtain

E3 ≪
(
1 +M−1/2R+M−3/2R7

)
exp

(
−κ2(t)(M−1/2R)2/2

)
≪ exp

(
−R2/2

)
≪ E.

Substituting τϑ by ϑ, we obtain

ct =
1

2
+

1

2τ

∫ ∞

−∞
exp

(
−κ2(t)

ϑ2

2

)(
1− κ3(t)

3
ϑ2 +

(
κ3(t)

36
+
κ4(t)

24
+
κ5(t)

60

)
ϑ4

+

(
−κ3(t)

72
− κ4(t)

72

)
κ3(t)ϑ

6 +
κ3(t)

3

648
ϑ8
)
dϑ+O

(
E + E2

)
.

Inserting standard Gaussian integrals, it follows that

ct =
1

2
+

√
2

4
√
π

(
κ2(t)

−1/2 − κ2(t)
−3/2κ3(t)

3

+ 3κ2(t)
−5/2

(
κ3(t)

36
+
κ4(t)

24
+
κ5(t)

60

)
+ 15κ2(t)

−7/2

(
−κ3(t)

72
− κ4(t)

72

)
κ3(t) + 105κ2(t)

−9/2κ3(t)
3

648

)
+O

(
M−2R11 + exp

(
−R2/4

))
(2.2.30)
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under the hypotheses that 8 ≤ R ≤M1/6 andM−1/2R ≤ 1/τ , where M is the number of blocks

of 1s in t. The multiplicative constant in the error term is absolute, as customary in this paper.

In order to simplify the error term, we choose

R = logM. (2.2.31)

Using the hypothesis R ≥ 8, we have exp
(
−R2/4

)
≤ M−2. Then, since κ2(t) ≥ 0 for all t, we

see that for ct > 1/2 it is sufficient to prove

v(t) ≥ 0,

where

v(t) = κ2(t)
4 − κ2(t)3

κ3(t)

3
+ κ2(t)

2

(
κ3(t)

12
+
κ4(t)

8
+
κ5(t)

20

)
+ 5κ2(t)

(
−κ3(t)

24
− κ4(t)

24

)
κ3(t) + 35

κ3(t)
3

216
− Cκ2(t)5/2R11.

(2.2.32)

and C is large enough such that the error term in (2.2.30) is strictly dominated by Cκ2(t)
5/2M−2R11.

Usually the first term is the dominant one; the critical cases occur when the first two terms

in (2.2.32) almost cancel. We couple these terms and write

D = D(t) = κ2(t)−
κ3(t)

3
.

Let us rewrite the expression for v(t), eliminating κ3(t). Clearly, we have κ3(t)
2 = 9κ2(t)

2 −
18Dκ2(t)+9D2 and κ3(t)

3 = 27κ3(t)
3−81Dκ3(t)

2+81D2κ3(t)−27D3. Omitting the argument

t of the functions κj for brevity, we obtain

v(t) = Dκ32 +
1

4
κ32 −

1

4
Dκ22 +

1

8
κ22κ4 +

1

20
κ22κ5

− 15

8
κ32 +

15

4
Dκ22 −

15

8
D2κ2 −

5

8
κ22κ4 +

5

8
Dκ2κ4

+
35

8

(
κ32 − 3Dκ22 + 3D2κ2 −D3

)
− Cκ5/22 R11

=

(
D +

11

4

)
κ32 −

1

2
κ22κ4 +

1

20
κ22κ5 −

77

8
Dκ22

+
5

8
Dκ2κ4 +

45

4
D2κ2 −

35

8
D3 − Cκ5/22 R11.

(2.2.33)

We distinguish between small and large values of D. Note that |κj | ≤ CM , D ≤ CM for

some absolute constant C (expressed in Corollary 2.2.3), moreover κ2 ≥M (Proposition 2.2.4)

and R = logM . Thus, we have |κj | ≤ Cκ2 and D ≤ Cκ2. Therefore there exists an absolute

constant D0 (which could be made explicit easily) such that

v(t) ≥
(
D(t)−D0

)
κ2(t)

3 (2.2.34)

for all t ≥ 1. Clearly this implies v(t) ≥ 0 for all t such that D(t) ≥ D0. We have therefore

proved the following result.

Lemma 2.2.9. There exists a constant D0 such that, if κ2(t)− κ3(t)/3 ≥ D0, then ct > 1/2.
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The remainder of the proof of Theorem 2.1.1 is concerned with the case D(t) < D0. As D0

is an absolute constant, independent of t and M , we see that D(t)/κ2(t)
λ with λ > 0 becomes

arbitrarily small when the number of blocks in t increase. Thus, we obtain from (2.2.33) the

following statement: for all ε > 0 there is an M0 such that for M ≥M0 we have

v(t) ≥
(
D +

11

4
− ε
)
κ32 −

1

2
κ22κ4 +

1

20
κ22κ5. (2.2.35)

We proceed by taking a closer look at the values D(t). We have

D(2t+ 1) =
κ2(t) + κ2(t+ 1)

2
− κ3(t) + κ3(t+ 1)

6
− κ2(t)− κ2(t+ 1)

2
+ 1,

therefore

D(2t) = D(t) and D(2t+ 1) =
D(t) +D(t+ 1)

2
+
κ2(t+ 1)− κ2(t)

2
+ 1. (2.2.36)

By (2.2.13), we have D(1) = D(2) = 4, moreover the term (κ2(t+1)−κ2(t))/2+1 is nonnegative

by Lemma 2.2.2. This implies

D(t) ≥ 4. (2.2.37)

Choosing ε = 1/8 in (2.2.35), we see that it remains to show that

53κ2 − 4κ4 +
2

5
κ5 > 0 (2.2.38)

if t contains many blocks, and D(t) is bounded by some absolute constant D0.

This is done in two steps: first, we determine the structure of the exceptional set of integers t

such that D(t) is bounded. We will see that such an integer has few blocks of 0s of length ≥ 2,

and few blocks of 1s of bounded length. As a second step, we prove lower bounds for the numbers

−κ4(t) and κ5(t), if t is contained in this exceptional set.

2.2.4 Determining the exceptional set

We define the exceptional set

{t : D(t) < D0},

where D0 is the constant from Lemma 2.2.9. In this section we will derive some structural

properties of its elements.

We begin with investigating the effect of appending a block of the form 01k.

Lemma 2.2.10. For t ≥ 0 and k ≥ 0 we have

κ2(2
k+1t+ 2k − 1) =

(2k + 1)κ2(t)

2k+1
+

(2k − 1)κ2(t+ 1)

2k+1
+

3
(
2k − 1

)
2k

, (2.2.39)

D(2k+1t+ 2k − 1) =
2k + 1

2k+1
D(t) +

2k − 1

2k+1
D(t+ 1)

+

(
1

2
+
k − 1

2k+1

)(
κ2(t+ 1)− κ2(t)

)
+ 1 +

3k − 1

2k
.

(2.2.40)
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Proof. The proof of the first part is easy, using induction and the recurrence (2.2.14).

We continue with the second part. The statement is trivial for k = 0 and for k = 1 it follows

from (2.2.39). We use the abbreviations ρk = 1/2+ (k− 1)/2k+1 and σk = 1+ (3k− 1)/2k. For

k ≥ 1 we have by induction, using (2.2.36) and (2.2.39),

D(2k+2t+ 2k+1 − 1) =
D(2k+1t+ 2k − 1) +D(2t+ 1)

2

+
κ2(2t+ 1)− κ2(2k+1t+ 2k − 1)

2
+ 1

=
2k + 1

2k+2
D(t) +

2k − 1

2k+2
D(t+ 1) +

ρk
2

(
κ2(t+ 1)− κ2(t)

)
+
σk
2

+
D(t) +D(t+ 1)

4
+
κ2(t+ 1)− κ2(t)

4
+

1

2
+
κ2(t) + κ2(t+ 1)

4
+

1

2

− 1

2

(
2k + 1

2k+1
κ2(t) +

2k − 1

2k+1
κ2(t+ 1) + 3

2k − 1

2k

)
+ 1

=
2k+1 + 1

2k+2
D(t) +

2k+1 − 1

2k+2
D(t+ 1) +

(
ρk
2

+
1

4
+

1

2k+2

)(
κ2(t+ 1)− κ2(t)

)
+
σk
2

+
1

2
+

3

2k+1
,

which implies the statement.

We obtain the following corollary.

Corollary 2.2.11. For all t ≥ 0 and k ≥ 1 we have

D
(
2k+1t+ 2k − 1

)
≥ min

(
D(t), D(t+ 1)

)
+

k

2k−1
.

Proof. Set α =
(
2k + 1

)
/2k+1 and β =

(
2k − 1

)
/2k+1. By the bound |κ2(t + 1) − κ2(t)| ≤ 2

from Lemma 2.2.2, it follows from Equation (2.2.40) that

D
(
2k+1t+ 2k − 1

)
≥ αD(t) + βD(t+ 1) +

1

2

(
κ2(t+ 1)− κ2(t) + 2

)
+

k

2k−1

≥ min
(
D(t), D(t+ 1)

)
+

k

2k−1
.

We can now extract the contribution to the value of D of a block of the form 01k0. For this,

we use the notation

m(t) = min
(
D(t), D(t+ 1)

)
.

This notation is introduced in order to obtain the following monotonicity property : by the

recurrence (2.2.36) and the nonnegativity of a(t) =
(
κ2(t+ 1)− κ2(t)

)
/2 + 1 we have

min
(
m(2t),m(2t+ 1)

)
= min

(
D(t),

D(t) +D(t+ 1)

2
+ a(t), D(t+ 1)

)
≥ min

(
D(t), D(t+ 1)

)
= m(t)

(2.2.41)

Note alsom(t) ≥ 4 by (2.2.37). These properties will be used in an essential way in the important

Corollary 2.2.13 below, where an induction along the binary expansion of t is used.
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Corollary 2.2.12. For all t ≥ 0 and k ≥ 1 we have

m(2k+2t+ 2k+1 − 2) ≥ m(t) +
k

2k
.

Proof. We have D(2k+2t+2k+1−2) = D(2k+1t+2k−1), and by Corollary 2.2.11 this is bounded

below by m(t) + k
2k−1 . Also, D(2k+2t+ 2k+1 − 2 + 1) = D(2k+2t+ 2k+1 − 1) ≥ m(t) + k+1

2k
and

clearly, min
(
k/2k−1, (k + 1)/2k

)
≥ k/2k.

Moreover, we want to find the contribution of a block of 0s of length ≥ 2. For this, we

append 001 and look what happens: note that

κ2(4t+ 1) =
3κ2(t)

4
+
κ2(t+ 1)

4
+

3

2
,

D(4t+ 1) =
3D(t)

4
+
D(t+ 1)

4
+
κ2(t+ 1)− κ2(t)

2
+ 2

by (2.2.39) and (2.2.40). Therefore, by the recurrence (2.2.36), we obtain

D(8t+ 1) =
D(t) +D(4t+ 1)

2
+
κ2(4t+ 1)− κ2(t)

2
+ 1

=
7

8
D(t) +

1

8
D(t+ 1) +

3

8

(
κ2(t+ 1)− κ2(t)

)
+

11

4
.

These formulas together with D(8t+ 2) = D(4t+ 1) and |κ2(t+ 1)− κ2(t)| ≤ 2 show that

m(8t+ 1) ≥ m(t) + 1. (2.2.42)

Corollary 2.2.13. Assume that k ≥ 2 and t ≥ 1 are integers. Let K be the number of inner

blocks of 0s of length at least two in the binary expansion of t, and L be the number of blocks of

1s of length ≤ k. Then

m(t) ≥ 4 +K +max

(
0,

⌊
L− 2K − 1

2

⌋)
k

2k
.

In particular, for all integers D0 ≥ 2 and k ≥ 2, there exists a bound B = B(D0, k) with the

following property: for all integers t ≥ 1 such that D(t) ≤ D0, the number of inner blocks of 0s

of length ≥ 2 in t and the number of blocks of 1s of length ≤ k in t are bounded by B.

Proof. We are going to apply (2.2.42)K times and Corollary 2.2.12 ⌊(L−2K−1)/2⌋ times, using

the monotonicity of m expressed in (2.2.41) in an essential way. We proceed by induction along

the binary expansion of t, beginning at the most significant digit. The constant 4 is explained by

the starting value m(1) = min(D(1), D(2)) = 4. Each inner block of 0s of length ≥ 2 (bordered

by 1s on both sides) corresponds to a factor 001 in the binary expansion: we simply choose

the block of length three starting at the second zero from the right. Therefore (2.2.42) explains

the contribution K. For the application of Corollary 2.2.12 we need a block of the form 01r0

with r ≥ 1, but we cannot guarantee that the adjacent blocks of 0s have not already been

used for (2.2.42). Therefore each of the K inner blocks of 0s of length ≥ 2 renders the two

adjacent blocks of 1s unusable for the application of Corollary 2.2.12. Out of the remaining

blocks of 1s of length ≤ k, we can only use each second block, and the first and the last blocks

of 1s are excluded also. That is, if L − 2K ∈ {3, 4}, we can apply Corollary 2.2.12 once, for

L − 2K ∈ {5, 6} twice, and so on. Finally, we note that k/2k is nonincreasing. This explains

the last summand.

In the following, we will only use the “in particular”-statement of Corollary 2.2.13.
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2.2.5 Bounds for κ4 and κ5

Lemma 2.2.14. Assume that t contains M blocks of 1s. Then

κ4(t) ≤ 26(M + 1).

Proof. Recall that κ4(1) = 26 by (2.2.13). Using (2.2.14) and the estimates from Lemma 2.2.2

we get

κ4(2t+ 1) ≤ κ4(t) + κ4(t+ 1)

2
+ 13.

Using the geometric series, this implies

κ4
(
2kt+ 2k − 1

)
≤ κ4(t)

2k
+

(
2k − 1

)
κ4(t+ 1)

2k
+ 26. (2.2.43)

The statement for M = 1 easily follows. We also study t′ = 2kt+ 1: In this case, we have

κ4
(
2kt+ 1

)
≥
(
2k − 1

)
κ4(t)

2k
+
κ4(t+ 1)

2k
+ 13 (2.2.44)

by induction. We consider the values n(t) = min(κ4(t), κ4(t + 1)) and prove the stronger

statement that n(t) ≥ 26(M + 1) by induction. We append a block 1k to t and obtain t′ =

2kt+ 2k − 1. Then

κ4(t
′) ≤ κ4(t)

2k
+

(
2k − 1

)
κ4(t+ 1)

2k
+ 26 ≤ min(κ4(t), κ4(t+ 1)) + 26 = n(t) + 26,

and κ4(t
′ + 1) = κ4(t + 1). Analogously, we append 0k to t and obtain t′ = 2kt. Clearly,

κ4(t
′) = κ4(t), and

κ4(t
′ + 1) ≤

(
2k − 1

)
κ4(t)

2k
+
κ4(t+ 1)

2k
+ 26 ≥ n(t) + 26.

This implies the statement.

We want to find a lower bound for κ5(t). In the following, we consider the behavior of the

differences κj(t)−κj(t+1) when a block of 1s is appended to t. We do so step by step, starting

with κ2(t). Assume that k ≥ 1 is an integer and set t(k) = 2kt+ 2k − 1. Note that by (2.2.14)

we have κj(t
(k) + 1) = κj(t+ 1). By the recurrence (2.2.9) we obtain

κ2
(
t(k)
)
− κ2

(
t(k) + 1

)
=
κ2
(
t(k−1)

)
+ κ2(t+ 1)

2
+ 1− κ2(t+ 1)

=
κ2
(
t(k−1)

)
− κ2(t+ 1)

2
+ 1,

which gives by induction

κ2
(
t(k)
)
− κ2

(
t(k) + 1

)
=
κ2(t)− κ2(t+ 1)

2k
+

2k − 1

2k−1

= 2 +O
(
2−k

)
.

(2.2.45)

We proceed to κ3(t). For k ≥ 1, we have

κ3
(
t(k)
)
− κ3

(
t(k) + 1

)
=
κ3
(
t(k−1)

)
− κ3(t+ 1)

2
+ 3 +O

(
2−k

)
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by (2.2.10) and (2.2.45). By induction and the geometric series we obtain

κ3
(
t(k)
)
− κ3

(
t(k) + 1

)
=
κ3(t)− κ3(t+ 1)

2k
+ 6 +O

(
k2−k

)
= 6 +O

(
k2−k

)
.

(2.2.46)

Concerning κ4(t), we have by (2.2.11), (2.2.45), and (2.2.46)

κ4
(
t(k)
)
− κ4

(
t(k) + 1

)
=
κ4
(
t(k−1)

)
− κ4(t+ 1)

2
+ 2
(
κ3
(
t(k−1)

)
− κ3(t(k−1) + 1)

)
+

3

4

(
κ2
(
t(k−1)

)
− κ2(t(k−1) + 1)

)2
− 2

=
κ4
(
t(k−1)

)
+ κ4(t+ 1)

2
+ 12 +O(k2−k) +

3

4

(
2 +O(2−k)

)2 − 2

=
κ4
(
t(k−1)

)
− κ4(t+ 1)

2
+ 13 +O(k2−k)

and by induction we obtain

κ4
(
t(k)
)
− κ4

(
t(k) + 1

)
= 26 +O

(
k22−k

)
. (2.2.47)

Finally, we have by (2.2.12), (2.2.45), (2.2.46), and (2.2.47)

κ5
(
t(k)
)
− κ5

(
t(k) + 1

)
=
κ5
(
t(k−1)

)
− κ5(t+ 1)

2
+

5

2

(
κ4
(
t(k−1)

)
− κ4(t(k−1) + 1)

)
+

5

2

(
κ2
(
t(k−1)

)
− κ2(t(k−1) + 1)

)(
κ3
(
t(k−1)

)
− κ3(t(k−1) + 1)

)
− 10

(
κ2
(
t(k−1)

)
− κ2(t(k−1) + 1)

)
=
κ5
(
t(k−1)

)
− κ5(t+ 1)

2
+ 65 +O

(
k22−k

)
+

5

2

(
2 +O

(
2−k

))(
6 +O

(
k2−k

))
− 20 +O

(
2−k

)
=
κ5
(
t(k−1)

)
− κ5(t+ 1)

2
+ 75 +O

(
k2−k

)
.

and therefore by induction

κ5
(
t(k)
)
− κ5

(
t(k) + 1

)
= 150 +O

(
k32−k

)
. (2.2.48)

Proposition 2.2.15. Let k ≥ 1 be an integer. Assume that the integer t ≥ 1 has N0 inner

blocks of zeros of length ≥ 2, and N1 blocks of 1s of length ≤ k. Define N = N0 +N1. If N2 is

the number of blocks of 1s of length > k, we have

κ5(t) ≥ 150N2 − C
(
N +N2k

32−k
)

with an absolute constant C.

Proof. We proceed by induction on the number of blocks of 1s in t. The statement obviously

holds for t = 0. Clearly, by the identity κ5(2t) = κ5(t) we may append 0s, preserving the

truth of the statement (note that N and N2 are unchanged, since we only count inner blocks

of 0s). We therefore consider, for r ≥ 1, appending a block of the form 01r to t, obtaining

t′ = 2r+1t+2r−1. Define the integers N ′ and N ′
2 according to this new value t′. If t is even, an
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additional block of zeros of length ≥ 2 appears, therefore N ′ ≥ N + 1, moreover N ′
2 ≤ N2 + 1.

By the bound |κ5(m + 1) − κ5(m)| ≤ 240 from (2.2.23), κ5(2n) = κ5(n), and the induction

hypothesis we have

κ5
(
t′
)
=
(
κ5(t

′)− κ5(2t+ 1)
)
+
(
κ5(2t+ 1)− κ5(t)

)
+ κ5(t)

≥ κ5(t)− 480 ≥ 150N2 − C
(
N +N2k

32−k
)
+ 480

≥ 150N2 − C
(
N ′ +N ′

2k
32−k

) (2.2.49)

if C is chosen large enough. The case of odd t remains. The integer t ends with a block of 1s

of length s ≥ 1. We distinguish between three cases. First, let r ≤ k. In this case, N ′ = N + 1

and N ′
2 = N2, and reusing the calculation (2.2.49) yields the claim.

In the case r > k, we have N ′ = N and N ′
2 = N2 + 1. This case splits into two subcases.

Assume first that s ̸= k. We first consider the integer t′′ = 2t + 1. The quantities N ′′ and N ′′
2

corresponding to the integer t′′ satisfy N ′′ = N and N ′′
2 = N2 due to the restriction s ̸= k, and

by hypothesis — recall that the induction is on the number of blocks of 1s in t — we have

κ5(2t+ 1) ≥ 150N2 − C
(
N +N2k

32−k
)
. (2.2.50)

In this case, we need to extract the necessary gain of 150 from (2.2.48): this formula yields

together with (2.2.50)

κ5(t
′) = κ5(2t+ 1) + 150 +O

(
k32−k

)
≥ 150N ′

2 − C
(
N ′ +N ′

2k
32−k

)
if C is chosen appropriately. Finally, we consider the subcase s = k, and again we set t′′ = 2t+1

and choose N ′′ and N ′′
2 accordingly. Here we have N ′′ = N−1 = N ′−1 and N ′′

2 = N2+1 = N ′
2,

and therefore by hypothesis

κ5(2t+ 1) ≥ 150N2 − C
(
(N − 1) + (N2 + 1)k32−k

)
.

By the bound (2.2.23) we have

κ5(t
′) ≥ κ5(2t+ 1)− 240 ≥ 150N ′

2 − C
(
N ′ +N ′

2k
32−k

)
.

This finishes the proof of Proposition 2.2.15.

2.2.6 Finishing the proof of the main theorem

By Lemma 2.2.9 there is a constant D0 such that ct > 1/2 if D(t) ≥ D0. Assume that C is the

constant from Proposition 2.2.15 and choose k large enough such that Ck32−k ≤ 20. Choose

B = B(D0, k) as in Corollary 2.2.13 and assume that D(t) ≤ D0. The number N0 of inner

blocks of 0s of length ≥ 2 in t and the number N1 of blocks of 1s of length ≤ k in t are bounded

by B by this corollary. Furthermore, recall that M = N1 + N2, where N2 is the number of

blocks of 1s of length > k. Therefore by Proposition 2.2.15,

κ5(t) ≥ 130M − CB.

If t contains sufficiently many blocks of 1s, we therefore have by Lemmas 2.2.4 and 2.2.14

53κ2(t)− 4κ4(t) +
2

5
κ5(t) ≥ 53M − 104(M + 1) + 52M − 4

5
CB
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=M − 4

5
CB − 104.

For largeM this is positive, and by (2.2.38) it follows that ct > 1/2 for sufficiently many (greater

than some absolute bound) blocks of 1s. The proof is complete.

2.3 Normal distribution of δ(j, t)

In this section we prove Theorem 2.1.2. By (2.2.1) we have

δ(j, t) =

∫ 1/2

−1/2

γt(ϑ) e(−jϑ) dϑ.

As above, we truncate the integral at ±ϑ0, where

ϑ0 =M−1/2R,

M = 2M ′ + 1 is the number of blocks of 1s in t, and R is chosen later. In analogy to the

reasoning above, we assume that

8 ≤ R ≤M1/6 and ϑ0 ≤
1

τ
.

Again, by our choice of R = logM below, this will be satisfied for a sufficiently large number M

of blocks. We define a coarser approximation of γt(ϑ) than used for the proof of our main

theorem, as it is sufficient to derive the normal distribution-statement. Let

γ
(2)
t (ϑ) = exp

(
−κ2(t)

(τϑ)2

2

)
,

γ̃
(2)
t (ϑ) = γt(ϑ)− γ(2)t (ϑ).

The proof of the following estimate essentially only requires to change some numbers in the

proof of Proposition 2.2.5 and we leave it to the interested reader.

Proposition 2.3.1. There exists an absolute constant C such that we have∣∣γ̃(2)t (ϑ)
∣∣ ≤ CMϑ3

for |ϑ| ≤ min
(
M−1/3, τ−1

)
, where M is the number of blocks of 1s in t.

Noting that ϑ0 ≤ M−1/3 and ϑ0 ≤ 1/τ for large M , we obtain from Lemma 2.2.7 and

Proposition 2.3.1

δ(j, t) =

∫ ϑ0

−ϑ0

γt(ϑ) e(−jt) dϑ+O
(
exp(−R2/4)

)
=

∫ ϑ0

−ϑ0

γ
(2)
t (ϑ) e(−jϑ) dϑ+O

(
M−1R4

)
+O

(
exp(−R2/4)

)
if only M is large enough and R ≤M1/6. We extend the integral to R, introducing an error∫ ∞

τϑ0

exp
(
−κ2(t)ϑ2/2

)
dϑ≪ exp

(
−κ2(t)R2/(2M)

)
≤ exp

(
−R2/2

)
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since κ2(t) ≥M by Lemma 2.2.4. We obtain the representation

δ(j, t) =

∫ ∞

−∞
exp
(
−κ2(t)(τϑ)2/2

)
e(−jϑ) dϑ+O(E)

=
1

τ

∫ ∞

−∞
exp
(
−κ2(t)ϑ2/2− ijϑ

)
dϑ+O(E)

for large enough M and R ≤M1/6, where

E =M−1R4 + exp
(
−R2/4

)
.

Now, we choose R = logM . Our hypothesis R ≥ 8 implies exp
(
−R2/4

)
≤M−1 and therefore

E ≪M−1
(
logM

)4
.

The appearing integral can be evaluated by completing to a square and evaluating a complete

Gauss integral:

−κ2(t)ϑ2/2− ijϑ = −
(
(κ2(t)/2)

1/2ϑ+
ij√

2κ2(t)1/2

)2

− j2

2κ2(t)
.

The imaginary shift is irrelevant due to the residue theorem, and after inserting the Gauss

integral and slight rewriting we obtain the theorem.
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Abstract

The level of distribution of a complex valued sequence b measures the quality of distribution of b

along sparse arithmetic progressions nd+ a. We prove that the Thue–Morse sequence has level

of distribution 1, which is essentially best possible. More precisely, this sequence gives one of

the first nontrivial examples of a sequence satisfying a Bombieri–Vinogradov type theorem for

each exponent θ < 1. This result improves on the level of distribution 2/3 obtained by Müllner

and the author.

As an application of our method, we show that the subsequence of the Thue–Morse sequence

indexed by ⌊nc⌋, where 1 < c < 2, is simply normal. This result improves on the range

1 < c < 3/2 obtained by Müllner and the author and closes the gap that appeared when

Mauduit and Rivat proved (in particular) that the Thue–Morse sequence along the squares is

simply normal.

3.1 Introduction

The Thue–Morse sequence t is one of the most easily defined automatic sequences. Like any

automatic sequence, it can be defined using a uniform morphism over a finite alphabet: t is

the unique fixed point of the substitution 0 7→ 01, 1 7→ 10 that starts with 0. Therefore t =

(0110100110010110 . . .). Alternatively, this sequence can be defined using the binary sum-of-

digits function s, which counts the number of 1s in the binary expansion of a nonnegative integer

n: we have t(n) = 0 if and only if s(n) ≡ 0 mod 2. The equivalence of these two definitions can

be proved via a third description: start with the one-element sequence t(0) := (0) and define

t(n+1) by concatenating t(n) and the Boolean complement ¬t(n). Then t is the (pointwise) limit

of this sequence of finite words. In this work, we will adopt the second viewpoint. In fact, in the

45
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proofs we will work with the sequence (−1)s(n) instead of t, and we also call this sequence the

Thue–Morse sequence by slight abuse of notation. When working with exponential sums, we will

always use the “multiplicative version” (−1)s(n). For an overview on the Thue–Morse sequence,

we refer the reader to the article by Allouche and Shallit [4], which points out occurrences of

this sequence in different fields of mathematics and offers a good bibliography. We also wish to

mention the survey paper [104] by Mauduit on the Thue–Morse sequence. For a comprehensive

treatment of automatic and morphic sequences, see the book [6] by Allouche and Shallit.

The main topic of this article is the study of t along arithmetic progressions and, more

generally, along Beatty sequences ⌊nα + β⌋, where α and β are real numbers and α ≥ 0. This

topic can be traced back at least to Gel’fond [72], who proved the following theorem on the base-q

sum-of-digits function sq defined by sq(ενq
ν + · · ·+ ε0q

0) = εν + · · ·+ ε0 for εi ∈ {0, . . . , q− 1}.

Theorem A (Gel’fond). Let q,m, d, b, a be integers and q,m, d ≥ 2. Suppose that gcd(m, q −
1) = 1. Then ∣∣{1 ≤ n ≤ x : n ≡ a mod d, sq(n) ≡ b mod m}

∣∣ = x

dm
+O

(
xλ
)

for some λ < 1 independent of x, d, a, and b.

We are particularly interested in the error term for sparse arithmetic progressions, having

large common difference d. This leads us directly to the other main concept of this paper,

the notion of level of distribution. (We use this term in the same way as Goldston–Pintz–

Yıldırım [74]; the term is also used for a very similar concept by other authors. Moreover, the

term exponent of distribution is also common.) Very roughly speaking, the level of distribution is

a measure of how well a given sequence behaves on arithmetic progressions. A formal definition

can be found in the article [63] by Fouvry and Mauduit. We adapt this definition.

Definition 1. Let c = (cn)n≥0 be a sequence of complex numbers, and for each integer d ≥ 1

let Q(d) and R(d) ̸= ∅ be subsets of Z/dZ such that Q(d) ⊆ R(d). The sequence c has level of

distribution θ with respect to Q and R if for all ε > 0 and A > 0 we have for all x ≥ 1

∑
1≤d≤D

max
0≤y≤x

max
0≤a<d

a+dZ∈Q(d)

∣∣∣∣∣ ∑
0≤n<y

n≡a mod d

cn −
1

|R(d)|
∑

0≤n<y
n+dZ∈R(d)

cn

∣∣∣∣∣≪ (log 2x)−A
∑

0≤n<x

|cn|,

whereD = xθ−ε. The implied constant may depend on A and ε. In this definition, the maximum

over the empty index set is defined to be 0.

The most well-known cases are R(d) = Z/dZ or R(d) =
(
Z/dZ

)∗
; the treatment of the main

term
1

|R(d)|
∑

0≤n<y
n+dZ∈R(d)

cn

is usually the easy part of an estimate as in the definition. In the case of the Bombieri–

Vinogradov theorem, we use R(d) =
(
Z/dZ

)∗
, since the prime numbers are distributed evenly

in the residue classes relatively prime to d. The summands in Definition 1 measure the maximal

deviation of a sum over an arithmetic progression from the expected value, where the maximum

is taken over a set Q(d) of residue classes, and the length of the progression may also vary.

The level of distribution is an important concept in sieve theory. As a striking application, a

variant of this concept was used in the paper by Zhang [164] on bounded gaps between primes.
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For more information on this subject, we refer the reader to the survey by Kontorovich [90].

Moreover, we wish to draw the attention of the reader to the book [67] on sieve theory by

Friedlander and Iwaniec, in particular Chapter 22 on the level of distribution.

We are ready to present our main result. Note that we use Oε to indicate that the implied

constant may depend on ε.

Theorem 3.1.1. The Thue–Morse sequence has level of distribution 1 with respect to Q and R
given by Q(d) = R(d) = Z/dZ. More precisely, for all ε > 0 we have∑

1≤d≤D

max
y,z≥0
z−y≤x

max
0≤a<d

∣∣∣∣∣ ∑
y≤n<z

n≡a mod d

(−1)s(n)
∣∣∣∣∣ = Oε(x

1−η)

for some η > 0 depending on ε, where D = x1−ε.

Before presenting some history, we wish to say a word about the proof: we are going to

reduce the problem to the estimation of a certain Gowers uniformity norm of the Thue–Morse

sequence. These expressions appear by repeated application of Van der Corput’s inequality and

have the form ∑
0≤n<2ρ

0≤r1,...,rk<2ρ

∏
ε∈{0,1}k

(−1)sρ(n+ε·r),

where ε · r =
∑

1≤i≤k εiri and sρ is the truncated sum-of-digits function in base 2 defined by

sρ(n) = s(n mod 2ρ). Note that, strictly speaking, this is not the Gowers norm of the Thue–

Morse sequence, but the Gowers norm of order k of the projection of (−1)s(n) to Z/2ρZ. The

proof of a very similar statement was given recently by Konieczny [89], and we use the proof

from that paper to prove our estimate.

Gowers norms are certain averaged multiple correlations and were introduced by Gowers [75,

76], who used them to give a new proof of Szemerédi’s theorem. These norms are a central tool

in higher order Fourier analysis [156]; this theory can be used to study questions in additive

combinatorics, such as the behaviour of an arithmetic function f on arithmetic progressions

n, n+ d, n+ 2d, . . . , n+ (ℓ− 1)d. In the groundbreaking paper [80] by Green and Tao, Gowers

norms were used to prove the existence of arbitrarily long arithmetic progressions in the primes.

Our result is a statement on arithmetic progressions too; although it is different in nature,

Gowers norms are applicable here.

In order to put Theorem 3.1.1 into context, we present some related theorems. The well-

known Bombieri–Vinogradov theorem concerns the level of distribution of the von Mangoldt

function Λ, which is defined by Λ(n) = log p if n = pℓ for some prime p and some ℓ ≥ 1 and

Λ(n) = 0 otherwise. This theorem states that Λ has level of distribution 1/2 with respect to Q
and R given by Q(d) = R(d) = (Z/dZ)∗.

Theorem B (Bombieri–Vinogradov). Let d ≥ 1 and a be integers and define

ψ(x; d, a) =
∑

1≤n≤x
n≡a mod d

Λ(n).

For all real numbers A > 0 there exist B > 0 and a constant C such that setting D =

x1/2(log x)−B we have for all x ≥ 2∑
1≤d≤D

max
1≤y≤x

max
0≤a<d

gcd(a,d)=1

∣∣∣∣ψ(y; d, a)− y

φ(d)

∣∣∣∣ ≤ Cx(log x)−A.
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Here φ denotes Euler’s totient function.

No improvement on the level of distribution 1/2 in this theorem is currently known. Mean-

while the Elliott–Halberstam conjecture [53] states that we can choose D = x1−ε for any ε > 0.

That is, it is conjectured that the primes have level of distribution 1. Improvements on the

exponent 1/2 exist for certain sequences of integers; we refer to the articles [65, 66] by Fouvry,

by Fouvry and Iwaniec [62] and by Friedlander and Iwaniec [68]. Moreover, we mention the

series [21–23] by Bombieri, Friedlander and Iwaniec concerning this topic. In this context, we

also note the result of Goldston, Pintz, and Yıldırım [74], who showed in particular the following

conditional result: if the primes have level of distribution θ for some θ > 1/2, then there exists

a constant C such that pn+1− pn < C infinitely often, where pn is the n-th prime. In a ground-

breaking paper we mentioned before, Zhang [164] used the Goldston–Pintz–Yıldırım method and

a variant of the Bombieri–Vinogradov theorem to prove the above result unconditionally. May-

nard [115] later proved the bounded gaps result using only the classical Bombieri–Vinogradov

theorem.

Improvements on the level 1/2 are also known for the sum-of-digits function modulo m. Fou-

vry and Mauduit [64] established 0.5924 as a level of distribution of the Thue–Morse sequence,

with respect to Q and R, where Q(d) = R(d) = Z/dZ.

Theorem C (Fouvry–Mauduit). Set

A(x; d, a) =
∣∣{0 ≤ n < x : t(n) = 0, n ≡ a mod d

}∣∣.
Then ∑

1≤d≤D

max
1≤y≤x

max
0≤a<d

∣∣∣A(y; d, a)− y

2d

∣∣∣ ≤ Cx(log 2x)−A (3.1.1)

for all real A and D = x0.5924, where C may depend on A.

More generally, for m ≥ 2 they also study the sum-of-digits function in base 2 modulo m,

obtaining the weaker level of distribution 0.55711. Using sieve theory, they apply this result to

the study of the sum of digits modulo m of numbers having at most two prime factors. Later,

Mauduit and Rivat [110], in an important paper, managed to treat the sum of digits modulo m

of prime numbers, thereby answering one of the questions posed by Gel’fond [72].

Müllner and the author [124] improved the exponent 0.5924 to 2/3− ε, thereby establishing

2/3 as an admissible level of distribution of the Thue–Morse sequence.

Fouvry and Mauduit [63] also considered, more generally, the sum-of-digits function sq in

base q modulo an integer m such that gcd(m, q − 1) = 1. They obtain the result that the level

of distribution approaches 1 as the base q gets larger.

Theorem D (Fouvry–Mauduit). Let q ≥ 2, m ≥ 1 and b be integers such that gcd(m, q−1) = 1.

There exists θq > 0 such that for all A and ε > 0 we have for all x ≥ 1

∑
1≤d≤D

max
0≤y≤x

max
0≤a<d

∣∣∣∣∣ ∑
n<y,sq(n)≡b mod m

n≡a mod d

1− 1

d

∑
n<y,sq(n)≡b mod m

1

∣∣∣∣∣ = Om,q,A,ε(x(log 2x)
−A),

where D = xθq−ε. The implied constant depends at most on m, q, A and ε. As q → ∞, the

value of θq tends to 1.
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As an application of this theorem, they consider the sum of digits in base q of integers having

at most two prime factors; moreover, they study the sum
∑

n<x,sq(n)≡b mod m Λℓ(n), where Λℓ

is the generalized von Mangoldt function of order ℓ ≥ 2 ([63, Corollaire 2]).

Theorem D motivates us to look for sequences having level of distribution equal to 1. In

the paper by Fouvry and Mauduit [63] cited above, for example, a list of sequences having this

property is given. Also, we note [67, Chapter 22.3], which studies the level of distribution for

additive convolutions, giving further examples. However, in these examples, other than the

trivial example cn = 1 for all n, the maximum over a does not play a rôle: the set Q(d) consists
of at most one element.

We are interested in sequences c having level of distribution 1 and such that the set Q(d)
contains “many” residue classes. In other words, we want to find analogues of the Elliott–

Halberstam conjecture. Requiring monotonicity of c, examples can be constructed easily: c(n) =

n is such an example, and more generally, increasing sequences c satisfying certain growth

conditions have this property. Apart from such “trivial” sequences, no other examples seem to

be known. Our Theorem 3.1.1, giving such an example, might therefore be of interest.

We believe that our method can be adapted to sq(n) mod m for all m ≥ 1 and general bases

q ≥ 2, which would yield θq = 1 for all q ≥ 2 in Theorem D.

The second focus of this paper concerns Piatetski-Shapiro sequences, which are sequences of

the form (⌊nc⌋)n≥0 for some c ≥ 1. In order to state the second main theorem, we do not need

additional preparation.

Theorem 3.1.2. Let 1 < c < 2. The Thue–Morse sequence along ⌊nc⌋ is simply normal. That

is, each of the letters 0 and 1 appears with asymptotic frequency 1/2 in n 7→ t(⌊nc⌋).

A in our earlier paper [124] with Müllner, this theorem is proved via a Beatty sequence variant

of Theorem 3.1.1. That theorem in turn is proved by arguments analogous to the arguments in

the proof of Theorem 3.1.1, and reduces to the same estimate of the Gowers uniformity norm of

Thue–Morse. Theorem 3.1.2 is therefore an application of the method of proof of Theorem 3.1.1.

Again, we present some historical background. Studying Piatetski–Shapiro subsequences of a

given sequence can be seen as a step towards proving theorems on polynomial subsequences. For

example, it is unknown whether there are infinitely many primes of the form n2 + 1; therefore

it is of interest to consider primes of the form ⌊nc⌋ for 1 < c < 2 and prove an asymptotic

formula for the number of such primes. Piatetski-Shapiro [129] proved such a formula for

1 < c < 12/11, and the currently best known bound is 1 < c < 2817/2426 due to Rivat and

Sargos [133]. In a similar way, the study of the sum-of-digits function along ⌊nc⌋ can be justified.

It is another problem posed by Gel’fond [72] to study the distribution of the sum of digits of

polynomial sequences in residue classes. Since this problem could not be solved at first, Mauduit

and Rivat [106, 107] considered q-multiplicative functions along ⌊nc⌋ (where a q-multiplicative

function f : N → {z ∈ C : |z| = 1} satisfies f(aqm + b) = f(aqm)f(b) for nonnegative integers

a, b,m such that b < qm) and they obtained an asymptotic formula for c < 7/5.

Theorem E (Mauduit–Rivat). Let 1 < c < 7/5 and set γ = 1/c. For all δ ∈ (0, (7−5c)/9) there
exists a constant C > 0 such that for all q-multiplicative functions f : N → {z ∈ C : |z| = 1}
and all x ≥ 1 we have ∣∣∣∣∣∣

∑
1≤n≤x

f (⌊nc⌋)−
∑

1≤m≤xc

γmγ−1f(m)

∣∣∣∣∣∣ ≤ Cx1−δ.
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Since the Thue–Morse sequence is 2-multiplicative, it follows in particular that the subse-

quence indexed by ⌊nc⌋ assumes each of the two values 0, 1 with asymptotic frequency 1/2, as

long as 1 < c < 7/5. This means that this subsequence is simply normal. In the paper [37]

by Deshouillers, Drmota, and Morgenbesser, a statement as in Theorem E for arbitrary auto-

matic sequences and 1 < c < 7/5 is proved. Moreover, we wish to note the paper [118] by

Morgenbesser, who proved uniform distribution of sq(⌊nc⌋) in residue classes for all non-integer

c > 0, as long as the base q is large enough (depending on c).

Some progress on Gel’fond’s question on polynomials was made by Drmota and Rivat [50] and

by Dartyge and Tenenbaum [30]; finally, Mauduit and Rivat [108] managed to answer Gel’fond’s

question for the polynomial n2. This latter paper was generalized by Drmota, Mauduit and

Rivat [45], who showed that in fact t(n2) defines a normal sequence, by which we understand

an infinite sequence on {0, 1} such that every finite sequence of length L occurs as a factor

(contiguous finite subsequence) with asymptotic frequency 2−L. This result also generalizes a

paper by Moshe [121] who showed that every finite word on {0, 1} occurs as a factor of n 7→ t(n2)

at least once.

However, the distribution of the sum of digits of ⌊nc⌋ in residue classes, for c ∈ [7/5, 2),

remained an open problem. Progress in this direction was made by the author [141], who

improved the bound on c to 1 < c ≤ 1.42 for the Thue–Morse sequence. The key idea in that

paper is to approximate ⌊nc⌋ by a Beatty sequence ⌊nα + β⌋ and thus reduce the problem

to a linear one. Müllner and the author [124], using the same linearization argument and a

Bombieri–Vinogradov type theorem for the Thue–Morse sequence on Beatty sequences, were

able to extend this range to 1 < c < 3/2. In that paper, we also handled occurrences of factors

in Piatetski-Shapiro subsequences of t, thus showing that t (⌊nc⌋) defines a normal sequence for

1 < c < 3/2.

Theorem F (Müllner–Spiegelhofer). Let 1 < c < 3/2. Then the sequence u =
(
t (⌊nc⌋)

)
n≥0

is

normal. More precisely, for any L ≥ 1 there exists an exponent η > 0 and a constant C such

that ∣∣∣∣∣{n < N : u(n+ i) = ωi for 0 ≤ i < L
}∣∣−N/2L∣∣∣ ≤ CN1−η

for all
(
ω0, . . . , ωL−1

)
∈ {0, 1}L.

This theorem also improved on an earlier result by the author [142], who obtained normality

for 1 < c < 4/3, using an estimate for Fourier coefficients related to the Thue–Morse sequence

provided by Drmota, Mauduit and Rivat [45].

Our Theorem 3.1.2 finally closes the gap in the set of exponents c such that we have an

asymptotic formula for Thue–Morse on ⌊nc⌋. This gap appeared with the Mauduit–Rivat result

on squares [108]; at that time, the gap was [7/5, 2), now, after our paper with Müllner [124], it

was only left to close the smaller gap [3/2, 2).

However, the case c > 2 remains open for now, for c ∈ Z (which is contained in Gel’fond’s

problem on polynomial subsequences) as well as for Piatetski-Shapiro sequences. For example,

it is a notorious open question to prove that 0 occurs with frequency 1/2 in n 7→ t(n3).

Mauduit [104, Conjecture 1] conjectures that

lim
N→∞

1

N
{1 ≤ n ≤ N : sq(⌊nc⌋) ≡ b mod m} = 1

m

for almost all c > 1 with respect to Lebesgue measure, where q ≥ 2, m ≥ 1 and b are integers.

While this almost-all result is known for 1 < c < 2, as he notes just before this conjecture,
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we believe (as we noted before) that our method can be adapted to generalize our results to

general sequences sq(n) mod m and thus to prove the asymptotic identity for all c ∈ (1, 2).

However, while we are confident that the asymptotic identity in Mauduit’s conjecture holds for

all non-integer c > 1, the case c > 2 cannot yet be handled by our methods.

We note that it would definitely be interesting to generalize the normality result from The-

orem F to all exponents 1 < c < 2.

Notation. For a real number x, we write e(x) = exp(2πix), {x} = x−⌊x⌋, ∥x∥ = minn∈Z|x−n|
and ⟨·⟩ = ⌊x+1/2⌋ (the “nearest integer” to x). For a prime number p let νp(n) be the exponent

of p in the prime factorization of n. We define the truncated binary sum-of-digits function

sλ(n) := s(n′),

where 0 ≤ n′ < 2λ and n′ ≡ n mod 2λ, which is the 2λ-periodic extension of the restriction of s

to {0, . . . , 2λ − 1}. For µ ≤ λ we define the two-fold restricted binary sum-of-digits function

sµ,λ(n) = sλ(n)− sµ(n).

For a real number x ≥ 0, we set

log+x = max {1, log x} .

The symbol N denotes the set of nonnegative integers.

Constants implied by the symbols ≪ and O may depend on the variable k (which describes

the number of times that we apply Van der Corput’s inequality), but are otherwise absolute.

Exceptions to this rule will be indicated in the text.

3.2 Results

In order to (re)state our main theorem, we introduce some notation. Let α, β, y and z be

nonnegative real numbers such that α ≥ 1. We define

A(y, z;α, β) =
∣∣{y ≤ m < z : t(m) = 0 and ∃n ∈ Z such that m = ⌊nα+ β⌋

}∣∣.
For integers d = α and a = β, we clearly have

A(y, z; d, a) =
∣∣{y ≤ m < z : t(m) = 0 and m ≡ a mod d

}∣∣.
Our main theorem is the following result.

Theorem 3.2.1. Let ε > 0. There exist η > 0 and C such that∑
1≤d≤D

max
y,z≥0
z−y≤x

max
0≤a<d

∣∣∣∣A(y, z; d, a)− z − y
2d

∣∣∣∣ ≤ Cx1−η

for all x ≥ 1 and D = x1−ε.

Note that this theorem allows intervals [y, z) for arbitrary y ≥ 0, which is more general than

our definition of a level of distribution. Noting that 1 − 2t(n) = (−1)s(n), we obtain the form

of this theorem given in the introduction.

As a corollary we obtain an estimate for the least element m in an arithmetic progression

such that t(m) = 1. For most common differences d, we do not have to search for a long time

until we encounter the first 1.
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Corollary 3.2.2. For d ≥ 1 and a ≥ 0 we define

m(d, a) = min{n ∈ N : t(nd+ a) = 1}.

For each ε > 0 we have, as D →∞,∣∣{d < D : max
a≥0

m(d, a) ≥ dε}
∣∣ = o(D).

We note that Dartyge and Tenenbaum considered (among many other things) the homo-

geneous problem concerning a = 0: they proved in particular [30, Théorème 2.5] that for any

function ξ(d) tending to ∞, we have m(d, 0) ≤ ξ(d) for almost all d in the sense of asymptotic

density. The added value of our corollary lies in the fact that the maximum is taken over all

arithmetic progressions having a given common difference and a given number of terms. We also

wish to note that Morgenbesser, Shallit, and Stoll [119] proved in particular that m(d, 0) ≤ d+4

for all nonnegative integers d.

Our second result concerns Piatetski-Shapiro subsequences of the Thue–Morse sequence.

Theorem 3.2.3. Let 1 < c < 2. Then the sequence n 7→ t(⌊nc⌋) is simply normal. More

precisely, there exists an exponent η > 0 and a constant C such that∣∣∣∣ 1N ∣∣{0 ≤ n < N : t(⌊nc⌋) = 0
}∣∣− 1

2

∣∣∣∣ ≤ CN−η.

In order to prove this theorem, we use the general argument presented in Section 4.2 of [124].

This argument uses linear approximation of ⌊nc⌋ by ⌊nα + β⌋ and thus reduces the problem

to Beatty sequences. Therefore Theorem 3.2.3 is a corollary of the following Beatty sequence

version of a statement on the level of distribution.

Theorem 3.2.4. Let 0 < θ1 ≤ θ2 < 1. There exist η > 0 and C such that∫ 2D

D

max
y,z≥0
z−y≤x

max
β≥0

∣∣∣∣A(y, z;α, β)− z − y
2α

∣∣∣∣ dα ≤ Cx1−η

for all x and D such that x ≥ 1 and xθ1 ≤ D ≤ xθ2 .

In order to derive Theorem 3.2.3 from this result, it is essential that we have the maximum

over β inside the integral over α, since we need to approximate ⌊nc⌋ by inhomogeneous (shifted)

Beatty sequences ⌊nα+ β⌋.
Concerning Theorem 3.2.1, we can obtain a weakened version of this result, without the

maximum over a, using Martin, Mauduit and Rivat [99].

Remark 6. Martin, Mauduit and Rivat [99, Proposition 3] proved an estimate of a sum of type

II containing the following special case: let am and bn be complex numbers satisfying |am| ≤ 1

and |bn| ≤ 1. Assume that x ≥ 2, 0 < ε ≤ 1/2, xε ≤M,N ≤ x and MN ≤ x. Then

S0 =
∑

M<m≤2M

∑
N<n≤2N
mn≤x

ambn(−1)s(mn) ≤ Cx1−η

for an absolute constant C and some η > 0 only depending on ε. By dyadic decomposition and

using the trivial estimate for n < xε, we obtain∑
M<m≤2M

∣∣∣∣∣ ∑
0≤n≤2N
mn≤x

(−1)s(mn)

∣∣∣∣∣≪ε x
1−η logN +Mxε
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for M and N satisfying the same restrictions, and with an implied constant that may depend

on ε. Let x be given and assume that xε ≤ M ≤ xθ for some θ ∈ (1/2, 1). Set ε = 1− θ ≤ 1/2

and N = x/M . Then N ≥ xε and the condition mn ≤ x implies n ≤ 2N . Using dyadic

decomposition again, this time in the variable m, we obtain

∑
xε<m≤D

∣∣∣∣∣ ∑
0≤u≤x

u≡0 mod m

(−1)s(u)
∣∣∣∣∣≪ε x

1−η log2 x+Mxε log x

for D = xθ. Finally, we use Fouvry and Mauduit [64] in order to handle residue classes having

small modulus m, that is, m ≤ xε. We note (as we did in [124]) that the error term in their

estimate [64, equation (1.6)] is in fact x1−η for some η > 0; this follows from Théorème 2 in the

same paper [64]. We obtain

∑
1≤d≤D

∣∣∣∣∣ ∑
0≤u≤x

n≡0 mod d

(−1)s(u)
∣∣∣∣∣ ≤ Cx1−η

for D = xθ and some η > 0 and C depending on θ. This is a weak version of a statement of the

type “the Thue–Morse sequence has level of distribution 1”, where Q(d) has only one element.

We note that we could also handle the maximum over y ≤ x, using the factor e(βmn) that

appears in [99, Proposition 3]. The added value of our paper (compare also to the remark after

Corollary 3.2.2) lies in the maximum over the residue classes modulo d.

Finally, we note the following open questions concerning Theorems 3.2.1 and 3.2.3:

1. In Theorem 3.2.1, can we choose D = x(log x)−B for some B > 0, using x(log x)−A as

error term?

2. Does Theorem 3.2.3 hold for ⌊x2(log x)−C⌋ (and similar sequences, possibly with a worse

error term) in place of ⌊xc⌋?

Plan of the paper. In Section 4.2.1 we state two results (Propositions 3.3.1 and 3.3.2) from

which Theorems 3.2.1 and 3.2.4 follow; moreover, we prove an important Gowers uniformity

norm estimate for the Thue–Morse sequence in Proposition 3.3.3. We also give an idea of the

proof of Proposition 3.3.1. Using Proposition 3.3.1, the proof of Corollary 3.2.2 is very short,

and we present it in that section. In Section 3.4 we state lemmas needed for proving the results

from Section 4.2.1. Section 3.5 is devoted to proving Propositions 3.3.1 and 3.3.2. Finally, in

sections 3.5.1 and 3.5.2, we prove Proposition 3.3.3 and a technical lemma appearing in the

proof of Propositions 3.3.1 and 3.3.2.

3.3 Auxiliary results

It will be sufficient to prove the following two propositions in order to obtain our main theorems.

To see this, we follow our earlier paper with Müllner [124, Section 4.1], and Fouvry and Mauduit

[64] for handling small d. In fact, as we noted before, their Théorème 2 holds with an improved

error term. Moreover, the proof of this result also reveals that the result holds for arbitrarily

shifted intervals [y, z).
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Proposition 3.3.1. For real numbers N,D ≥ 1 and ξ set

S0 = S0(N,D, ξ) =
∑

D≤d<2D

max
a≥0

∣∣∣∣∣ ∑
0≤n<N

e

(
1

2
s(nd+ a)

)
e(nξ)

∣∣∣∣∣. (3.3.1)

Let ρ2 ≥ ρ1 > 0. There exists an η > 0 and a constant C such that

S0

ND
≤ CN−η (3.3.2)

holds for all ξ ∈ R and all real numbers N,D ≥ 1 satisfying Nρ1 ≤ D ≤ Nρ2 .

With the help of this proposition, it is not difficult to prove Corollary 3.2.2: we have |{d ∈
[D, 2D) : maxa≥0m(d, a) ≥ N}| ≤ CDN−η for all N,D such that Nρ1 ≤ D ≤ Nρ2 , and some

C > 0, η > 0. This is the case since we cannot have more than CDN−η many trivial sums

in the expression S0; this means that for each nontrivial summand we encounter at least one 1

for each a. It follows that |{d ∈ [D, 2D) : maxa≥0m(d, a) ≥ Dε}| ≤ CD1−η′
for all ε > 0. By

dyadic decomposition the statement of the corollary follows.

Proposition 3.3.2. For real numbers D,N ≥ 1 and ξ set

S0 = S0(N,D, ξ) =

∫ 2D

D

max
β≥0

∣∣∣∣∣ ∑
0≤n<N

e

(
1

2
s
(
⌊nα+ β⌋

))
e(nξ)

∣∣∣∣∣ dα. (3.3.3)

Let ρ2 ≥ ρ1 > 0. There exist η > 0 and a constant C such that

S0

ND
≤ CN−η (3.3.4)

holds for all real numbers D,N ≥ 1 satisfying Nρ1 ≤ D ≤ Nρ2 and for all ξ ∈ R.

In the proof of these results, we will use the following essential estimate of a Gowers unifor-

mity norm of the Thue–Morse sequence (see Konieczny [89]).

Proposition 3.3.3. Let k ≥ 2 be an integer. There exists some η > 0 and some C such that

1

2(k+1)ρ

∑
0≤n<2ρ

0≤r1,...,rk<2ρ

e

1

2

∑
ε∈{0,1}k

sρ(n+ ε · r)

 ≤ C2−ρη

for all ρ ≥ 0, where ε · r =
∑

1≤i≤k εiri.

Remark 7. Since the paper [89] by Konieczny also handles the Rudin–Shapiro sequence, it

is certainly possible to prove analogous theorems for this sequence instead of the Thue–Morse

sequence.

We wish to give a rough idea of the proof of Proposition 3.3.1 (Proposition 3.3.2 being proved

essentially in the same way.)

Idea of the proof of Proposition 3.3.1. The key idea is to reduce the number of digits that

have to be taken into account, and thus to replace the sum-of-digits function s by its truncated

version sρ. Here 2ρ will be significantly smaller than N , so that (we simplify things a bit to

convey the idea) we may replace the sum over s(nd+a) by a full sum over the periodic function
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sρ(n). This reducing of the digits is achieved by a refinement of the method used by Müllner

and the author [124], which in turn builds on the ideas from the papers [108, 110] by Mauduit

and Rivat.

First, we apply Van der Corput’s inequality and use a “carry propagation lemma” in order

to replace s by sλ. In general, 2λ will be much larger than N , so that we have to reduce λ

further. The next step is to apply the generalized Van der Corput inequality repeatedly. With

each application, we remove µ many digits. This is achieved by appealing to the Dirichlet

approximation theorem, by which we can find a multiple of α = d/2jµ that is close to a multiple

of 2µ. This property can be used to discard the µ lowest digits.

By this repeated application the estimate is reduced to an estimate of a Gowers uniformity

norm of the Thue–Morse sequence, and we use the method of proof of Konieczny [89] in order

to obtain this estimate. The application of Van der Corput’s inequality in the context of digital

problems is well-established, beginning with the work of Mauduit and Rivat [108, 110]. The

combination with Gowers norms however is novel, and we think that this connection is a fruitful

one: iterated application of Van der Corput’s inequality leads to multiple correlations, which in

a natural way lead to Gowers norms.

3.4 Lemmas

We have the following series of lemmas that can also be found in our earlier paper with

Müllner [124]. The first lemma can be proved by elementary considerations.

Lemma 3.4.1. Let a, b ∈ R and n ∈ N.

If ∥a∥ < ε and ∥b∥ ≥ ε, then ⌊a+ b⌋ = ⟨a⟩+ ⌊b⌋. (3.4.1)

∥na∥ ≤ n∥a∥. (3.4.2)

If ∥a∥ < ε and 2nε < 1, then ⟨na⟩ = n⟨a⟩. (3.4.3)

As an essential tool, we will use repeatedly the following generalized Van der Corput in-

equality [108, Lemme 17].

Lemma 3.4.2. Let I be a finite interval in Z containing N integers and let zn be a complex

number for n ∈ I. For all integers K ≥ 1 and R ≥ 1 we have∣∣∣∣∣∑
n∈I

zn

∣∣∣∣∣
2

≤ N +K(R− 1)

R

∑
0≤|r|<R

(
1− |r|

R

) ∑
n∈I

n+Kr∈I

zn+Krzn. (3.4.4)

Assume that α is a real number and N is a nonnegative integer. We define the discrepancy

of the sequence nα modulo 1:

DN (α) = sup
0≤x≤1
y∈R

∣∣∣∣∣ 1N ∑
n<N

1[0,x)+y+Z(nα)− x

∣∣∣∣∣ .
Applying this definition, using x = 1/(KT ), y = t/(KT ), and α/K instead of α, we obtain the

following lemma.
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Lemma 3.4.3. Let J be an interval in R containing N integers and let α and β be real numbers.

Assume that t, T, ℓ and L are integers such that 0 ≤ t < T and 0 ≤ ℓ < L. Then∣∣∣∣{n ∈ J :
t

T
≤ {nα+ β} < t+ 1

T
, ⌊nα+ β⌋ ≡ ℓ mod L

}∣∣∣∣ = N

LT
+O

(
NDN

(α
L

))
with an absolute implied constant.

In the estimation of our error terms, we will use the following mean discrepancy results

(Lemma 3.4 in [124]).

Lemma 3.4.4. For integers µ ≥ 0 and N ≥ 1 we have∑
0≤d<2µ

DN

(
d

2µ

)
≤ C1

N + 2µ

N
(log+N)2.

Also, the estimate ∫ 1

0

DN (α) dα ≤ C2
(log+N)2

N

holds. The constants C1 and C2 in these estimates are absolute.

The following “carry propagation lemma” will allow us to replace the sum-of-digits function

s by its truncated version sλ. Statements of this type were used by Mauduit and Rivat in their

papers on the sum of digits of primes and squares [108,110].

Lemma 3.4.5. Let r,N, λ be nonnegative integers and α > 0, β ≥ 0 real numbers. Assume that

I is an interval containing N integers. Then∣∣{n ∈ I : s
(
⌊(n+ r)α+ β⌋

)
− s
(
⌊nα+ β⌋

)
̸= sλ

(
⌊(n+ r)α+ β⌋

)
−sλ

(
⌊nα+ β⌋

)}∣∣
≤ r(Nα/2λ + 2).

Let Fn the set of rational numbers p/q such that 1 ≤ q ≤ n, the Farey series of order n. Each

a ∈ Fn has two neighbours aL, aR ∈ Fn, satisfying aL < a < aR and (aL, a)∩Fn = (a, aR)∩Fn =

∅. We have the following elementary lemma concerning this set (see [82, Chapter 3]).

Lemma 3.4.6. Assume that a/b, c/d are reduced fractions such that b, d > 0 and a/b < c/d.

Then a/b < (a + c)/(b + d) < c/d. If a/b and c/d are neighbours in the Farey series Fn, then

bc− ad = 1 and b+ d > n, moreover

(a+ c)/(b+ d)− a/b < 1

bn
and c/d− (a+ c)/(b+ d) <

1

dn
.

Let α ∈ R and Q a positive integer. We assign a fraction pQ(α)/qQ(α) to α according to

the Farey dissection of the reals: consider reduced fractions a/b < c/d that are neighbours in

the Farey series FQ, such that a/b ≤ α < c/d. If α < (a + c)/(b + d), then set pQ(α) = a and

qQ(α) = b, otherwise set pQ(α) = c and qQ(α) = d. Lemma 3.4.6 implies∣∣qQ(α)α− pQ(α)∣∣ < Q−1. (3.4.5)

We will call an interval of the form {α ∈ R : pQ(α) = p, qQ(α) = q} a Farey interval around

p/q.
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3.5 Proof of Propositions 3.3.1 and 3.3.2

As in the proof of Proposition 2.5 in [124], for (3.3.2) and (3.3.4) to hold it is sufficient to prove

that there exists η > 0 and a constant C such that

S0(N, 2
ν , ξ)

N2ν
≤ CN−η

for all real numbers ξ and for all positive integers N and ν such that there exists a real number

D ≥ 1 satisfying Nρ1 ≤ D ≤ Nρ2 and D < 2ν ≤ 2D, where S0 is defined according to (5.2.50)

or (3.3.3).

In order to treat the two propositions to some extent in parallel, we will work with two

measures µ: for Proposition 3.3.1 we take the measure defined by µ(A) = |A ∩ Z|, counting the

number of integers inside a set, while for Proposition 3.3.2, µ is the Lebesgue measure. We note

that in this proof, implied constants in estimates depend only on the variable k, whose meaning

will become clear later.

By Cauchy–Schwarz, followed by Van der Corput’s inequality (3.4.4) (R0 will be specified

later), we obtain

∣∣S0(N, 2
ν , ξ)

∣∣2 ≤ 2ν
N +R0

R0

∫ 2ν+1

2ν
sup
β≥0

∑
0≤|r0|<R0

(
1− |r0|

R0

)
e
(
r0ξ
)

×
∑

0≤n<N
0≤n+r0<N

e

(
1

2
s
(
⌊(n+ r0)α+ β⌋

)
− 1

2
s
(
⌊nα+ β⌋

))
dµ(α)

We apply the carry propagation lemma (Lemma 3.4.5), treat the summand r0 = 0 separately,

and omit the condition 0 ≤ n + r0 < N . Moreover, we consider r0 and −r0 synchronously. In

this way we obtain for all λ ≥ 0

∣∣S0(N, 2
ν , ξ)

∣∣2 ≪ (
2νN

)2
E0 +

2νN

R0

∑
1≤r0<R0

×
∫ 2ν+1

2ν
sup
β≥0

∣∣∣∣∣ ∑
0≤n<N

e

(
1

2
sλ
(
⌊(n+ r0)α+ β⌋

)
− 1

2
sλ
(
⌊nα+ β⌋

))∣∣∣∣∣ dµ(α),
where

E0 =
1

R0
+
R0 2

ν

2λ
+
R0

N
.

We apply Cauchy–Schwarz on the sum over r0 and the integral over α in order to prepare

our expression for another application of Van der Corput’s inequality. It follows that

∣∣S0(N, 2
ν , ξ)

∣∣4 ≪ 23νN2

R0

∑
1≤r0<R0

∫ 2ν+1

2ν
sup
β≥0

∣∣S1

∣∣2 dµ(α) + (2νN)4E0

where

S1 =
∑

0≤n<N

e

(
1

2
sλ
(
⌊(n+ r0)α+ β⌋

)
− 1

2
sλ
(
⌊nα+ β⌋

))
.
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(Note that the error term is also squared, but if it is larger or equal to 1, the estimate is

trivial anyway. We will use this argument again in a moment.) We apply Van der Corput’s

inequality (3.4.4) with R = R1 and K = K1 to be chosen later:

∣∣S1

∣∣2 ≤ N +K1(R1 − 1)

R1

∑
0≤|r1|<R1

(
1− |r1|

R1

)

×
∑

0≤n<N
0≤n+r1K1<N

e

(
1

2

∑
ε0,ε1∈{0,1}

sλ
(
⌊(n+ ε0r0 + ε1r1K1)α+ β⌋

))
,

therefore, combining the summands for r1 and−r1 and omitting the condition 0 ≤ n+r1K1 < N ,

∣∣S0(N, 2
ν , ξ)

∣∣4 ≪ 23νN3

R0R1

∑
1≤r0<R0
0≤r1<R1

∫ 2ν+1

2ν
sup
β≥0

∣∣S2

∣∣ dµ(α) + (2νN)4(E0 + E1

)
,

where

S2 =
∑

0≤n<N

e

(
1

2

∑
ε0,ε1∈{0,1}

sλ
(
⌊(n+ ε0r0 + ε1r1K1)α+ β⌋

))
and

E1 =
R1K1

N
.

Cauchy–Schwarz over r0, r1 and α yields

∣∣S0(N, ν, ξ)
∣∣8 ≪ 27νN6

R0R1

∑
1≤r0<R0
0≤r1<R1

∫ 2ν+1

2ν
sup
β≥0
|S2|2 dµ(α) +

(
2νN

)8(
E0 + E1

)
.

We apply Van der Corput’s inequality with R = R2 and K = K2 to be chosen later:∣∣S0(N, 2
ν , ξ)

∣∣8(
2νN

)8 ≪
(
E0 + E1 + E2

)
+

1

R0R1R22νN

∑
1≤r0<R0
0≤r1<R1
0≤r2<R2

∫ 2ν+1

2ν
sup
β≥0

∣∣S3

∣∣dµ(α)
where

S3 =
∑

0≤n<N

e

(
1

2

∑
ε0,ε1,ε2∈{0,1}

sλ
(
⌊nα+ β + ε0r0α+ ε1r1K1α+ ε2r2K2α⌋

))

and E2 = R2K2/N. Continuing in this manner and replacing the range of integration (we note

that we are going to choose λ > ν later), we obtain

∣∣∣∣S0(N, 2
ν , ξ)

2νN

∣∣∣∣2k+1

≪
(
E0 + E1 + · · ·+ Ek

)
+

1

R0R1 · · ·Rk2νN

∑
1≤r0<R0

0≤ri<Ri,1≤i≤k

∫ 2λ

0

sup
β≥0

∣∣S4

∣∣dµ(α), (3.5.1)
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where

S4 =
∑

0≤n<N

e

(
1

2

∑
ε0,...,εk∈{0,1}

sλ
(
⌊nα + β + ε0r0α + ε1r1K1α + · · · + εkrkKkα⌋

))

and

E0 =
1

R0
+
R0 2

ν

2λ
+
R0

N
,

Ei =
RiKi

N
for 1 ≤ i ≤ k.

Now we choose the multiples K1, . . . ,Kk in such a way that the number of digits to be taken

into account is reduced from λ to ρ := λ − (k + 1)µ, where µ is chosen later. For this we use

Farey series, see (3.4.5). Let

K1 = q22µ+2σ

( α

22µ

)
q2σ

(
p22µ+2σ

(
α/22µ

)
2(k−1)µ

)
;

Ki = q2µ+2σ

( α

2(i+1)µ

)
q2σ

(
p2µ+2σ

(
α/2(i+1)µ

)
2(k−i)µ

)
for 2 ≤ i < k;

Kk = q2µ+σ

( α

2(k+1)µ

)
,

where σ is chosen later. Moreover, we set

M1 = p22µ+2σ

(
α

22µ

)
q2σ

(
p22µ+2σ

(
α/22µ

)
2(m−1)µ

)
;

Mi = p2µ+2σ

(
α

2(i+1)µ

)
q2σ

(
p2µ+2σ

(
α/2(i+1)µ

)
2(k−i)µ

)
for 2 ≤ i < k;

Mk = p2µ+σ

(
α

2(k+1)µ

)
.

By Lemma 3.4.6, estimating the second factor in the definition of Ki and Mi by 2σ, we have

∣∣K1α− 22µM1

∣∣ < 2−σ;∣∣∣∣Kiα

2iµ
− 2µMi

∣∣∣∣ < 2−σ for 2 ≤ i < k; (3.5.2)∣∣∣∣Kkα

2kµ
− 2µMk

∣∣∣∣ < 2−σ.

We are going to use these inequalities in order to replace riKiα in the sum S4, starting with

r1K1α. We treat the case when α is an integer first: in this case, K1α = 22µM1, and by the

fact that the arguments of sλ corresponding to ε1 = 0, 1 differ by a multiple of 22µ we may shift

the argument by 2µ digits and thus reduce the number of digits to be taken into account from

λ to λ− 2µ.

S4 =
∑

0≤n<N

e

(
1

2

∑
ε0,...,εk∈{0,1}

s2µ,λ (⌊nα+ β
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+ε0r0α+ ε1r1M12
2µ + ε2r2K2α+ · · ·+ εkrkKkα

⌋))

=
∑

0≤n<N

e

(
1

2

∑
ε0,...,εk∈{0,1}

sλ−2µ

(⌊
nα+ β

22µ
+
ε0r0α

22µ
+ε1r1M1+

ε2r2K2α

22µ
+· · ·+εkrkKkα

22µ

⌋))
.

In the case α ̸∈ Z, we use the inequalities (3.5.2) and the argument that nα-sequences are

usually not close to an integer. This can be made precise as follows. Assume that

∥nα+ β′∥ ≥ R1/2
σ, (3.5.3)

where β′ = β + ε0r0α + ε2r2K2α + · · · + εkrkKkα, and that 2R1 < 2σ. Using the in-

equality (3.4.3) in Lemma 3.4.1 with ε = 1/2σ, where σ ≥ 1 is chosen later, and (3.4.5), we

obtain 〈
r1K1α

〉
= r1

〈
K1α

〉
= r12

2µM1.

Applying (3.4.1), setting ε = R1/2
σ, we see that (3.5.3) together with (3.5.2) implies

⌊nα+ r1K1α+ β′⌋ = ⌊nα+ r12
2µM1 + β′⌋.

The number of n where hypothesis (3.5.3) fails for some ε0, ε2, . . . , εk can be estimated by

discrepancy estimates for {nα}-sequences: for all positive integers N and 2R1 < 2σ we have∣∣{n ∈ [0, N − 1] : ∥nα+ β′∥ ≤ R1/2
σ
}∣∣

=
∣∣{n ∈ [0, N − 1] : nα+ β′ ∈ [−R1/2

σ, R1/2
σ] + Z

}∣∣
=
∣∣{n ∈ [0, N − 1] : nα ∈ [0, 2R1/2

σ]− β′ −R1/2
σ + Z

}∣∣
≤ NDN (α) + 2R1N/2

σ.

Therefore, the number of n ∈ [0, N − 1] such that there exist ε0, ε2, . . . , εk ∈ {0, 1} with ∥nα+

β′∥ ≤ R1/2
σ is bounded by 2kN

(
DN (α) + 2R1/2

σ
)
, which is ≪ N

(
DN (α) + 2R1/2

σ
)
by our

convention that implied constants may depend on k.

We replace K1α by 22µM1 and subsequently shift the digits by 2µ and obtain

S4 =
∑

0≤n<N

e

(
1

2

∑
ε0,...,εk∈{0,1}

sλ−2µ

(⌊
nα+ β

22µ
+
ε0r0α

22µ
+ ε1r1M1

+
ε2r2K2α

22µ
+ · · ·+ εkrkKkα

22µ

⌋))
+O

(
NDN (α) +NR1/2

σ
)

Repeating this argument for all i ∈ {2, . . . , k}, we obtain

S4 = NO
(
D̃N (α) +DN

( α

22µ

)
+ · · ·+DN

( α

2kµ

)
+
R1 + · · ·+Rk

2σ

)
+

∑
0≤n<N

e

(
1

2

∑
ε1,...,εk∈{0,1}

sλ−(k+1)µ

(⌊
nα+ β

2(k+1)µ
+

ε0r0α

2(k+1)µ
+
∑

1≤i≤k

εiriMi

2(k−i)µ

⌋))
,

where D̃N (α) = DN (α) if α ̸∈ Z and D̃N (α) = 0 otherwise.
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Now the second factor in the definition of Ki comes into play. We use the definition of

Mi together with the approximation property (3.4.5), and apply the discrepancy estimate for

{nα}-sequences again to obtain

S4 = NO
(
D̃N (α) +DN

( α

22µ

)
+ · · ·+DN

( α

2(k+1)µ

)
+
R1 + · · ·+Rk

2σ

)
+ S5, (3.5.4)

where

S5 =
∑

0≤n<N

e

(
1

2

∑
ε0,...,εk∈{0,1}

sλ−(k+1)µ

(⌊
nα+ β

2(k+1)µ
+

ε0r0α

2(k+1)µ

⌋
+
∑

1≤i≤k

εiripi

))
,

and

p1 = p2σ

(
p22µ+2σ

(
α/22µ

)
2(k−1)µ

)
;

pi = p2σ

(
p2µ+2σ

(
α/2(i+1)µ

)
2(k−i)µ

)
for 2 ≤ i < k; (3.5.5)

pk = p2µ+σ

( α

2(k+1)µ

)
.

Our next goal is to remove the Beatty sequence occurring in S5, and also to remove the

integers pi. The resulting expression can be handled by the Gowers norm estimate given in

Proposition 3.3.3, which will finish the proof.

We start by splitting the Beatty sequence into two summands. Let t, T be integers such that

0 ≤ t < T and define

S6 =
∑

0≤n<N
t
T ≤

{
nα+β

2(k+1)µ

}
< t+1

T

e

(
1

2

∑
ε0,...,εk∈{0,1}

sλ−(k+1)µ

(⌊
nα+ β + ε0r0α

2(k+1)µ

⌋
+

∑
1≤i≤k

εiripi

))
.

We define

G =

{
1 ≤ t < T :

[
t

T
+

ε0r0α

2(k+1)µ
,
t+ 1

T
+

ε0r0α

2(k+1)µ

)
∩ Z = ∅

}
.

Clearly we have |G| ≥ T − 2, since we have to exclude at most one t. For t ∈ {0, . . . , T − 1} \G
we estimate S6 trivially, using Lemma 3.4.3: we obtain

S6 ≪
N

T
+NDN

( α

2(k+1)µ

)
. (3.5.6)

Assume that t ∈ G and that t/T ≤ {(nα+ β)/2(k+1)µ} < (t+ 1)/T . Then⌊
nα+ β

2(k+1)µ

⌋
+
t

T
+

ε0r0α

2(k+1)µ
≤ nα+ β + ε0r0α

2(k+1)µ
<

⌊
nα+ β

2(k+1)µ

⌋
+
t+ 1

T
+

ε0r0α

2(k+1)µ

and the assumption t ∈ G gives⌊
nα+ β + ε0r0α

2(k+1)µ

⌋
=

⌊
nα+ β

2(k+1)µ

⌋
+

⌊
t

T
+

ε0r0α

2(k+1)µ

⌋
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for ε0 ∈ {0, 1}. From these observations we obtain for t ∈ G:

S6 =
∑

0≤m<2ρ

∑
0≤n<N

t
T ≤

{
nα+β

2(k+1)µ

}
< t+1

T⌊
nα+β

2(k+1)µ

⌋
≡m mod 2ρ

e

(
1

2

∑
ε0,...,εk∈{0,1}

sρ

(
m+

⌊
t

T
+

ε0r0α

2(k+1)µ

⌋
+
∑

1≤i≤k

εiripi

))
.

Note that the Beatty sequence ⌊(nα + β)/2(k+1)µ⌋ does not occur in the summand any more.

We may therefore remove the second summation by estimating the number of times the three

conditions under the summation sign are satisfied. At this point we want to stress the fact that

N is going to be significantly larger than 2ρ = 2λ−(k+1)µ. Using Lemma 3.4.3 and the usually

very small discrepancy of nα-sequences, this fact will enable us to remove the summation over

n, while introducing only a negligible error term for most α. This is the point in the proof where

the successive “cutting away” of binary digits with the help of Farey series pays off.

By Lemma 3.4.3, applied with L = 2ρ, and noting that λ = (k+1)µ+ρ, we obtain for t ∈ G

S6 =
N

2ρT
S7 +O

(
2ρNDN

( α
2λ

))
, (3.5.7)

where

S7 =
∑

0≤m<2ρ

e

(
1

2

∑
ε0,...,εk∈{0,1}

sρ

(
m+

⌊
t

T
+

ε0r0α

2(k+1)µ

⌋
+
∑

1≤i≤k

εiripi

))
.

We note the important fact that this expression is independent of β. This will allow us to

remove the maximum over β inside the integral over α, and thus prove the strong statement on

the level of distribution.

We wish to simplify this expression in such a way that Proposition 3.3.3 is applicable. To

this end, we use the summation over ri and the integral over α. We define

S8 =

∫ 2λ

0

∑
0≤r1,...,rk<2ρ

∣∣S7

∣∣dµ(α),
which is an expression that will appear when we expand the original sum S0.

We are going to apply the argument that for most α < 2λ (with respect to µ) the 2-adic

valuation of p1, . . . , pk is small. For these α, the term ripi mod 2ρ attains eachm ∈ {0, . . . , 2ρ−1}
not too often, as ri varies. We may therefore replace rip1 by ri and thus obtain full sums over

ri — at this point, we set

Ri = 2ρ for 1 ≤ i ≤ k.

In order to make this argument work, we are going to utilize the following technical result, the

proof of which we give in section 3.5.2.

Lemma 3.5.1. Let µ, λ, σ, γ, k be nonnegative integers such that k ≥ 2 and

λ ≥ (k + 1)µ, γ ≤ λ− (k + 1)µ,

µ ≥ 4σ, σ ≥ γ ≥ 1.
(3.5.8)

Let p1, . . . , pk be defined by (3.5.5) and set

A = {α ∈ {0, . . . , 2λ − 1} : 23γ | pi for some i = 1, . . . , k}.
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Then

|A| = O
(
2λ−γ

)
.

Analogously, if

A = {α ∈ [0, 2λ] : 23γ | pi for some i = 1, . . . , k}.

Then

λ(A) = O
(
2λ−γ

)
,

where λ is the Lebesgue measure. The implied constants only depend on m (and are independent

of µ, λ, σ, and γ).

Let A be defined as in this lemma. We choose Ri = 2ρ for 1 ≤ i ≤ k.
Assume that α ̸∈ A. Then by an elementary argument, ripi mod 2ρ attains each value not

more than 23γ times, as ri runs through {0, . . . , 2ρ − 1}. The contribution for α ∈ A will be

estimated trivially by the lemma. We obtain

S8 ≤ 23γk
∫ 2λ

0

∑
0≤r1,...,rk<2ρ

|S9| dµ(α) +O
(
2λ+(k+1)ρ−γ

)
,

where

S9 =
∑

0≤n<2ρ

e

(
1

2

∑
ε0,...,εk∈{0,1}

sρ

(
n+

⌊
t

T
+

ε0r0α

2(k+1)µ

⌋
+
∑

1≤i≤k

εiri

))
.

The next step is removing the remaining floor function, using the integral over α. In the

continuous case, the expression
⌊
t/T + r0K0α/2

(k+1)µ
⌋
mod 2ρ runs through {0, . . . , 2ρ − 1} in

a completely uniform manner. That is, for r0 ̸= 0 and 0 ≤ m < 2ρ we have

λ
({
α ∈ [0, 2λ] :

⌊
t/T + r0α/2

(k+1)µ
⌋
≡ m mod 2ρ

})
= 2λ−ρ,

where λ is the Lebesgue measure. We consider the discrete case. Assume that r0 ≤ 2(k+1)µ (we

will choose R0 very small at the end of the proof, so that this will be satisfied). Then the set of

α ∈ {0, . . . , 2λ − 1} such that ⌊t/T + r0α/2
(k+1)µ⌋ ≡ m mod 2ρ decomposes into at most r0 + 1

intervals (note that λ = (k+ 1)µ+ ρ), each having ≤ 2(k+1)µ/r0 + 1 elements. In total we have

≪ 2λ−ρ elements, where the implied constant is absolute. It follows that

S8 ≪ 2λ+(k+1)ρ−γ + 2λ−ρ+3γk
∑

0≤r0,...,rk<2ρ

|S10(r0, . . . , rk)|,

where

S10(r0, . . . , rk) =
∑

0≤n<2ρ

e

1

2

∑
ε0,...,εk∈{0,1}

sρ

n+
∑

0≤i≤k

εiri

 .

As a final step in the procedure of reducing the main theorems to Proposition 3.3.3, we are

going to to remove the absolute value around S10. For brevity, we set

g(n) =
∑

ε0,...,εk∈{0,1}

sρ

n+
∑

0≤i≤k

εiri
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By the 2ρ-periodicity of g we have∑
0≤r0,...,rk<2ρ

|S10(r0, . . . , rk)|2 =
∑

0≤r0,...,rk<2ρ

∑
0≤n1,n2<2ρ

e

(
1

2
g(n1) +

1

2
g(n2)

)

=
∑

0≤r0,...,rk<2ρ

∑
0≤n1<2ρ

∑
0≤rk+1<2ρ

e

(
1

2
g(n1) +

1

2
g(n1 + rk+1)

)

=
∑

0≤r0,...,rk+1<2ρ

∑
0≤n1<2ρ

e

(
1

2
g(n1) +

1

2
g(n1 + rk+1)

)

=
∑

0≤r0,...,rk+1<2ρ

∑
0≤n1<2ρ

e

1

2

∑
ε0,...,εk∈{0,1}

∑
εk+1∈{0,1}

sρ(n1 + ε · r + εk+1rk+1)


=

∑
0≤r0,...,rk+1<2ρ

S10(r0, . . . , rk+1).

We have therefore removed the absolute value around S10 for the price an additional variable

rk+1; see also [81, Section 4] for this type of argument. This means that we have reduced our

main theorems to Proposition 3.3.3.

By this proposition and Cauchy-Schwarz we obtain

S8 ≪ 2λ+(k+1)ρ
(
2−γ + 23γk−ηρ

)
(3.5.9)

for some η > 0.

It remains to collect the error terms and to choose values for the free variables. Using (3.5.7)

and (3.5.6), we obtain

S5 ≪
∑
t ̸∈G

(
N

T
+NDN

( α

2(k+1)µ

))
+
∑
t∈G

(
N

2ρT
S7 + 2ρNDN

( α
2λ

))
≪ N

2ρT

∑
t∈G

S7 +
N

T
+NDN

( α

2(k+1)µ

)
+ 2ρNTDN

( α
2λ

)
and by (3.5.4) and (3.5.1) we obtain

∣∣∣∣S0(N, ν, ξ)

2νN

∣∣∣∣2k+1

≪ O
(

1

R0
+
R0 2

ν

2λ
+
R0

N
+
R1K1

N
· · ·+ RkKk

N

)
+

1

2νN

∫ 2λ

0

NO
(
D̃N (α) +DN

( α

22µ

)
+ · · ·+DN

( α

2(k+1)µ

)
+
R1 + · · ·+Rk

2σ

)
dµ(α),

+
1

2νN

∫ 2λ

0

O
(
N

T
+NDN

( α

2(k+1)µ

)
+ 2ρTNDN

( α
2λ

))
dµ(α),

+
1

R0 · · ·Rk2νN

N

2ρT

∑
t∈G

∑
1≤r0<R0

∫ 2λ

0

∑
0≤r1,...,rk<2ρ

∣∣S7

∣∣ dµ(α). (3.5.10)

We employ the mean discrepancy estimates from Lemma 3.4.4. Assume that δ ≤ λ. In the

continuous case we have

1

2ν

∫ 2λ

0

DN

( α
2δ

)
dα≪ 2λ−ν−δ

∫ 2δ

0

DN

( α
2δ

)
dα≪ 2λ−ν (log

+N)2

N
,
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while the discrete case gives

1

2ν

∑
0≤d<2λ

DN

(
d

2δ

)
≪ 2λ−δ−νN + 2δ

N
(log+N)2 = 2λ−ν(log+N)2

(
1

N
+

1

2δ

)
In total, noting that λ ≥ (k + 1)µ, the discrepancy terms can be estimated by

≪ 2λ−ν(log+N)22ρT

(
1

N
+

1

22µ

)
.

By (3.5.9), the last summand in (3.5.10) can be estimated by

≪ 2λ−ν
(
2−γ + 23γk−ηρ

)
.

Moreover, using the facts R1 = · · · = Rk = 2ρ and Ki ≤ 22µ+3σ for 1 ≤ i ≤ k, we obtain

∣∣∣∣S0(N, ν, ξ)

2νN

∣∣∣∣2k+1

≪ 1

R0
+
R0 2

ν

2λ
+
R0

N
+

2ρ+2µ+3σ

N
+

2λ−ν(log+N)22ρT

(
1

N
+

1

22µ

)
+ 2ρ−σ+λ−ν +

1

T
+ 2λ−ν

(
2−γ + 23γk−ηρ

)
(3.5.11)

with some implied constant only depending on k. Collecting also the requirements on the

variables we assumed in the course of our calculation, we see that this estimate is valid as long

as
R0, T ≥ 1, k ≥ 2, γ, ν, λ, ρ, µ ≥ 0, R1 = · · · = Rk = 2ρ,

λ > ν, ρ = λ− (k + 1)µ,

γ ≤ ρ < σ − 1, µ ≥ 4σ,

R0 ≤ 2(k+1)µ.

(3.5.12)

It remains to choose the variables within these constraints. Choose the integer j ≥ 1 in such

a way that N j−1 ≤ 2ν < N j and set k = 3j − 1. Clearly, k ≥ 2. We define

µ =

⌊
ν

k + 1 + 1/8

⌋
, σ = ⌊µ/4⌋, ρ̃ = ν − (k + 1)µ.

We obtain the inequalities N ≥ 23µ, µ ≥ 4σ, ρ̃ ≥ 0. Moreover, for large ν we obtain ρ̃ ∼ µ/8.
Choose γ = ⌊ρ̃η/(6k)⌋ and R0 = ⌊2γ/4⌋. Then the last summand in (3.5.11) is≪ 2λ−ν

(
2−γ+

2−ρ̃η/2
)
≪ 2λ−ν−γ . Finally, set λ = ν + ⌊γ/2⌋, T = 2γ and ρ = λ − (k + 1)µ. It follows that

ρ = ρ̃ + ⌊γ/2⌋ ∼ µ
8 (1 + η/(12k)) ≤ µ/8 + µ/192. Using these definitions, it is not hard to see

that, for large N and ν, the requirements (3.5.12) are met.

Using the statements Nρ1 ≤ D ≤ Nρ2 and D < 2ν ≤ 2D we can easily estimate (3.5.11)

term by term and conclude that S0(N, ν, ξ)/(2
νN) ≤ CN−η′

for some η′ > 0 and some constant

C. This finishes the proof of Propositions 3.3.1 and 3.3.2 and therefore of our main theorems.

It remains to prove our auxiliary results.

3.5.1 Proof of Proposition 3.3.3

We utilize ideas from the paper [89] by Konieczny. In that paper, he uses the Gowers norm

on intervals in Z, while we are concerned with the cyclic group Z/2ρZ. The proof of Propo-

sition 3.3.3 is analogous to Konieczny’s proof. In fact, it is possible to relate the two notions
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of Gowers norms to each other and therefore avoid going into the details of the proof in [89]

(Konieczny, private communication; we also thank the anonymous referee for pointing out this

possibility). In this paper however, we chose to follow the proof from [89], as the argument is

interesting and not unreasonably long.

Set

Aρ(a) =
1

2(k+1)ρ

∑
0≤n<2ρ

0≤r1,...,rk<2ρ

e

1

2

∑
ε∈{0,1}k

sρ(n+ ε · r + aε)

 .

Then in analogy to equation (16) of [89], we get after a similar calculation (using k ≥ 2)

Aρ+1(a) =
(−1)|a|

2k+1

∑
e0,...,ek∈{0,1}

Aρ(δ(a, e)), (3.5.13)

where |a| =
∑

ε∈{0,1}k aε and

δ(a, e)ε =

⌊
aε + e0 +

∑
1≤i≤k εiei

2

⌋
.

We define a directed graph with weighted edges according to (3.5.13). The set of vertices is

given by the set of families a ∈ Z{0,1}k

. There is an edge from a to b if and only if there is an

e = (e0, . . . , ek) ∈ {0, 1}k+1 such that δ(a, e) = b and this edge has the weight

w(a,b) =
(−1)|a|

2k+1

∣∣{e ∈ {0, 1}k+1 : δ(a, e) = b
}∣∣ .

Note that ∑
b∈Z{0,1}k

|w(a,b)| = 1, (3.5.14)

which we will need later. We are interested in the subgraph (V,E,w) induced by the set of

vertices reachable from 0. This graph is finite: we have

max
ε∈{0,1}k

|δ(a, e)ε| ≤
1

2

(
max

ε∈{0,1}k
|aε|+ k + 1

)
and by induction, it follows that maxε∈{0,1}k |aε| < k + 1 for all a ∈ V , which implies the

finiteness of V .

This subgraph is strongly connected. We prove this by showing that 0 is reachable from

each a ∈ V . This follows immediately by considering the path given by the edges (a(0),a(1)),

(a(1),a(2)),. . . ,(a(j),a(j+1)) defined by a(0) = a and a(i+1) = δ(a(i), (0, . . . , 0)). It is clear from

the definition of δ that such a path reaches 0 if j is large enough.

We wish to apply (3.5.13) recursively. We therefore define, for two vertices a,b ∈ V and a

positive integer j, the weight wj(a,b) as the sum of all weights of paths of length j from a to

b. (Here the weight of a path is the product of the weights of the edges.)

In order to prove Proposition 3.3.3, it is sufficient to prove that there is a j such that∑
b∈V

|wj(a,b)| < 1

for all a ∈ V . In order to prove this, it is sufficient, by the strong connectedness of the

graph and (3.5.14), to prove that there are two paths of the same length from 0 to 0 such
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that their respective weights have different sign. One of this paths is the trivial one, choosing

e0 = · · · = ej = 0 in each step. This path has positive weight.

For the second path, we follow Konieczny [89, proof of Proposition 2.3]. As in that paper,

we define a(0) = a(j+1) = 0 and for 1 ≤ i ≤ j,

a(i)ε =

{
1, if ε1 = · · · = εi = 1;

0, otherwise.

Assuming for a moment that there is an edge from a(i) to a(i+1) for all i ∈ {0, . . . , j}, it is easy
to see that each edge (a(i),a(i+1)) has positive weight for 0 ≤ i < j, while (a(j),a(j+1)) has

negative weight. Proving that these vertices indeed define a path is contained completely in the

argument given in [89]. This finishes the proof of Lemma 3.3.3.

3.5.2 Proof of Lemma 3.5.1

We choose an integer γ > 0 and bound the size of the set of α < 2λ such that 23γ | pi for some

i ∈ {1, . . . , k}. We will need the following two lemmas.

Lemma 3.5.2. Let λ be the Lebesgue measure. Assume that K ≥ 1 and γ ≥ 0 are integers.

Then

λ
(
{x ∈ [0, 1] : 2γ | qK(x)}

)
≪ 1

2γ
+

1

K
.

The constant in this estimate is absolute.

Proof. We have to sum up the lengths of the Farey intervals around p/q such that 2γ | q. By

Lemma 3.4.6, each such fraction contributes at most 2/(Kq). By summing over p ∈ {1, . . . , q},
this gives a contribution 2/K for each multiple q of 2γ , and we obtain a total contribution

≪
∑

1≤q≤K
2γ |q

1

K
≤ 1

2γ
+

1

K
.

Lemma 3.5.3. Let x0, . . . , xM−1 ∈ [0, 1] and δ > 0. Assume that ∥xi−xj∥ ≥ δ for i ̸= j. Then

∣∣{n ∈ {0, . . . ,M − 1} : 2γ | qK(xi)}
∣∣≪ K2

2γ
+

1

δ

(
1

2γ
+

1

K

)
.

The implied constant is absolute.

Proof. In each Farey interval around p/q such that q is divisible by 2γ there are at most

2/(Kqδ) + 1 many points xi. By summing over p and q, we can bound the number of points in

such intervals by

≪
∑

1≤q≤K
2γ |q

∑
1≤p≤q

(
1

qKδ
+ 1

)
=

∑
1≤q≤K
2γ |q

(
1

Kδ
+ q

)
=
(
K2−γ + 1

) 1

Kδ
+

∑
1≤q≤K
2γ |q

q

≤ 1

2γδ
+

1

Kδ
+ 2γ

∑
1≤q′≤⌊K2−γ⌋

q′ ≪ K2

2γ
+

1

2γδ
+

1

Kδ
.
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We proceed to the proof of Lemma 3.5.1. Consider p1 and the case “α discrete”. In this

case, we have p22µ+2σ (α/22µ) = α. Assume therefore that α = α0 + 2(k−1)µα1, where α0 ∈
{0, . . . , 2(k−1)µ − 1} and α1 ∈ {0, . . . , 2λ−(k−1)µ − 1}.

Then

p1 = p2σ
(
α/2(k−1)µ

)
= p2σ

(
α0/2

(k−1)µ
)
+ q2σ

(
α0/2

(k−1)µ
)
α1.

By Lemma 3.5.3, using also (3.5.8), it follows that the number of α0 ∈ {0, . . . , 2(k−1)µ− 1} such
that 2γ ∤ q2σ

(
α0/2

(k−1)µ
)
is 2(k−1)µ (1−O(2−γ)). For each such α0, we let α1 run through

{0, . . . , 2λ−(k−1)µ − 1}. Then two occurrences α1, α
′
1 such that 22γ | p1 are separated by at

least 2γ steps; it follows that the number of such α1 is bounded by 2λ−(k−1)µ−γ . Putting these

errors together, we see that the number of α ∈ {0, . . . , 2λ − 1} such that 22γ ∤ p1 is given by

2(k−1)µ (1−O(2−γ)) 2λ−(k−1)µ (1−O(2−γ)) = 2λ (1−O(2−γ)).

Next, we consider the continuous case. We write α = α0 + 22µα1 + 2(k+1)µα2 , where

α0 ∈ [0, 22µ) is real and α1 < 2(k−1)µ and α2 < 2λ−(k+1)µ are nonnegative integers. Set

p = p22µ+2σ

(
α0/2

2µ
)
and q = q22µ+2σ

(
α0/2

2µ
)
. Then

p22µ+2σ

(
α/22µ

)
2(k−1)µ

=
p+

(
α1 + 2(k−1)µα2

)
q

2(k−1)µ
=
p+ α1q

2(k−1)µ
+ α2q.

By the approximation property (3.4.5) (note that σ ≥ 1) we have

p1 =

〈(
p+ α1q

2(k−1)µ
+ α2q

)
q2σ

(
p+ α1q

2(k−1)µ

)〉
=

〈
p+ α1q

2(k−1)µ
q2σ

(
p+ α1q

2(k−1)µ

)〉
+ α2q q2σ

(
p+ α1q

2(k−1)µ

)
and we note that the first summand does not depend on α2.

As α0 runs through [0, 22µ], we have by Lemma 3.5.2 2γ ∤ q in a set of measure 22µ(1−O(2−γ+

2−2µ−2σ)). By (3.5.8), this is 22µ
(
1 − O

(
2−γ

))
. Assume that α0 is such that 2γ ∤ q and set

γ′ = ν2(q) < γ. Next, we let α1 run. We choose xj =
{
(p+ jq)/2(k−1)µ

}
for 0 ≤ j < 2(k−1)µ−γ′

and we note that these points satisfy ∥xi − xj∥ ≥ 1/2(k−1)µ−γ′
for i ̸= j. By Lemma 3.5.3 it

follows that{
α1 ∈ {0, . . . , 2(k−1)µ−γ′

− 1} : 2γ | q2σ
(
p+ α1q

2(k−1)µ

)}
≪ 22σ

2γ
+ 2(k−1)µ−γ′

(
1

2γ
+

1

2σ

)
.

By (3.5.8), this is ≪ 2(k−1)µ−γ′−γ . Performing this also for the other intervals of length

2(k−1)µ−γ′
, we obtain{

α1 ∈ {0, . . . , 2(k−1)µ − 1} : 2γ | q2σ
(
p+ α1q

2(k−1)µ

)}
≪ 2(k−1)µ−γ .

Finally, α2 runs through {0, . . . , 2λ−(k+1)µ − 1} and we consider p1. For given good α1 and

α0 (such that 2γ ∤ q and 2γ ∤ q2σ ((p+α1q)/2
(k−1)µ)), p1 is an arithmetic progression in α2 whose

common difference is not divisible by 22γ . Similarly to the discrete case, it follows that p1 is

divisible by 23γ for at most 2λ−(k+1)µ−γ many α2. It follows that there is a set of measure

22µ
(
1−O(2−γ)

)
2(k−1)µ

(
1−O(2−γ)

)
2λ−(k+1)µ

(
1−O(2−γ)

)
= 2λ

(
1−O(2−γ)

)
of α < 2λ such that 23γ ∤ p1.
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The cases 2 ≤ i ≤ k do not require any new ideas; we only give a sketch of a proof. Let

2 ≤ i < k. We treat the discrete and continuous cases in parallel. We write α = α0+2(i+1)µα1+

2(k+1)µα2, where α0 < 2(i+1)µ, and α1 < 2(k−i)µ and α2 < 2λ−(k+1)µ are nonnegative integers.

Set p = p2µ+2σ

(
α0/2

(i+1)µ
)
and q = q2µ+2σ

(
α0/2

(i+1)µ
)
. Then

pi =

〈
p+ α1q

2(k−i)µ
q2σ

(
p+ α1q

2(k−i)µ

)〉
+ α2q q2σ

(
p+ α1q

2(k−i)µ

)
,

as before. By Lemmas 3.5.2 and 3.5.3 we have 2γ ∤ q for α0 in a set of measure 2(i+1)µ(1 −
O(2−γ)), where we used 2µ+4σ ≤ (i+1)µ in the discrete case. (We note that this last inequality

is the reason for defining p1 separately, using 22µ instead of 2µ.) The remaining steps are as

before, and this case is finished.

Finally, in the case i = k we write α = α0 + 2(k+1)µα1, where α0 < (k + 1)µ and α1 ∈
{0, . . . , 2λ−(k+1)µ − 1}. Then

pk = p2µ+σ

(
α0/2

(k+1)µ
)
+ q2µ+σ

(
α0/2

(k+1)µ
)
α1.

By Lemmas 3.5.2 and 3.5.3 and (3.5.8) we have 2γ | q2µ+σ

(
α0/2

(k+1)µ
)
for α0 in a set of

measure O(2(k+1)µ−γ) and the statement follows as before.

In total, we have a set of measure 2λ
(
1−O(2−γ)

)
of α < 2λ such that 23γ ∤ pi for all i.
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Abstract

The Thue–Morse sequence is a prototypical automatic sequence found in diverse areas of math-

ematics, and in computer science. We study occurrences of factors w within this sequence, more

precisely, the sequence of gaps between consecutive occurrences. This gap sequence is morphic;

we prove that it is not automatic as soon as the length of w is at least 2, thereby answering a

question by J. Shallit in the affirmative. We give an explicit method to compute the discrepancy

of the number of occurrences of the block 01 in the Thue–Morse sequence. We prove that the

sequence of discrepancies is the sequence of output sums of a certain base-2 transducer.

4.1 Introduction and main result

Automatic sequences can be defined via deterministic finite automata with output (DFAO):

feeding the base-q expansion (where q ≥ 2 is an integer) of 0, 1, 2, . . . into such an automaton,

we obtain an automatic sequence as its output, and each automatic sequence is obtained in this

way. One of the simplest automatic sequences — in terms of the size of the defining substitution

— is the Thue–Morse sequence t. It is the fixed point of the substitution τ given by

τ : 0 7→ 01, 1 7→ 10, (4.1.1)

starting with 0:

t = τω(0) = 01101001100101101001011001101001 · · · . (4.1.2)

(Here τω(0) denotes the point-wise limit of the iterations τk(0), in symbols τω(0)
∣∣
j
= limk→∞ τk(0)

∣∣
j
.

We use analogous notation in other places too.) Occurrences of this sequence in different areas

of mathematics can be found in the paper [4] by Allouche and Shallit, which also offers a good

bibliography. Another survey paper on the Thue–Morse sequence was written by Mauduit [104].
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Much more information concerning automatic and general morphic sequences is presented in the

book [5] by Allouche and Shallit.

Terms 1 through 12 of the Thue–Morse sequence (the 0th term is omitted) make a peculiar

appearance in The Simpsons Movie [26]:

Russ Cargill: ‘ [ . . . ] I want 10, 000 tough guys, and I want 10, 000 soft guys to make

the tough guys look tougher! And here’s how I want them arranged:

tough, tough, soft, tough, soft, soft, tough, tough, soft, soft, tough, soft.’

This could, of course, be a coincidence. A different, more sensible explanation of this ap-

pearance is along the lines of Brams and Taylor [24, 36–44]. They rediscover the Thue–Morse

sequence while seeking balanced alternation between two parties ‘Ann’ and ‘Ben’. However,

Brams and Taylor do not attribute the resulting sequence to Thue and Morse (and neither to

Prouhet).

We are interested in counting the number of times that a word occurs as a factor — a

contiguous finite subsequence — of another word; a related concept is the binomial coefficient of

two words, which counts the corresponding number concerning general subsequences. We wish

to note the related paper by Rigo and Salimov [132], defining m-binomial equivalence of two

words, and the later paper by Lejeune, Leroy, and Rigo [94], where the Thue–Morse sequence

is investigated with regard to this new concept.

It is well known that the sequence t is uniformly recurrent [96, Section 1.5.2]. That is, for

each factor w of t there is a length n with the following property: every contiguous subsequence

of t of length n contains w as a factor. The factor 01 therefore appears in t with bounded

distances. We are interested in the infinite word B (over a finite alphabet) describing these

differences. We mark the occurrences of 01 in the first 64 letters of t:

0110100110010110100101100110100110010110011010010110100110010110, (4.1.3)

from which we see that

B = 334233243342433233423 · · · .

The blocks 000 and 111 do not appear as factors in t, since t is a concatenation of the blocks 01

and 10. Therefore the gaps between consecutive occurrences of 01 in t are in fact bounded by

4, and clearly they are bounded below by 2 (since different occurrences of 01 cannot overlap).

It follows that we only need three letters, 2, 3, and 4, in order to capture the gap sequence.

The set of return words [52, 85] of a factor w of t is the set of words x of the form x = wx̃,

where w is not a factor of x̃, and wx̃w is a factor of t. The gap sequence is the sequence of

lengths of words in the decomposition t = x0x1 · · · of the Thue–Morse sequence into return

words of 01, which are 011, 010, 0110, and 01 in order of appearance.

An appearance of the factor 01 marks the beginning of a block of 1s in t. Moreover, no other

block of 1s can appear before the next appearance of 01: between two blocks of 1s we can find a

block of one or more 0s, and the last 0 in this block is followed by 1. The assumption that we see

a block of 1s before the next appearance of 01 therefore leads to a contradiction. This argument

is clearly visible in (4.1.3). The sequence B therefore gives the distances of consecutive blocks of

1s. We will see in Lemma 4.2.3 that the sequence B is morphic, or substitutive. That is, it can

be described as the coding of a fixed point of a substitution over a finite alphabet. Jeffrey Shallit

(private communication, July 2019) proposed to prove the non-automaticity of B to the author.
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In the present paper, we investigate the sequence B and the closely related, very well-known

automatic sequence A defined in Section 4.2.1. In particular, we prove the following theorem.

Theorem 4.1.1. Let w be a factor of the Thue–Morse word of length at least 2, and C the

sequence of gaps between consecutive occurrences of w in t. Then C is morphic, but not auto-

matic.

Note that the set of positions where a given factor w appears in t is 2-automatic — that

is, its characteristic sequence is automatic. This follows from the following theorem by Brown,

Rampersad, Shallit, and Vasiga [27, Theorem 2.1].

Theorem A. Let a = a0a1a2 · · · be a k-automatic sequence over the alphabet ∆, and let w ∈ ∆∗.

Then the set of of positions p such that w occurs beginning at position p is k-automatic.

Concerning factors of length 1, the corresponding gap sequence is automatic too; this follows

from [20].

The second part of our paper is concerned with the discrepancy of occurrences of 01-blocks

in t. More precisely, assume that N is a nonnegative integer. We count the number of times

the factor 01 occurs in the first N terms of the Thue–Morse sequence, and compare it to N/3:

DN := #
{
0 ≤ n < N : tn = 0, tn+1 = 1

}
− N

3
. (4.1.4)

From Theorem A we can immediately derive that the sequence (DN )N≥0 is 2-regular [3, 7] as

the sequence of partial sums of a 2-automatic sequence: the sequence having{
2/3 if tntn+1 = 01;

−1/3 otherwise

as its nth term is automatic as the sum of four 2-automatic sequences, and DN is the sum of the

first N terms of this sequence [3, Theorem 3.1]. Our second theorem shows, more specifically,

that DN can be obtained as the output sum of a base-2 transducer (see Heuberger, Kropf, and

Prodinger [83], in particular Remark 3.10 in that paper).

Theorem 4.1.2. The sequence (DN )N≥0 is the sequence of output sums of a base-2 transducer.

In particular, DN ≤ C logN for some absolute implied constant C. Moreover,

{DN : N ≥ 0} = 1

3
Z. (4.1.5)

Note that the unboundedness of DN follows from Corollary 4.10 in the paper [16] by Berthé

and Bernales on balancedness in words.

Plan of the paper. In Section 4.2 we prove that the gap sequence for a factor w of t is

not automatic. The central step of this proof is the case w = 01, which will be handled in

the first three sub-sections. Section 4.2.4 reduces the general case to this special case. In

Section 4.3 we study the automatic sequence A on the three symbols {a, b, c}, closely related

to the gap sequences. In particular, we lift this sequence to the seven-letter alphabet K =

{a, b̄ , b̄ , b , b , c , c}. From this new sequence we can in particular read off the discrepancy DN

easily, which leads to a proof of Theorem 4.1.2.
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4.2 Proving the non-automaticity of gap sequences

The main part of the proof of Theorem 4.1.1 concerns non-automaticity of the gaps between

occurrences of 01. As a second step in our proof, the general case will be reduced to this one.

4.2.1 An auxiliary automatic sequence

We start by defining a substitution φ on three letters:

φ : a 7→ abc, b 7→ ac, c 7→ b. (4.2.1)

The morphism φ can be extended to {a, b, c}N by concatenation, and we denote this extension

by φ again. The unique fixed point (of length > 0) of φ is

A = abcacbabcbacabcacbacabcbabcacbabcbacabcbabcacbac · · · .

This fixed point is a morphic, or substitutive, sequence [5, Chapter 7]. As a fixed point of

φ — without having to apply a coding of the fixed point — it is even pure morphic. The

sequence A is in fact 2-automatic, which follows from Berstel [13, Corollaire 4]. It is a ‘hidden

automatic sequence’ as treated very recently by Allouche, Dekking, and Queffélec [2]. In fact,

every automatic sequence can also be written as a coding of a fixed point of a non-uniform

morphism [8] and this sense is a ‘hidden’ automatic sequence. We will re-state a corresponding

2-uniform substitution found by Berstel further down. The sequence A, called ternary Thue–

Morse sequence (for example, in the OEIS [140, A036577]), Istrail squarefree sequence [2, 84],

or vtm [20], is well-known. Citing Dekking [32], we note that it appears in fact twelve times

on the OEIS [140], featuring all renamings of the letters corresponding to permutations of the

sets {0, 1, 2} and {1, 2, 3}. These twelve entries are A005679, A007413, and A036577–A036586.

The sequence A encodes the gaps between consecutive 1s in t [20]. Thue [158] showed that A

is squarefree, while Rao, Rigo, and Salimov [130] later proved the stronger statement that A

even avoids 2-binomial squares [132], thus settling in particular the question whether 2-abelian

squares are avoidable over a 3-letter alphabet. We will use the squarefreeness property in our

proof of Theorem 4.1.1.

Lemma 4.2.1 (Thue). The sequence A is squarefree. That is, no factor of the form CC, where

C is a finite word over {a, b, c} of length at least 1, appears in A.

We have the following important relation between A and our problem.

Lemma 4.2.2. The Thue–Morse sequence t can be recovered from A via the substitution

f : a 7→ 011010, b 7→ 0110, c 7→ 01, (4.2.2)

by concatenation: we have

t = f(A0)f(A1) · · · . (4.2.3)

We will prove this in a moment. From this observation, noting also that each of the three

words f(a), f(b), and f(c) begins with 01, we see that we can extract from A the sequence of

gaps between occurrences of the factor 01 in t: each a yields two consecutive gaps of size 3,

each b yields a gap of size 4, and each c a gap of size 2.
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Proof of Lemma 4.2.2. We prove that for k ≥ 1,

t[0,6·2k] = f(A0)f(A1) · · · f
(
ALk

)
, (4.2.4)

where Lk = 3 ·2k−1−1, by induction. The case k = 1 is just the trivial identity 011010011001 =

f(a)f(b)f(c).

Note that τ(f(a)) = f(a)f(b)f(c), τ(f(b)) = f(a)f(c), and τ(f(c)) = f(b). Extending f by

concatenation, for convenience of notation, to words over {a, b, c}, we obtain τ(f(x)) = f(φ(x))

for each x ∈ {a, b, c}. An application of the morphism τ to both sides of (4.2.4) yields

t[0,6·2k+1) = τ
(
f(A0)

)
· · · τ

(
f
(
ALk

))
= f(φ(A0)) · · · f

(
φ
(
ALk

))
= f

(
φ
(
A0 · · ·ALk

))
= f

(
A1 · · ·ALk+1

)
= f(A0) · · · f

(
ALk+1

)
.

Note that we see by induction that φk(abc) contains each of the three letters 2k times, hence

the numbers Lk. This proves the lemma.

Since each of the words f(a), f(b), and f(c) starts with 01, the differences aj = kj+1 − kj
between successive occurrences of 01 in t are easily obtained from A by the substitution

r : a 7→ 33, b 7→ 4, c 7→ 2. (4.2.5)

Here each a yields two blocks 01, and each of b and c one block.

Let B be the sequence of gaps between consecutive occurrences of 01 in the Thue–Morse

sequence, and B̌ the corresponding sequence for 10.

Lemma 4.2.3. The sequence B is a morphic sequence, given by the substitution ψ on the four

letters a, ā, b, c, together with the coding p,

ψ : a 7→ aā, ā 7→ bc, b 7→ aāc, c 7→ b,

p : a 7→ 3, ā 7→ 3, b 7→ 4, c 7→ 2.
(4.2.6)

Let B̄ denote the fixed point of ψ starting with a.

The sequence B̌ is morphic. More precisely, it is the image of B̄ under the morphism

p̌ : a 7→ 24, ā 7→ 33, b 7→ 233, c 7→ 4. (4.2.7)

Note that B̄ is the pointwise limit of the finite words ψk(a), and begins as follows:

B̄ = aābcaācbaābcbaācaābcaācbaācaābcbaābcaācbaābcbaāc · · · .

Proof. Let q be the morphism that replaces a by aā and leaves b and c unchanged. We show

by induction on the length of a word C over abc that

q
(
φ(C)

)
= ψ(q(C)). (4.2.8)

This is clear for words of length 1, since q(φ(a)) = aābc = ψ(q(a)), q(φ(b)) = aāc = ψ(q(b)),

and q(φ(c)) = b = ψ(q(c)). Appending a letter x ∈ {a, b, c} to a word C for which the

identity (4.2.8) already holds, we obtain

q
(
φ(Cx)

)
= q
(
φ(C)φ(x)

)
= q
(
φ(C)

)
q(φ(x))

= ψ(q(C))ψ(q(x)) = ψ(q(C)q(x)) = ψ(q(Cx))
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and therefore (4.2.8) for C replaced by Cx. Next, we prove by induction, using (4.2.8), that

q(φk(a)) = ψk(q(a)).

Clearly, this holds for k = 1. For k ≥ 2, we obtain

q
(
φk(a)

)
= q
(
φ(φk−1(a))

)
= ψ

(
q
(
φk−1(a)

))
= ψ

(
ψk−1(q(a))

)
= ψk(q(a)).

Noting that q(a) = ψ(a) and p ◦ q = r, the proof of the first part of Lemma 4.2.3 is complete.

We proceed to the second part, concerning B̌. Note that by Corollary 7.7.5 in [5] we only

have to prove that B̌ = p̌
(
B̄).

Let

f̌ : a 7→ 011010, ā 7→ 011001, b 7→ 01101001, c 7→ 0110, (4.2.9)

and extend this function to words (finite or infinite) over {a, ā, b, c} by concatenation.

Applying τ , we see by direct computation that

τ
(
f̌(a)

)
= 011010011001 = f̌(a)f̌(ā) = f̌

(
ψ(a)

)
,

and analogously, we get τ
(
f̌(x)

)
= f̌

(
ψ(x)

)
for each letter x ∈ {ā, b, c}. Applying this letter by

letter, we obtain

τ
(
f̌(w)

)
= f̌

(
ψ(w)

)
(4.2.10)

for every finite word over {a, ā, b, c}. By induction, we obtain

τk
(
f̌(a)

)
= f̌

(
ψk(a)

)
,

using the step

τk+1
(
f̌(a)

)
= τ

(
τk
(
f̌(a)

))
= τ

(
f̌
(
ψk(a)

))
= f̌

(
ψk+1(a)

)
.

Noting that f̌(a) begins with 0, we obtain t = f̌
(
B̄). In other words, the sequence B̄ yields the

decomposition t = x0x1 · · · of the Thue–Morse sequence into return words of 0110, where xj =

f̌
(
B̄j

)
. From this decomposition we can easily read off the sequence of gaps between occurrences

of 10, since this word appears in each of the four return words, and the first occurrence always

takes place at the same position, which is 2. In this way, we obtain the gaps 2 and 3 from

the return word f̌(a) each time a appears in B̄. Analogously, ā yields the gaps 3 and 3, the

letter b the gaps 2, 3, and 3, and finally c yields the gap 4. This proves the second part of

Lemma 4.2.3.

Remark 8. A hint how to come up with the definition of ψ can be found by combining the

substitutions φ and r, given in (4.2.1) and (4.2.5) respectively, and considering the first few

words wk = r(φk(a)): we have w1 = 3342, w2 = 33423324, w3 = 3342332433424332. We

see that a first guess for a definition of ψ, choosing 3 7→ 3342, leads to the incorrect result

33423342 · · · after the next iteration; we are led to distinguishing between ‘the first letter “3”’

and ‘the second letter “3”’ in each occurrence of 33, which is exactly what our definition of ψ

does. On the other hand, we directly obtain (4.2.6) by inspecting the decomposition of t into

return words of 01. (Equivalently, we can study return words of 0110, as we did in the second

part of the proof of Lemma 4.2.3.) We can write the image under τ of each return word as a

concatenation of return words, which yields the desired morphism.
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4.2.2 Factors of B appearing at positions in a residue class

The main step in our proof of Theorem 4.1.1 is given by the following proposition. For com-

pleteness, we let ψ0 denote the identity, such that ψ0(w) = w for all words w over {a, ā, b, c}.

Proposition 4.2.4. Let µ ≥ 0 be an integer. The sequence of indices where ψ4µ(a) appears as

a factor in B̄ has nonempty intersection with every residue class a +mZ, where m ≥ 1 and a

are integers.

In the remainder of this section, we prove this proposition. We work with the fourth iteration

σ = ψ4 of the substitution ψ: we have

σ(a) = aābcaācbaābcbaāc, σ(ā) = aābcaācbaācaābcb,

σ(b) = aābcaācbaābcbaācaābcb, σ(c) = aābcaācbaāc.
(4.2.11)

We have the following explicit formulas for the lengths of σk(x), where x ∈ {a, ā, b, c}:

ak :=
∣∣σk(a)

∣∣ = ∣∣σk(ā)
∣∣ = 16k,

bk :=
∣∣σk(b)

∣∣ = 4 · 16k − 1

3
,

ck :=
∣∣σk(c)

∣∣ = 2 · 16k + 1

3
.

(4.2.12)

The proof of this identity is based on the formula
4 4 4 4

4 4 4 4

5 5 6 5

3 3 2 3


k

=


16k/4 16k/4 16k/4 16k/4

16k/4 16k/4 16k/4 16k/4

(16k − 1)/3 (16k − 1)/3 (16k + 2)/3 (16k − 1)/3

(16k + 2)/6 (16k + 2)/6 (16k − 4)/6 (16k + 2)/6

,
valid for k ≥ 1, which takes care of the numbers of the letters a, ā, b, and c in σk(a), σk(ā),

σk(b), and σk(c). This formula can be proved easily by induction. Moreover, (4.2.12) also holds

for k = 0.

By applying σk on the first line of (4.2.11), we see that each letter in {a, ā, b, c} is replaced
by a word having the respective lengths ak, ak, bk, ck. For each ν ≥ 0, it follows that the factor

σν(a), of length aν = 16ν , can be found at the following positions in σν+1(a):

A(ν,0) := 0, A(ν,1) := 4 · 16ν ,

A(ν,2) := 8 · 16ν , A(ν,3) := 12 · 16ν +
4 · 16ν − 1

3
.

(4.2.13)

We may repeat this for ν − 1, ν − 2, . . . , µ, where µ ≤ ν is a given natural number, from which

we obtain the following statement. For all integers 0 ≤ µ ≤ ν and all ε =
(
εµ, εµ+1, . . . , εν

)
∈

{0, 1, 2, 3}ν−µ+1, the factor σµ(a) of length 16µ can be found at the position

Nε := A(µ,εµ) +A(µ+1,εµ+1) + · · ·+A(ν,εν) (4.2.14)

in B̄. There are other positions where the factor σµ(a) appears, but for our proof it is sufficient

to consider these special positions. We will show that we can find one among these indices Nε

in a given residue class a+mZ.
Let us sketch the remainder of the proof. The case that m is even causes mild difficulties.

We therefore write m = 2kd, where d is odd, and proceed in two steps. As a first step, we will
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find integers µ, ν, and εµ, εµ+1, . . . , ελ−1 ∈ {0, 1, 2, 3}, such that Nεµ,εµ+1,...,ελ−1
lies in any given

residue class modulo 2k. The second step will consist in refining the description by appending a

sequence (ελ, . . . , εν−1) ∈ {0, 1, 2}ν−λ. Since we exclude the digit εi = 3, and we will take care

that 16µ ≥ 2k, we have

Nεµ,...,εν−1 ≡ Nεµ,...,ελ−1
mod 2k.

We will choose the integers εj for λ ≤ j < µ in such a way that any given residue class modulo

d (note that d is odd), is hit. Due to the excluded digit 3, this is a missing digit problem, and

a short argument including exponential sums will finish this step. Combining these two steps,

we will see that every residue class modulo 2kd is reached. We will now go into the details.

The first step: hitting a residue class modulo 2k

We are interested in appearances of the initial segment σµ(a) in B̄ at positions lying in the

residue class a+ 2kZ. Let us assume in the following that

16µ ≥ 2k. (4.2.15)

This lower bound on µ will not cause any problem.

We will choose λ > µ in a moment, and we set εµ = · · · = ελ−1 = 3. Let us consider the

integers α0 := 0, and for 1 ≤ ℓ ≤ λ− µ,

αℓ := Nεµ,...,εµ+ℓ−1
.

Assume that 0 ≤ ℓ < λ− µ. By (4.2.14), (4.2.15), we have

αℓ+1 − αℓ = 12 · 16µ+ℓ +
4 · 16µ+ℓ − 1

3
≡ 4 · 16µ+ℓ − 1

3
mod 2ℓ

≡
∑

0≤j≤2µ+2ℓ

4j mod 2ℓ ≡
∑

0≤j<2µ

4j mod 2ℓ.

The latter sum is an odd integer, and independent of ℓ. It follows that (αℓ)0≤ℓ≤λ−µ is an

arithmetic progression modulo 2k, where the common difference is odd; choosing λ ≥ µ + 2k,

we see that (αℓ)0≤ℓ<λ−µ hits every residue class modulo 2k. We summarise the first step in the

following lemma.

Lemma 4.2.5. Let k ≥ 0 and µ ≥ k/4, and choose εµ+ℓ = 3 for ℓ ≥ 0. The integers Nεµ,...,ελ−1

hit every residue class modulo 2k, as λ runs through the integers ≥ µ.

A discrete Cantor set — missing digits

We follow the paper [59] by Erdős, Mauduit, and Sárközy, who studied integers with missing

digits in residue classes. Let Wλ be the set of nonnegative multiples of 16λ having only the

digits 0, 4, and 8 in their base-16 expansion. Set

U(α) =
1

3

∑
0≤k≤2

e(4kα) and G(α, λ, ν) =
1

3ν−λ

∑
0≤j<16ν

j∈W

e(jα),

where e(x) = exp(2πix). Note that elements j ∈ Wλ have the form j =
∑

λ≤k<η 4 εk16
k, where

η ≥ 0 and εk ∈ {0, 1, 2} for λ ≤ k < η. In particular, Wλ ∩ [0, 16η) has 3η−λ elements for η ≥ λ.
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We obtain

G(α, λ, ν) =
1

3ν−λ

∑
(ελ,...,εν−1)∈{1,2,3}ν−λ

e
(
4 ελ16

λα+ · · ·+ 4 εν−116
ν−1α

)
=

∏
λ≤r<ν

1

3

(
e
(
0 · 16rα

)
+ e
(
4 · 16rα

)
+ e
(
8 · 16rα

))
=

∏
λ≤r<ν

U (16rα) .

(4.2.16)

The purpose of this section is to prove the following lemma.

Lemma 4.2.6. Let λ ≥ 0 be an integer, and a, d integers such that d ≥ 1 is odd. Then

Wλ ∩
(
a+ dZ

)
contains infinitely many elements.

In order to prove this, we first show that it is sufficient to prove the following auxiliary result

(compare [59, (4.3)]).

Lemma 4.2.7. Assume that d ≥ 1 is an odd integer, and ℓ ∈ {1, . . . , d − 1}. Let λ ≥ 0 be an

integer. Then

lim
ν→∞

G

(
ℓ

d
, λ, ν

)
= 0.

In fact, by the orthogonality relation

1

d

∑
0≤n<d

e(nk/d) =

{
1, if d | k;
0, otherwise,

we have

1

3ν−λ
#
{
0 ≤ j < 16ν : j ∈ W, j ≡ a mod d

}
− 1

d

=
1

d

1

3ν−λ

∑
0≤ℓ<d

∑
0≤j<16ν

j∈W

e
(
ℓ(j − a)/d

)
− 1

d

=
1

d

∑
1≤ℓ<d

e
(
−ℓa/d

) 1

3ν−λ

∑
0≤j<16ν

j∈W

e
(
jℓ/d

)
≤
∑

1≤ℓ<d

∣∣∣∣G( ℓd , λ, ν
)∣∣∣∣ .

(4.2.17)

If G
(
ℓ/d, λ, ν

)
converges to zero as ν →∞, for all ℓ ∈ {1, . . . , d− 1}, the last sum in (4.2.17) is

eventually smaller than 1/d. This implies that the cardinalities #
{
0 ≤ j < 16ν : j ∈ Wλ, j ≡

a mod d
}
diverge to ∞, and therefore Wλ ∩ (a+ dZ) is infinite.

Proof of Lemma 4.2.7. By (4.2.17), we have to show that the product∏
λ≤r<ν

U(16rℓ/d) =
∏

λ≤r<ν

(
1 + e

(
4 · 16rℓ/d

)
+ e
(
8 · 16rℓ/d

))
(4.2.18)

converges to zero as ν →∞. To this end, we use the following lemma [33] by Delange.

Lemma 4.2.8 (Delange). Assume that q ≥ 2 is an integer and z1, . . . , zq−1 are complex numbers

such that |zj | ≤ 1 for 1 ≤ j < q. Then∣∣∣∣1q (1 + z1 + · · ·+ zq−1

)∣∣∣∣ ≤ 1− 1

2q
max
1≤j<q

(
1− Re zj

)
.
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Since d is odd and 1 ≤ ℓ < d, the integer 4k16rℓ is not a multiple of d for k ∈ {1, 2}. It

follows that Re e
(
4k16rℓ/d

)
≤ 1− ε̃ for some ε̃ > 0 only depending on d.

Therefore each factor in (4.2.16) is smaller than 1 − ε, where ε > 0 does not depend on

r. Consequently, by Lemma 4.2.8 the product (4.2.18) converges to zero. Lemma 4.2.7, and

therefore Lemma 4.2.6, is proved.

Now we combine the two steps, corresponding to the cases (i) 2k and (ii) d odd.

Let k ≥ 0 and d ≥ 1 be integers, and d odd. We are interested in a residue class a + 2kdZ,
where a ∈ Z. Choose

a(1) := a mod 2k ∈ {0, . . . , 2k − 1}.

Choose µ large enough such that 16µ ≥ 2k. By Lemma 4.2.5 there exists λ ≥ µ in such a way

that

κ(1) ≡ a(1) mod 2k,

where κ(1) := Nεµ,...,ελ−1
and εℓ = 3 for µ ≤ ℓ < λ. Next, choose

a(2) :=
(
a− κ(1)

)
mod d.

By Lemma 4.2.6, the set Wλ ∩
(
a(2) + dZ

)
is not empty. Let

∑
λ≤ℓ<ν 4 εℓ16

ℓ be an element,

where εℓ ∈ {0, 1, 2} for λ ≤ ℓ < ν. By (4.2.14) we have

κ := Nεµ,...,ελ−1,ελ,...,εν−1
= κ(1) + κ(2),

where

κ(2) := Nελ,...,εν−1
.

The integer κ(1) lies in the residue class a(1) +2kZ by construction, while κ(2) is divisible by 2k,

as no digit among ελ, . . . , εν−1 equals 3. It follows that κ ∈ a(1) + 2kZ = a + 2kZ. Moreover,

by (4.2.13),

κ(2) =
∑

λ≤ℓ<ν

4 εℓ16
ℓ ∈ a(2) + dZ,

hence κ = κ(1) + κ(2) ≡ κ(1) +
(
a− κ(1)

)
≡ a mod d.

Summarising, we have κ ∈
(
a+2kZ

)
∩
(
a+ dZ

)
. Since 2k and d are coprime, which implies

2kZ∩dZ = 2kdZ, we have
(
a+2kZ

)
∩
(
a+dZ

)
= a+2kdZ (applying a shift by a) and therefore

κ ∈ a+ 2kdZ. This finishes the proof of Proposition 4.2.4.

4.2.3 Non-automaticity of B

In order to prove thatB is not automatic, we use the characterization by the k-kernel: a sequence

(an)n≥0 is k-automatic if and only if the set{(
aℓ+kjn

)
n≥0

: j ≥ 0, 0 ≤ ℓ < kj
}

(4.2.19)

is finite.

We are now in the position to prove that any two arithmetic subsequences of B with the

same modulus m and different shifts ℓ1, ℓ2 are different: the sequences
(
B(ℓ1 + nm)

)
n≥0

and(
B(ℓ2 +nm)

)
n≥0

cannot be equal. This will prove in particular that the k-kernel is infinite and

thus non-automaticity of the gap sequence for 01.
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Let us assume, in order to obtain a contradiction, that the sequence B contains two identical

arithmetic subsequences with common differences equal to m, indexed by n 7→ ℓ1 + nm and

n 7→ ℓ2 + nm respectively, where ℓ1 < ℓ2. Let r = ℓ2 − ℓ1, and choose µ large enough such that

16µ ≥ 2r. By Proposition 4.2.4, the block σµ(a) appears in B̄ at positions that hit each residue

class. In particular, for each s ∈ {0, . . . , r− 1} we choose the residue class ℓ1 − s+mZ, and we

can find an index n such that σµ(a) appears at position ℓ1 − s+ nm in B̄. Since 16m ≥ 2r > s,

this means that ℓ1 +mn hits the sth letter in σµ(a), in symbols,

B̄ℓ1+nm = σµ(a)
∣∣
s
.

Since s+ r is still in the range [0, 16µ), we also have

B̄ℓ2+nm = σµ(a)
∣∣
s+r

for the same index n. Applying the coding p defined in (4.2.6), and our equality assumption,

we see that

Bs = p
(
σµ(a)

∣∣
s

)
= Bℓ1+nm = Bℓ2+nm = p

(
σµ(a)

∣∣
s+r

)
= Bs+r.

Carrying this out for all s ∈ {0, . . . , r − 1}, we see that the first 2r terms of B form a square.

Now there are two cases to consider.

The case r = 1. Assume that Bℓ1+nm = Bℓ1+1+nm for all n ≥ 0. By Proposition 4.2.4, the

positions where the prefix 3342 = B0B1B2B3 appears as a factor in B hit every residue class.

In particular, there is an index n such that the block 3342 can be found at position ℓ1− 1+nm

in B. This implies 3 = B1 = Bℓ1+nm = Bℓ1+1+nm = B2 = 4, a contradiction.

The case r ≥ 2. In this case we will resort to the fact, proved below, that B does not contain

squares of length > 2. Therefore we get a contradiction also in this case. In order to complete

the proof that B is not automatic, it remains to prove (the second part of) the following result.

Lemma 4.2.9. The infinite word B̄ is squarefree. The word B does not contain squares of

length > 2.

Proof. We begin with the first statement. Note first that, by the morphism (4.2.5), letters ‘3’ in

B appear in pairs; moreover, the squarefreeness of A implies that there are no runs of three or

more 3s. This implies that the morphism r defined in (4.2.5) can be ‘reversed’ in the sense that

A can be restored from B by the (unambiguous) rule r̃ : 33 7→ a, 4 7→ b, 2 7→ c. Also, B̄ can

be restored from B by the (unambiguous) rule 33 7→ aā, 4 7→ b, 2 7→ c, thus reversing the effect

on B̄ of the morphism p defined in (4.2.6). In particular, since A is squarefree, each occurrence

of the factor aā in B̄ is bordered by symbols ∈ {b, c} (where of course the first occurrence at 0

is not bordered on the left by another symbol).

Assume, in order to obtain a contradiction, that the square CC is a factor of B̄. We

distinguish between two cases.

The case |C| = 1. Let C consist of a single symbol x ∈ {a, ā, b, c}. The squarefreeness of A

forbids x ∈ {b, c}; moreover, we saw a moment ago that a and ā may only appear together,

bordered by symbols ∈ {b, c}. This excludes the possibility x ∈ {a, ā}, therefore this case leads

to a contradiction.

The case |C| ≥ 2. There are two cases to consider. (i) Assume that C begins with ā. In this

case, C has to end with a: the concatenation CC has to be a factor of B̄, and therefore the

symbol ā at the start of the second ‘C’ has to be preceded by a symbol a. Analogously, each

occurrence of the word CC is immediately preceded by a, and followed by ā. That is, aCCā

appears as a factor of B̄. Writing C = āya for a finite (possibly empty) word y over {a, ā, b, c},
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we see that aāyaāyaā is a factor of B̄. Applying the coding p, it follows that T = aayaayaa

appears in B, and it is a concatenation of the words 33, 4, and 2. Consequently, it makes sense

to apply the ‘inverse morphism’ r̃ : 33 7→ a, 4 7→ b, 2 7→ c. Therefore r̃(T ) = azaza, for some

finite word z over {a, b, c}, appears in A. This contradicts Lemma 4.2.1. (ii) Assume that C

starts with a letter ∈ {a, b, c}. In this case, C ends with a letter ∈ {ā, b, c}: otherwise, the

concatenation CC, and therefore B̄, would contain aa, which we have already ruled out. We

apply p, and in this case p(C) is a concatenation of the words 33, 4, and 2. Therefore we can

form r̃(p(C)), revealing that the square r̃(p(C))r̃(p(C)) is a factor of A. This is a contradiction.

We have to prove the second statement. Assume that CC is a factor of B, where |C| ≥ 2.

This proof is analogous to the corresponding case for B̄, and we skip some of the details that

we have already seen there. (i) Assume that C begins with exactly one a. In this case, C has

to end with exactly one a, and therefore C = aya for a finite word y over {a, b, c}. It follows

that aayaayaa is a factor of B. Applying r̃, we obtain a contradiction to Lemma 4.2.1.

(ii) Assume that C starts with aa, b, or c. In this case, C ends with aa, b, or c, otherwise

CC, and therefore B̄, would contain a block of as of length ̸= 2. We apply p on the word CC,

followed by r̃, which yields the square r̃(p(C))r̃(p(C)). Again, this contradicts Lemma 4.2.1.

Summarising, arithmetic subsequences of B with common difference m are distinct as soon

as their offsets differ. In particular, for each integer k ≥ 2 the k-kernel of B is infinite. Therefore

B is not automatic, which proves the case w = 01 of Theorem 4.1.1.

4.2.4 Occurrences of general factors in t

We begin with the case w = 10. We will work with the Thue–Morse morphism τ : 0 7→ 01,

1 7→ 10, defined in (4.1.1). First of all, we recall the well-known fact that ak+1 = τk+1(0) can

be constructed from ak = τk(0) by concatenating ak and its Boolean complement ak (which

replaces each 0 by 1 and each 1 by 0). The proof of this little fact is by an easy induction. For

k = 0 we have a1 = 01 = 00. The case k ≥ 1 makes use of the identity τ(w) = τ(w), valid for

each word w over {0, 1}, which follows from the special structure of the morphism τ . Applying

this identity and the induction hypothesis, we obtain

ak+1 = τ
(
τk(0)

)
= τ

(
ak−1ak−1

)
= τ

(
ak−1

)
τ
(
ak−1

)
= τ

(
ak−1

)
τ
(
ak−1

)
= akak.

Using this, we show that for even k ≥ 0, the word τk(0) is a palindrome. The case k = 0 is

trivial. If ak = τk(0) is a palindrome, then ak+2 = τ(τ(ak)) = τ(akak) = akakakak is clearly a

palindrome too, and the statement follows by induction. In particular, we see from the above

that

τk(0) = τk−1(0)τk−1(1), τk(1) = τk−1(1)τk−1(0) for all k ≥ 0. (4.2.20)

Note that, by applying τk on t, every 0 gets replaced by τk(0) and every 1 by τk(1), and the

result is again t since it is a fixed point of τ . It follows that

for all k ≥ 0, we have t = At0At1At2 · · · ,
where Ax = τk(x) for x ∈ {0, 1}.

(4.2.21)

Let (rj)j≥0 be the increasing sequence of indices where 10 occurs in t. For k even, let J =

J(k) be the number of occurrences of 10 with indices ≤ 2k−2. Note that rJ−1 = 2k−2. We read
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the (palindromic) sequence ak, of length 2k, backwards; it follows that (2k−1−rJ−1−j)0≤j<J is

the increasing sequence of indices pointing to the letter 1 in an occurrence of 01 in ak. Therefore(
2k − 2− rJ−1−j

)
0≤j<J

is the increasing sequence of indices where 01 occurs in ak. Consequently, by the definition of

B as the differences of these indices, we obtain Bj = −rJ−1−(j+1) + rJ−1−j for 0 ≤ j < J − 1

and thus

rj+1 − rj = BJ−2−j for 0 ≤ j ≤ J − 2. (4.2.22)

We have to prove that the sequence

B̌ = (rj+1 − rj)j≥0 (4.2.23)

is not automatic. More generally, we prove that any two arithmetic subsequences

L(1) =
(
B̌(ℓ1 + nd)

)
n≥0

, L(2) =
(
B̌(ℓ2 + nd)

)
n≥0

,

where d ≥ 1 and ℓ1 ̸= ℓ2, are different. In order to obtain a contradiction, let us assume that

L(1) = L(2), and let k ≥ 0 be even. By (4.2.22), we get arithmetic subsequences M1, M2 of B

with common difference d, different offsets m1(k),m2(k) ∈ {0, . . . , d − 1}, and length equal to

J(k)− 1, such that

Bm1(k)+nd =M
(1)
j =M

(2)
j = Bm2(k)+nd for 0 ≤ n ≤ J(k)− 2.

Note the important fact that the offsets mj(k) are bounded by d. Since there are only d(d−1)/2

pairs (a, b) ∈ {0, . . . , d − 1}2 with a ̸= b, it follows that there are two different offsets 0 ≤
m1,m2 < d with the following property: there are arbitrarily long arithmetic subsequences of

B with indices of the form m1 + nd and m2 + nd respectively, taking the same values. This

is just the statement that the infinite sequences
(
Bm1+nd)n≥0 and

(
Bm2+nd

)
n≥0

are equal. In

the course of proving that B is not automatic (which is the case w = 01 of Theorem 4.1.1) we

proved that this is impossible, and we obtain a contradiction. The sequence B̌ is therefore not

automatic either, which finishes the case w = 10.

We proceed to the case w = 00. Let (ai)i≥0 be the increasing sequence of indices j such that

tjtj+1 = 00. Assume that i ≥ 0, and set j := ai. We have j ≡ 1 mod 2, since t2j′ = t2j′+1 for all

j′ ≥ 0 (where the overline denotes the Boolean complement, 0 7→ 1, 1 7→ 0). Equality tj = tj+1

(as needed) can therefore only occur at odd indices j, and we choose j′ ≥ 0 such that j = 2j′+1.

Necessarily, tj′ = 1 and tj′+1 = 0, since the identities t2j′+1 = tj′ and t2j′+2 = tj′+1 would

produce an output t2j′+1t2j′+2 ̸= 00 in the other case. On the other hand, tj′tj′+1 = 10 indeed

implies t2j′+1t2j′+2 = 00. Each occurrence of 00 in t, at position j, therefore corresponds in a

bijective manner to an occurrence of 10, at position (j − 1)/2 (which is an integer). It follows

that the corresponding gap sequence equals 2B̌, which is not automatic by the already proved

case w = 10.

In a completely analogous manner, we can reduce the case w = 11 to the case 01, and the

gap sequence equals 2B, which is not automatic either.

We will now reduce the case of general factors w of t of length ≥ 3 to these four cases.

Lemma 4.2.10. For x, y ∈ {0, 1}, let (axyk )k≥0 be the increasing sequence of indices j such that

tjtj+1 = xy. We have

a010 < a100 < a011 < a101 < a012 < a102 < · · · and

a110 < a000 < a111 < a001 < a112 < a002 < · · · .
(4.2.24)
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Proof. First of all, t begins with 011, whence the first items of the two displayed chains of

inequalities. The first chain is almost trivial since after each block of consecutive 0s, a letter 1

follows, and vice versa.

Let us prove the second series of inequalities by induction. Assume that a
(11)
0 < a

(00)
0 <

· · · < a
(00)
i−1 < a

(11)
i = j. Then tjtj+1 = 11, and it follows that tj+2 = 0, since 111 is not a

factor of t. Two cases can occur. (i) If tj+3 = 0, then clearly a
(11)
i < a

(00)
i = j + 2 by our

hypothesis. (ii) Otherwise, we have tjtj+1tj+2tj+3 = 1101. Necessarily, j is odd: if j = 2j′, it

would follow that tjtj+1 ∈ {01, 10}, but we need 11. Moreover, j ≡ 3 mod 4 is also not possible:

Let j+1 = 4j′. Then tj+1tj+2tj+3 ∈ {011, 100}, but we need 101. It follows that j ≡ 1 mod 4,

and therefore tj+4tj+5 = 00, which implies a
(00)
i = j+4. By a completely analogous argument

(reversing the roles of 1 and 0), we may finish the proof of Lemma 4.2.10 by induction.

Let w be a factor of t, of length ≥ 3. Choose k ≥ 0 minimal such that w is a factor of

some axyk = τk(x)τk(y), where x, y ∈ {0, 1}. By minimality, w is not a factor of τk(0) or τk(1),

using (4.2.20). Consequently, w appears at most once in each axyk . Next, we need the fact that

t is overlap-free [14,27,158], meaning that is does not contain a factor of the form axaxa, where

a ∈ {0, 1} and x ∈ {0, 1}∗. We derive from this property that w cannot occur simultaneously

in both members of either of the pairs

(a00k , a
01
k ), (a00k , a

10
k ), (a11k , a

01
k ), (a11k , a

10
k ). (4.2.25)

For example, assume that w is a factor of both a00k and a01k . By minimality, as we had before,

τk(0)τk(0) = AwB, τk(0)τk(1) = A′wB′,

where A and A′ are initial segments of τk(0), and B resp. B′ are final segments of τk(0)

resp. τk(1), and all of these segments are proper subwords of the respective words. We have

A ̸= A′, since otherwise τk(0) = w̃B = w̃B′ = τk(1) for some w̃ that is not the empty word.

This contradicts the fact that τk(0) = τk(1). Let us, without loss of generality, assume that

|A| < |A′|. The first 2k letters of Aw and A′w are equal, in symbols,

(Aw)
∣∣
[0,2k)

= (A′w)
∣∣
[0,2k)

. (4.2.26)

We can therefore choose a ∈ {0, 1} and w1, w2 ∈ {0, 1}∗ in such a way that aw1w2 = w and

Aaw1 = A′. Then trivially Aw = Aaw1w2 = A′w2, and since |A| < 2k, |A′| < 2k, it follows

from (4.2.26) that w2 = aw3 for some w3 ∈ {0, 1}∗. Finally, the factor A′w of t can be written as

A′w = Aaw1w = Aaw1aw1w2 = Aaw1aw1aw3, which contradicts the overlap-freeness of t. The

other three cases, corresponding to the second through fourth pairs in (4.2.25), are analogous.

We have therefore shown that the set of A ∈ {a00k , a01k , a10k , a11k } such that w is a factor of A is a

subset of either {a01k , a10k } or {a00k , a11k }.

First case. Let w be a factor of a01k , or of a10k . Assume first that w is a factor of a01k , but

not of a10k . In this case, we show that the gap sequence for w is given by the gap sequence for

a01k : (i) each occurrence of a01k yields exactly one occurrence of w (involving a constant shift);

(ii) by (4.2.21), every occurrence of w takes place within a block of the form axyk ; (iii) only the

block a01k is eligible. We prove that a01k appears exactly at positions 2kj in t, where tjtj+1 = 01.

The easy direction follows from (4.2.21): each occurrence of 01 yields an occurrence of a01k ,

where the index has to be multiplied by 2k. On the other hand, it is sufficient to show that

a01k can only appear on positions 2kj. Given this, there is no admissible choice for (tj , tj+1)
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different from (0, 1), by (4.2.21). Suppose that we already know this for some k ≥ 0 (the case

k = 0 being trivial). Assume that

a01k+1 = τk(0)τk(1)τk(1)τk(0) appears on some position ℓ. (4.2.27)

Since τk(0)τk(1) = a01k , we know by hypothesis that ℓ ≡ 0 mod 2k. Assume that the case

ℓ ≡ 2k mod 2k+1 occurs. We set ℓ = (2j + 1)2k for some j ≥ 0. Our assumption (4.2.27)

implies τk(1) = τk(t2j+2) = τk(tj+1) and therefore tj+1 = 1, which implies that τk+1(tj+1) =

τk(1)τk(0) appears on position ℓ+ 2k = (2j + 2)2k in t. This is incompatible with (4.2.27). In

particular, the gap sequence for w, which is identical to the gap sequence for a01k , is given by

2kB, and therefore not automatic. Switching the roles of 0 and 1 in this proof, we also obtain

non-automaticity for the case that w is a factor of a10k , but not of a01k — with the sequence 2kB̌

as the corresponding gap sequence.

Let w be a factor of both a01k and a10k . In this case, each occurrence of w in t takes place

within a subblock of t of one of these two forms. By Lemma 4.2.10, combined with the above

argument that occurrences of a01k resp. a10k in t take place at indices obtained from occurrences

of 01 resp. 10, multiplied by 2k, these blocks occur alternatingly. Assuming, in order to obtain

a contradiction, that the gap sequence (gj)j≥0 for w is automatic, we obtain a new automatic

sequence (g2j +g2j+1)j≥0 as the sum of two automatic sequences (note that the characterisation

involving the 2-kernel (4.2.19) immediately implies that (g2j+ε)j≥0, for ε ∈ {0, 1}, is automatic).

By the alternating property, this is the gap sequence for a01k , which is not automatic, as we have

just seen. A contradiction!

Second case. Let w be a factor of a00k or of a11k . This case is largely analogous. We assume

that w be a factor of a00k , but not of a11k . As in the case a01k , the gap sequence for w in this

case is identical to the gap sequence for a00k , and we only have to show that this sequence is

not automatic. We know already that the gap sequence for 00 is not automatic. Therefore it

suffices to prove that τk(0)τk(0) can only appear at positions in t divisible by 2k. Suppose that

we already know this for some k ≥ 0 (the case k = 0 being again trivial). Assume that

a00k+1 = τk(0)τk(1)τk(0)τk(1) appears on some position ℓ. (4.2.28)

Since τk(0)τk(1) = a01k , we know by hypothesis that ℓ ≡ 0 mod 2k. Assume that the case

ℓ ≡ 2k mod 2k+1 occurs. We set ℓ = (2j + 1)2k for some j ≥ 0. Our assumption (4.2.28)

implies τk(1) = τk(t2j+4) = τk(tj+2) and therefore tj+2 = 1, which implies that τk+1(tj+2) =

τk(1)τk(0) appears on position ℓ+ 3 · 2k = (2j + 4)2k in t. On position ℓ, we therefore see the

factor

τk(0)τk(1)τk(0)τk(1)τk(0),

which contradicts the overlap-freeness of t.

Again, the case that w is a factor of a11k , but not of a00k , is analogous; the case that it is a

factor of both words can be handled as in the case {a01k , a10k }, this time with the help of the

second chain of inequalities in (4.2.24).

Summarising, we have shown the non-automaticity for all gap sequences for factors w of t

of length ≥ 2.

In order to finish the proof of Theorem 4.1.1, we still have to prove that the gap sequence

is morphic for the ‘mixed cases’. That is, assume that w is a factor of two words of the form

axyk , where x, y ∈ {0, 1}, and where k is chosen minimal such that w is a factor of at least one

of a00k , a
01
k , a

10
k , a

11
k . Let us begin with the case {a01k , a10k }. The positions where w appears in t
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are given by 2kj + σ0, where bjbj+1 = 01, and 2kj + σ1, where bjbj+1 = 10. Here σ0, σ1 are

the positions where the word w appears in a01k and a10k respectively. As before, this follows since

tjtj+1 = 01 is equivalent to (tℓ, . . . , tℓ+2k+1−1) = a01k , and the corresponding statement for 10.

We see that it is sufficient to write t as a concatenation of the words

wa := 011, wā := 010, wb := 0110, and wc = 01, (4.2.29)

since each word wx takes care of one 01-block, followed by one 10-block, and the gap sequence

for w is obtained by replacing each wx by a succession of two gaps. Applying the morphism τ , we

obtain τ(wa) = wawā, τ(wā) = wbwc, τ(wb) = wawāwc, τ(wc) = wb. This mimics the morphism

ψ; proceeding as in the proof of Lemma 4.2.2 (alternatively, as in the proof of Lemma 4.2.3),

we obtain

t = wB̄0
wB̄1

wB̄2
· · · . (4.2.30)

Since B̄ is morphic, the succession of gaps with which w occurs in t is morphic by [5, Corol-

lary 7.7.5] (that is, ‘morphic images of morphic sequences are morphic’).

The case {a00k , a11k } is similar. Defining

w̃a := 011010, w̃ā := 011001, w̃b := 01101001, and w̃c := 0110,

it is straightforward to verify that τ(w̃a) = w̃aw̃ā, τ(w̃ā) = w̃bw̃c, τ(w̃b) = w̃aw̃āw̃c, and τ(w̃c) =

w̃b. Again, we can spot the morphism ψ, and we obtain

t = w̃B̄0
w̃B̄1

w̃B̄2
· · · (4.2.31)

in exactly the same way as before. Each of the words wx in this representation yields a block

11 in t, followed by a block 00. Therefore, also in this case, the gap sequence for w is a morphic

image of a morphic sequence. This finishes the proof of Theorem 4.1.1.

Remark 9. Let us have a closer look at the gaps in the ‘mixed case’ {a01k , a10k }. Let σ0 be the

index at which w appears in a01k , and σ1 the index at which w appears in a10k . By (4.2.30) and

the choice (4.2.29), each letter x ∈ {a, ā, b, c} in B̄ corresponds to two gaps, as follows.

Letter in B̄ Gap 1 Gap 2

a σ1 − σ0 + 2k+1 σ0 − σ1 + 2k

ā σ1 − σ0 + 2k σ0 − σ1 + 2k+1

b σ1 − σ0 + 2k+1 σ0 − σ1 + 2k+1

c σ1 − σ0 + 2k σ0 − σ1 + 2k

(4.2.32)

It follows that there are at most four gaps that can occur in this case. For example, consider

the gap sequence for the factor w = 010. In this case, k = 2, and we have a012 = 01101001

and a102 = 10010110, where the occurrences of w are underlined. We have σ0 = 3 and σ1 = 2.

This yields the gaps 3, 5, 7, and 9, occurring only in the combinations (7, 5), (3, 9), (7, 9), and

(3, 5). Noting also the first occurrence t3t4t5 = 010, the first few occurrences of 010 in t are

at positions 3, 10, 15, 18, and 27, compare (4.1.2). In particular, the gap sequence is not of the

form 2ℓB or 2ℓB̌ for some ℓ ≥ 0, each of which has only three different values.

Similar considerations hold for the case {a00k , a11k }. More precisely, let σ0 be the index at

which w appears in a11k and σ1 the index at which w appears in a00k . Each letter occurring in B̄
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corresponds to two gaps for w, as follows.

Letter in B̄ Gap 1 Gap 2

a σ1 − σ0 + 4 · 2k σ0 − σ1 + 2 · 2k
ā σ1 − σ0 + 2 · 2k σ0 − σ1 + 4 · 2k
b σ1 − σ0 + 4 · 2k σ0 − σ1 + 4 · 2k
c σ1 − σ0 + 2 · 2k σ0 − σ1 + 2 · 2k.

(4.2.33)

An example for this case is given by the word 00110, which is a factor of a002 = 01100110 and

of a112 = 10011001. We have σ0 = 1 and σ1 = 3, and therefore the gaps 6, 10, 14, and 18, which

appear as pairs (18, 6), (10, 14), (18, 14), and (10, 6).

4.3 The structure of the sequence A

In this section, we investigate the infinite word A, in particular by extending it to a word over

a 7-letter alphabet. This extension allows us to better understand the structure of A, and gives

us a tool to handle the discrepancy DN . In particular, we prove Theorem 4.1.2.

4.3.1 A is automatic

It has been known since Berstel [13] that A is 2-automatic. In this section, we re-prove this

statement using slightly different notation. Note that we had similar proofs (of Lemmas 4.2.2

and 4.2.3) in the first part of this paper. First of all, we recapture Berstel’s 2-uniform morphism.

Introducing an auxiliary letter b̄, we have the morphism φ as well as the coding π:

φ : a 7→ ab, b 7→ ca, b̄ 7→ ac, c 7→ cb̄,

π : a 7→ a, b 7→ b, b̄ 7→ b, c 7→ c.
(4.3.1)

We wish to prove that

π(A) = A, (4.3.2)

where A is the fixed point of φ starting with a. For this, we will show, by induction on k ≥ 0,

that the initial segment

sk := φk(abc)

of A, of length 3 · 2k, is a concatenation of the three words w0 = abc, w1 = ac, and w2 = b̄.

We also call the words wj ‘base words’ in this context, and the latter statement ‘concatenation

property’. Having proved this property, we use (recall the morphism φ defined in (4.2.1))

π
(
φ(w1)

)
= abcacb = φ(π(w1));

π
(
φ(w2)

)
= abcb = φ(π(w1));

π
(
φ(w3)

)
= ac = φ(π(w3)),

(4.3.3)

in order to obtain

φ
(
π(sk)

)
= π

(
φ(sk)

)
(4.3.4)

for all k ≥ 0, by concatenation. In other words, φ and φ act in the same way on an initial

segment of A of length 3 · 2k.
We may also display the relation (4.3.4) graphically. Define S = {sk : k ≥ 0} ⊆ {a, b, b̄, c}N

and Ω = {a, b, c}N. Then the following diagram is commutative.
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S

S

Ω

Ω

π

φφ

π

Gluing together copies of this diagram, we obtain, for all ℓ ≥ 1,

φℓ
(
s0
)
= φℓ

(
π(s0)

)
= φℓ−1

(
π(φ(s0))

)
= φℓ−2

(
φ(π(φ(s0)))

)
= φℓ−2

(
π(φ2(s0))

)
= · · · = π

(
φℓ(s0)

)
.

For each index j ≥ 0, choose ℓ so large that 3 · 2ℓ ≥ j. Then

Ai = φℓ(s0)
∣∣
i
= π

(
φℓ(s0)

)∣∣
i
= π

(
φℓ(s0)

∣∣
i

)
= π(Ai)

for 0 ≤ i < j. Therefore the infinite word A is 2-automatic, being the coding under π of the

2-automatic sequence A, and thus we have derived (4.3.2) from the concatenation property.

We still have to prove that sk is a concatenation of the base words. Clearly, this holds

for s0 = abc = w0. Assume that we have already established that sk = wε0wε1 · · · for some

εj ∈ {0, 1, 2}. We have

φ(w1) = abcacb̄ = w0w1w2,

φ(w2) = abcb̄ = w0w2,

φ(w3) = ac = w1,

and thus

sk+1 = φ(sk) = φ(wε0)φ(wε1) · · ·

is a concatenation of the wj too. This proves (4.3.2).

Complementing this result, we note that Berstel [13, Corollaire 7] also proved that A itself

is not a fixed point of (the extension of) a uniform morphism.

4.3.2 Transforming A

We will identify circular shifts, or rotations, of factors of length L ≥ 2 appearing in the se-

quence A. Such a rotation of a word (ai)i≥0 replaces the subword aj aj+1 · · · aj+L−2 aj+L−1

by aj+1 · · · aj+L−2 aj+L−1 aj (rotation to the left), or aj+L−1 aj aj+1 · · · aj+L−2 (rotation to the

right), respectively.

Carrying out a certain number of such rotations, we will see that the sequenceA is reduced to

the periodic word (abc)ω. Of course, this is possible for any word containing an infinite number

of each of a, b, and c, and it can be achieved in uncountably many ways. In our case however,

an admissible sequence of rotations can be made very explicit, by defining a new morphism φ+.

This morphism has the fixed point A, which maps to A under a coding. From this augmented

sequence, we will see very clearly the ‘nested structure’ of the above-mentioned rotations. In

particular, we can find a certain non-crossing matching, defined in (4.3.13), describing the

intervals that we perform rotations on, and the direction of each rotation. Moreover, in the

process we learn something about the discrepancy of 01-blocks in t, which was defined in (4.1.4).

Let us consider the iteration φ2 of Berstel’s morphism:

φ2 : a 7→ abca, b 7→ cb̄ab, b̄ 7→ abcb̄, c 7→ cb̄ac. (4.3.5)
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We introduce certain decorations— connectors — of the letters. Their meaning will become

clear in a moment. Based on the morphism φ2, we define the following decorated version, which

is a morphism on the 7-letter alphabet

K = {a, b̄ , b̄ , b , b , c , c}. (4.3.6)

φ+ :
a 7→ abca, b̄ 7→ abcb̄, b̄ 7→ abcb̄,

b 7→ cb̄ab, b 7→ cb̄ab, c 7→ cb̄ac, c 7→ cb̄ac.
(4.3.7)

This morphism has a unique fixed point A+ starting with a. The image of A+ under the obvious

coding γ given by

γ :

a 7→ a,

b 7→ b, b 7→ b, b̄ 7→ b, b̄ 7→ b,

c 7→ c, c 7→ c

(4.3.8)

yields the sequence A. Based on this, we will speak of letters of types a, b, and c, thus referring

to letters from {a}, { b̄ , b̄ , b , b}, and {c , c}, respectively.
From the substitution (4.3.7), we can immediately derive the following lemma.

Lemma 4.3.1. Let j ≥ 1, and (x, y, z) = (A+
j−1,A

+
j ,A

+
j+1). Then

y = b̄ ⇒ xyz = cb̄a; y = b̄ ⇒ xyz = cb̄a;

y = b ⇒ xyz = abc ; y = b ⇒ xyz = abc .
(4.3.9)

We wish to connect the ‘loose ends’ of the connectors — we say that two connectors at

indices i < j match if the connector at i points to the right and the connector at j points to

the left. The very simple algorithm FindMatching joins matching connectors, beginning with

shortest connections. Only pairs of free connectors are connected, that is, each letter may be

the starting point of only one link.

procedure FindMatching(w):

M←{};

SelectedIndices←{};

n←1;

while n < w.length:

for all i such that there are matching connectors at i and i+n:

if i /∈ SelectedIndices and i+n /∈ SelectedIndices:

Add the pair (i,i+n) to the set M;

Add i and i+n to the set SelectedIndices;

n←n+1;

return M;

end.

Algorithm FindMatching. Link free connectors

Note that we have to pay attention that previously selected indices are not chosen again,

whence the introduction of SelectedIndices. A connection between the two letters at indices
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i and j is just a different name for the pair (i, j). For any finite word w over the alphabet K

this procedure yields a (possibly empty) set M(w) of pairs (i, j) of indices.

We wish to prove that the algorithm is monotone.

Lemma 4.3.2. Let w and w′ be finite words over the alphabet K, and assume that w is an initial

segment of w′. LetM(w) resp. M(w′) be the sets of pairs found by the algorithm FindMatching.

Then

M(w) ⊆M(w′). (4.3.10)

Proof. We show this by induction on the length j of w. Clearly this holds for j = 0. Let us

append a symbol x ∈ K to w (at position j). Define Mℓ(w) as the set of connections (a, b) for

w of length strictly smaller than ℓ, found by the algorithm. Define Mℓ(wx) analogously. We

prove by induction on ℓ that Mℓ(w) ⊆ Mℓ(wx), and that, if the inclusion is strict, we have

Mℓ(wx) = Mℓ(w) ∪ {(i, j)} for some i < j. Suppose that this is true for some ℓ (clearly it

holds for ℓ = 0). We distinguish between two cases. (i) If (i, j) ̸∈ Mℓ(wx) for all i, we have

Mℓ(w) =Mℓ(wx) by hypothesis; we add each pair (a, b) with b < j having matching connectors

and such that b − a = ℓ to the sets Mℓ(w) and Mℓ(wx), and possibly one more pair (i, j), for

some i < j, to Mℓ(wx). (ii) If (i, j) ∈Mℓ(wx) for some i, we have ℓ > j − i by the definition of

Mℓ(wx); we add the pairs (a, b), with b < j, having matching connectors and such that a ̸= i and

b − a = ℓ to both sets Mℓ(w) and Mℓ(wx). There are clearly no more pairs added to Mℓ(wx),

since i and j are already taken; moreover, the condition that ℓ > j − i renders impossible the

chance of another connection (i, b), where b < j, to be added to Mℓ(w).

We extend M to a function on all (finite or infinite) words w over K, in the following

obvious way: for each ℓ, form the set M̃ℓ(w) of all pairs (a, b) satisfying b − a = ℓ, having

matching connectors, such that neither a nor b is a component of any M̃ℓ′(w), where ℓ
′ < ℓ. Set

M̃(w) =
⋃

ℓ≥1 M̃ℓ(w). The following lemma gives us a method to compute a matching for an

infinite word by only looking at finite segments.

Lemma 4.3.3. Let w be an infinite word over K. Then⋃
j≥0

M
(
w
∣∣
[0,j)

)
= M̃(w). (4.3.11)

Proof. Let Mℓ(w) be the set of connections added in step ℓ of the algorithm FindMatching. We

prove, more generally, that ⋃
j≥0

Mℓ

(
w
∣∣
[0,j)

)
= M̃ℓ(w). (4.3.12)

We prove this by induction on ℓ, and we start at connections of length ℓ = 1. Let (i, i + 1) ∈
Mℓ

(
w
∣∣
[0,j)

)
. Then there is a pair of matching connectors at indices i and i+1 (where i+1 < j),

and therefore this pair is also contained in M̃1(w). This proves the inclusion “⊆”. On the other

hand, if (i, i+1) is a link connecting matching connectors in w, this link is also to be found in the

sequence w
∣∣
[0,i+2)

, hence the inclusion “⊇”. Assume that (4.3.12) holds for some ℓ ≥ 1. If the

algorithm finds a pair (i, i+ ℓ) of matching connectors in w
∣∣
[0,j)

, where (i, i+ ℓ) ̸∈Mℓ

(
w
∣∣
[0,j)

)
,

this pair trivially also matches in the (unrestricted) word w. By hypothesis, the connectors at

i and i+ ℓ are not used by M̃ℓ(w), hence the inclusion “⊆”. On the other hand, a link (i, i+ ℓ)

of matching connectors in w that is still free in step ℓ is also free in w
∣∣
[0,i+ℓ+1)

by hypothesis,

which proves (4.3.12) and hence the lemma.
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Our algorithm avoids crossing connections: if i < j < k < ℓ were indices such that (i, k) ∈
M(w) and (j, ℓ) ∈M(w), then the connector at index j is pointing to the right, and the one at

k to the left, so the shorter connection (j, k) would have been chosen earlier. This contradicts

the construction rule that indices may only be chosen once.

More generally, a non-crossing matching for a word w over K (finite or infinite) is a set M

of pairs (i, j) such that

i < j for all (i, j) ∈M,

wiwj ∈ {bc , b̄c , cb , cb̄} for all (i, j) ∈M,

wi = a for all i ̸∈
⋃
M, (4.3.13)

(i, j) = (k, ℓ) or
i < k < ℓ < j or
k < i < j < ℓ

 for all (i, j) ∈M, (k, ℓ) ∈M.

Here
⋃
M = {i : (i, j) ∈M for some j or (j, i) ∈M for some j}.

We call a word w closed if there exists a non-crossing matching for w.

Lemma 4.3.4. Let w be a word over K. There is at most one non-crossing matching for w. If

there exists one, FindMatching generates it by virtue of (4.3.11).

Proof. Let m be a non-crossing matching of w. Since all connectors have to connect to some-

thing and the connecting lines must not cross, we see that all pairs (i, i + 1) of indices where

matching connectors appear have to be contained in m. It follows that M1

(
w
∣∣
[0,j)

)
⊆ m for all

j, and therefore M̃1(w) ⊆ m by (4.3.12). On the other hand, the definition of a non-crossing

matching only allows matching connectors, therefore each connection (i, i+1) in m is found by

FindMatching, for j = i+ 2.

Similar reasoning applies for longer connections too. Let us assume that the set of connections

of length < ℓ coming from FindMatching is the same as the set of connections of length < ℓ

contained in m. Assume that i is an index such that the connectors at indices i and i + ℓ

match, and neither i nor i + ℓ appears in a connection of length < ℓ in m. Since m is a

matching, the connector at index i has to be linked to a connector at an index j > i. Indices

j ∈ {i + 1, . . . , i + ℓ − 1} are excluded by our hypothesis, indices j > i + ℓ are impossible by

the non-crossing property, therefore (i, i+ ℓ) ∈ m. Again, other connections of length ℓ cannot

appear in m, therefore FindMatching finds all pairs (i, i+ℓ) contained in m. This completes our

argument by induction. Thereforem = M̃(w), and both statements of Lemma 4.3.4 follow.

Lemma 4.3.5. The sequence A+ is closed.

Proof. First of all we note that it is sufficient to prove that φ+ maps closed words w to closed

words. If this is established, we obtain, by induction, that the initial segments (φ+)k(a) of

A+ are closed. Since non-crossing matchings are unique, the corresponding sequence (mk)k≥0

of non-crossing matchings satisfies mk ⊆ mk+1, and
⋃

k≥0mk is easily seen to be the desired

matching for A+.

We prove by induction on the length n of a closed word w that φ+(w) is closed. This is

obvious for the closed words of length n ≤ 2: the word φ+(a) = abca is closed, and the cases

b c , b̄ c , c b , and c b̄ are also easy. Moreover, a concatenation of two closed words is also closed:

one of the matchings has to be shifted (both components of each entry have to be shifted), and

we only have to form the union of the matchings.
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If w is of the form b̄Cc for some nonempty word C over K, we obtain a non-crossing

matching for C by stripping the pair (1, n) from a corresponding matching for w. Therefore C

is closed. Applying φ+, we see that

φ+(w) = abcb̄φ+(C)cb̄ac . (4.3.14)

This is closed by our hypothesis, since C is shorter than w. The other case cC b is analogous

(note that there are no more cases by (4.3.9)), and the proof is complete.

Remark 10. We note that this proof can also be used to show that the substitution φ+ respects

non-crossing matchings, in the following sense. If m is a non-crossing matching for w, then there

exists a (unique) non-crossing matchingm′ for φ+(w); the matchingm can be recovered fromm′

by omitting certain links, and applying a renaming (i, j) 7→ (µ(i), µ(j)) to the remaining links,

where µ : N → N is nonincreasing. The proof is not difficult: if this procedure works for the

closed word C, we can also carry this out for b̄Cc by (4.3.14); we see that the additional link

b̄ · · · c is still present in φ+
(
b̄Cc

)
. Also, the procedure of recovering m′ from m is compatible

with concatenations of closed words C and D, as a matching for φ+(CD) = φ+(C)φ+(D) does

not connect letters in φ+(C) and φ+(D).

The construction of the matching in the proof of Lemma 4.3.5 also shows the following result.

Corollary 4.3.6. Let m be the non-crossing matching for A+. By virtue of m, each letter of

type c is connected to exactly one letter, which is of type b, and each letter of type b is connected

to exactly one letter, which is of type c.

Our interest in the link structure of A+ stems from the fact that we may transform the

sequence A into a periodic one, using the following transparent mechanism. Let m be the non-

crossing matching for A+, and let ((ik, jk))k≥0 be an enumeration of m such that (jk − ik)k≥0

is nondecreasing. We define a sequence (A(k))k≥0 as follows.

� Set A(0) = A+.

� Let k ≥ 0. If A
(k)
ik

= c , we rotate the letters in A(k) with indices ik, ik + 1, . . . , jk to

the right by one place, yielding A(k+1). Otherwise, we necessarily have A
(k)
jk

= c and we

rotate the letters with indices ik, ik + 1, . . . , jk − 1 to the left by one place.

In more colourful language, in each step some letter of type b is moved along its connecting

link and inserted just before the letter of type c it is connected to. Note that due to the

monotonicity requirement and the non-crossing property, the kth rotation does not change the

indices at which the subsequent rotations are carried out. Therefore the sequence (A(k))k≥0 is

well-defined. Moreover, the result does not depend on the particular nondecreasing enumeration

of m for the same reasons. Since the first N indices eventually remain unchanged, the limit

ρ(A+) := γ
(
lim
k→∞

A(k)
)

(4.3.15)

exists (note that γ, defined in (4.3.8), replaces each letter of type x by x). The definition

of A(k) is summarised in the algorithm RotateAlongLinks. As in the case of the algorithm

FindMatching, we require a finite word w (and a finite set m ⊂ N2) as input in order to

guarantee finite running time.

procedure RotateAlongLinks(w,m)
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if m is not a non-crossing matching for w:

exit(Error: a non-crossing matching is required);

Create a list m’ from m, ordered by SecondComponent-FirstComponent

for p in m’:

i←p.FirstComponent;

j←p.SecondComponent;

if w[i]=c:

#Rotate right

(w[i],...,w[j-1],w[j])←(w[j],w[i],...,w[j-1]);

else:

#In this case, w[j]=c. Rotate left

(w[i],w[i+1],...,w[j-1])←(w[i+1],...,w[j-1],w[i]);

return w;

end.

Algorithm RotateAlongLinks. Transform a closed word according to a non-crossing matching

By the above remarks, the words RotateAlongLinks
(
wk,M(wk)

)
converge to ρ(A+) as k →∞,

where w =
(
φ+
)k
(a). We have the following central proposition.

Proposition 4.3.7. Let m be the non-crossing matching for A+. Then

ρ
(
A+
)
= (abc)ω. (4.3.16)

Proof. Let us first note that the limit itself can be obtained in a simpler way. For any closed

word C over K,

(1) apply γ, (2) remove all occurrences of b, (3) reinsert b before each c.

The resulting word equals ρ(C). This statement simply follows from the facts that (i) both

procedures do not change the order in which the underlying letters a and c appear, that (ii) each

occurrence of c in both results is preceded by b, and that (iii) in both results, b does not appear

at other places. We therefore see that Proposition 4.3.7 is equivalent to the following. Let

C be the sequence obtained from A+ by deleting all decorations, and all occurrences of b and

b̄. Then C = (ac)ω. In other words, we only have to show that a and c occur alternatingly

in A, with the empty word or one occurrence of b in between. We prove a stronger statement

concerning the sequence A, which will complete the proof of Proposition 4.3.7.

Lemma 4.3.8. There are sequences (εk)k≥0 and (ε′k)k≥0 in {0, 1} such that

A = a
(
bc(ac)ε0 b̄a(ca)ε

′
0
)(
bc(ac)ε1 b̄a(ca)ε

′
1
)
· · · .

In order to prove this, we apply the second iteration φ2 of Berstel’s morphism on one of the

expressions in brackets. We use the abbreviation

b(ε, ε′) = bc(ac)εb̄a(ca)ε
′
.

Direct computation yields
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φ2(b(0, 0)) = cb̄abcb̄acabcb̄abca = cb̄a b(0, 1)b(0, 0)bca,

φ2(b(0, 1)) = cb̄abcb̄acabcb̄abcacb̄acabca = cb̄a b(0, 1)b(0, 0)b(1, 1)bca,

φ2(b(1, 0)) = cb̄abcb̄acabcacb̄acabcb̄abca = cb̄a b(0, 1)b(1, 1)b(0, 0)bca,

φ2(b(1, 1)) = cb̄abcb̄acabcacb̄acabcb̄abcacb̄acabca

= cb̄a b(0, 1)b(1, 1)b(0, 0)b(1, 1)bca.

Arbitrary concatenations of these expressions are again of the form cb̄aR bca, where R is a

concatenation of words b(ε, ε′). Assuming that w is of the form a
∏

j<r b(εj , ε
′
j)bca, we obtain

φ2(w) = a b(1, 0)R bca. Since the words
(
φ2
)k
(a) approach a fixed point, and

φ4(a) = a b(1, 0)b(0, 1)bca,

it follows by induction that A is indeed of the form stated in the lemma, and we have in

particular proved Proposition 4.3.7.

From this algorithm, we can clearly see that a given letter a is shifted, one place at a time,

for each link that is passing over this letter. The direction in which a is shifted depends on

whether c or c appears in the link we are dealing with. We will use considerations of this kind

in the following section, together with Proposition 4.3.7, in order to determine the discrepancy

of 01-occurrences in t.

4.3.3 The discrepancy of 01-blocks

For an integer j ≥ 0 let us define the degree of j as follows. Let m be the non-crossing matching

for A+ and set
deg+(j) = #

{
(k, ℓ) ∈ m : k < j < ℓ and A+

k = c
}
,

deg−(j) = #
{
(k, ℓ) ∈ m : k < j < ℓ and A+

ℓ = c
}
,

deg(j) = deg+(j)− deg−(j).

(4.3.17)

We will also talk about the degree of a letter in A+, where the position in question will always

be clear from the context.

We display the first 192 letters of A+, obtained by applying the third iteration of φ+ on

the word A+
0A

+
1A

+
2 = abc , and we connect associated connectors by actual lines for better

readability. On position 10 = (22)4 in A+, we have a letter a of degree −1, and on position

170 = (2222)4, a letter a of degree −2. These positions are marked with an arrow.

abcacb̄abcb̄acabcacb̄acabcb̄abcacb̄abcb̄acabcb̄abcacb̄ac

abcacb̄abcb̄acabcacb̄acabcb̄abcacb̄acabcacb̄abcb̄acabcb̄

abcacb̄abcb̄acabcacb̄acabcb̄abcacb̄abcb̄acabcb̄abcacb̄ac

abcacb̄abcb̄acabcb̄abcacb̄abcb̄acabcacb̄acabcb̄abcacb̄ac

(4.3.18)

From this initial segment we see that the sequence (deg(j))j≥ starts with the 48 integers

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
− 1, 0, 0, 0, 0, 0,−1,−1,−1,−1, 0, 0,−1, 0, . . . ,
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a b

b̄c

b

b̄ c

3|0

3|00|0, 3|0

3|0

3|0 0|0, 3|0

0|0, 3|0

start

1|0

2|0

1|0

0|0
1|0

2|0

1|0

1|1

1|0

2|0

2|02|−1

0|0

2|1

0|1

2|0

0|1 1|0

Figure 4.1: A base-4 transducer that generates the degree sequence

corresponding to the first line of (4.3.18). Applying the substitution (φ+)2 on b̄ac appearing

on positions 169–171, we obtain the following 48 letters. The marked letter a has degree −3,
and it corresponds to the position (222222)4.

abcacb̄abcb̄acabcb̄abcacb̄abcb̄acabcacb̄acabcb̄abcacb̄ac

In general, on position (22k)4, a letter a of degree −k appears. This can be seen by considering

the images of a and c under φ+.

By Proposition 4.3.7, deg(j) has the following meaning in the case that A+
j = a. A number

of deg+(j) letters b is transferred from the right of the letter a to the left of it; note that the

letter a is shifted to the right deg+(j) places. Analogously, deg−(j) letters b̄ are transferred

from the left of a to the right, and the letter a is shifted to the left deg−(j) places. In total,

the letter a (among other letters) is shifted by deg(j) places, and bs or b̄s are moved to account

for the generated trailing space. The proposition states that the letters to the left of a’s new

position j+deg+(j) are balanced — after removing decorations and replacing b̄ by b, the letters

a, b, and c occur the same number of times. If A+
j ∈ {c , c}, similar considerations hold. The

case of letters of degree b is different, since a single rotation may shift such a letter to a remote

place.

The transducer T1 displayed in Figure 4.1 allows us to compute the degree of an arbitrary

position j: starting from the centre node, we traverse the graph, guided by the base-4 expansion

δν−1 · · · δ0 of j (read from left to right). Along the way, we sum up the numbers k whenever

a vertex δi | k is taken. The sum over these numbers is the degree of j, multiplied by 3. The

transducer T1 is derived directly from the decorated, 4-uniform morphism φ+ given in (4.3.7).

Note that a change of degree takes place whenever new letters are inserted, by virtue of the

morphism φ+, into the range of already existing links, which happens for b and b̄ ; or, if a new
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link together with a letter a in its range is created, which happens for c .

We will now apply Proposition 4.3.7 to the discrepancy DN of occurrences of 01 in t.

Proposition 4.3.9. Let j ∈ N and set d = deg(j). Then

D4j = d/3, if A+
j = a;

D4j = d/3 + 1/3, if A+
j = b̄ ;

D4j = d/3, if A+
j = b̄ ;

D4j+2 = d/3 + 1/3, if A+
j = b ;

D4j+2 = d/3, if A+
j = b ;

D4j+2 = d/3− 1/3, if A+
j = c ;

D4j+2 = d/3, if A+
j = c .

(4.3.19)

In each of these cases, the subscript of D is the position in t that corresponds to the jth letter

in A via (4.2.3).

Proof. Choose ε ∈ {0, 1, 2} and n ∈ N such that j = 3n + ε. Let us consider each of the seven

cases corresponding to letters from K.

First case. Assume that A+
j = a. By Algorithm RotateAlongLinks and Proposition 4.3.7,

a total of d letters of type b have to be shifted from the right of our a in question to the left (if

d > 0), or the other way round (if d < 0). After this procedure, the numbers of letters of types

a, b, and c to the left are equal. It follows that ε ≡ −d mod 3; moreover, m = n + (ε + d)/3

is the number of letters a (and also the number of letters of type c) strictly to the left of j.

The number of letters of type b to the left of j is m′ = n + (ε − 2d)/3. Symbols of type a

contribute two blocks 01 and correspond to a factor of length six in t, by (4.2.2); letters of type

b contribute one block and correspond to a factor of length four; letters of type c contribute

one block and correspond to a factor of length two. It follows that below position

N = (6 + 2)

(
n+

ε+ d

3

)
+ 4

(
n+

ε− 2d

3

)
= 12n+ 4 ε = 4j,

we find

(2 + 1)

(
n+

ε+ d

3

)
+

(
n+

ε− 2d

3

)
= 4n+ 4 ε/3 + d/3

blocks 01. This proves the case A+
j = a.

Second case. If A+
j = b̄ , we note that necessarily A+

j+1 = a, by Lemma 4.3.1. We apply the

first case on position j+1, which has degree d. Noting that a letter of type b in A+ corresponds

to 0110 in Thue–Morse, we obtain D4j = D4j+4 + 1/3 = d/3 + 1/3, where 4j resp. 4j + 2

correspond to the jth resp. (j + 1)th position in A+.

Third case. Assume that A+
j = b̄ . In this case, the letter at j+1 is a by Lemma 4.3.1 and

j + 1 has degree d− 1. It follows that D4j = D4j+4 + 1/3 = d/3− 1/3 + 1/3 = d/3.

Fourth case. If A+
j = b , we note that necessarily A+

j−1 = a; we apply the first case on

position j − 1, which has degree d+ 1. since a corresponds to 011010 in Thue–Morse, we have

D4j+2 = D4j−4 = d/3 + 1/3, where 4j − 4 resp. 4j + 2 correspond to the (j − 1)th resp. jth

positions in A+.

Fifth case. Assume that A+
j = b . Then A+

j−1 = a, and j − 1 has degree d. Analogously to

the fourth case, we obtain D4j+2 = D4j−4 = d/3.

Sixth case. If A+
j = c , this letter is connected to a letter of type b to the left, which stays

on the left of c after applying the rotations. Therefore the number of letters of type b to the left
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are changed by d, and the numbers of letters of types a or c to the left stay the same. Similarly

to the first case, it follows that ε ≡ 2 − d mod 3. The numbers of letters, of type a, b, and c

respectively, to the left of j, are therefore m = n+ (ε+ d+1)/3, m− d, and m− 1 respectively.

It follows that, below position

N = 6

(
n+

ε+ d+ 1

3

)
+ 4

(
n+

ε− 2d+ 1

3

)
+ 2

(
n+

ε+ d− 2

3

)
= 12n+ 4 ε+ 2 = 4j + 2,

there are

2

(
n+

ε+ d+ 1

3

)
+

(
n+

ε− 2d+ 1

3

)
+

(
n+

ε+ d− 2

3

)
= 4n+

4 ε

3
+
d

3
+

1

3

blocks 01.

Seventh case. If A+
j = c , a letter of type b is taking its place after one rotation. In this

case, we have ε ≡ 1 − d mod 3; the numbers of letters to the left of j, of types a, b, and c

respectively, are therefore m = n+ (ε+ d+ 2)/3, m− d− 1, and m− 1 respectively. Therefore,

below position

N = 6

(
n+

ε+ d+ 2

3

)
+ 4

(
n+

ε− 2d− 1

3

)
+ 2

(
n+

ε+ d− 1

3

)
= 12n+ 4 ε+ 2 = 4j + 2,

there are

2

(
n+

ε+ d+ 2

3

)
+

(
n+

ε− 2d− 1

3

)
+

(
n+

ε+ d− 1

3

)
= 4n+

4 ε

3
+
d

3
+

2

3

blocks 01, which proves the last case.

Since deg(j) is easy to obtain, Proposition 4.3.9 gives us a simple method to compute the

discrepancy DN for any given N .

Proposition 4.3.10. Let N ≥ 0 be an integer and j = ⌊N/4⌋.

1. If A+
j ∈ {a, b̄ , b̄}, choose δ = D4j/3 = deg(j)/3 + ε, where ε ∈ {0, 1/3} is given by the

first block of (4.3.19). Then(
D4j , D4j+1, D4j+2, D4j+3

)
=
(
δ, δ + 2/3, δ + 1/3, δ

)
. (4.3.20)

2. If A+
j ∈ {b , b , c , c}, choose δ = D4j+2/3 = deg(j)/3 + ε, where ε ∈ {−1/3, 0, 1/3} is

given by the second block of (4.3.19). Then(
D4j , D4j+1, D4j+2, D4j+3

)
=
(
δ + 2/3, δ + 1/3, δ, δ + 2/3

)
. (4.3.21)

The scaled sequence of discrepancies (multiplied by 3) therefore begins with the 48 integers

0, 2, 1, 0, 2, 1, 0, 2, 1, 0,−1, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 3, 2, 1,

0, 2, 1, 0, 2, 1, 0, 2, 1, 0,−1, 1, 0, 2, 1, 0, −1, 1, 0,−1, 1, 0,−1, 1.

The partition into segments of length four is for better readability. Each segment corresponds

to one symbol in A+.
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Proof of Proposition 4.3.10. For the first sentence of each of the two cases, there is nothing to

show, by Proposition 4.3.9. Let us begin with the first case. By the proposition, the position 4j

in the Thue–Morse sequence corresponds to a letter a or b in A (on position j), and by (4.2.2)

we have (t4j , t4j+1, t4j+2, t4j+3) = (0110). Therefore (4.3.20) follows. Concerning the second

case, Proposition 4.3.9 gives us an expression for D4j+2 in terms of deg(j), and the position

4j + 2 corresponds to the index j in A. By (4.2.2), we have (t4j+2, t4j+3) = (0, 1). Therefore(
D4j+2, D4j+3

)
=
(
δ, δ + 2/3

)
.

In order to compute D4j and D4j+1 in this case, we note that b and b are always preceded by

a (as we noted in the proof of Proposition 4.3.9), and c and c are always preceded by a letter

of type a or b, since A is squarefree. It follows that the letter at index j − 1 is of type a or b,

and therefore (t4j , t4j+1) = (10). Consequently, we have(
D4j , D4j+1

)
=
(
δ + 2/3, δ + 1/3

)
,

and (4.3.21) follows.

4.3.4 Proof of Theorem 4.1.2

We may now show that the sequence (DN )N≥0 of discrepancies is given by a base-2 transducer.

The transducer in Figure 4.1 may be described by eight 7×7-matrices A(ℓ),W (ℓ), for 0 ≤ ℓ < 4,

where rows and columns are indexed by the letters of K, in the order (ab̄ , b̄ , b , b , c , c).

The entry A
(ℓ)
i,j equals 1 if there is an arrow with first component equal to ℓ from the jth

node to the ith node in Figure 4.1, and it is zero otherwise. The matrices A(ℓ) are permutation

matrices. The entryW
(ℓ)
i,j is the second component of the arrow from j to i with first component

ℓ, if there is one, and equal to zero otherwise.

The final modification given by (4.3.20) and (4.3.21) is dealt with by four more matrices Z(ℓ),

where 0 ≤ ℓ < 4. The first three columns of these matrices are given by (4.3.20), as follows.

Define the quadruple (q0, q1, q2, q3) = (0, 2/3, 1/3, 0) (containing the shifts in (4.3.20)), and the

triple (r1, r2, r3) = (0, 1/3, 0) (taking care of the shifts present in the first block of (4.3.19)).

Let 1 ≤ j ≤ 3 (corresponding to the letter at which an arrow starts), and 0 ≤ ℓ < 4 (a base-4

digit; the first component of the label of the arrow). There is a unique i ∈ {1, . . . , 7} such that

A
(ℓ)
i,j = 1, and we set Z

(ℓ)
i,j = qℓ + rj , and Z

(ℓ)
i′,j = 0 for i′ ̸= i. The remaining four columns

are filled with the help of (4.3.21), as follows. Define (q̃0, q̃1, q̃2, q̃3) = (2/3, 1/3, 0, 2/3) and

(r4, r5, r6, r7) = (1/3, 0,−1/3, 0). Let 4 ≤ j ≤ 7 and 0 ≤ ℓ < 4. There is a unique i ∈ {1, . . . , 7}
such that A

(ℓ)
i,j = 1, and we set Z

(ℓ)
i,j = q̃ℓ + rj , and Z

(ℓ)
i′,j = 0 for i′ ̸= i.

In order to generate the discrepancy, we blow up the transducer by a factor 28, in order to

keep track of the arrow that led to the current node (that is, we need to save the previously

read digit ℓ′ ∈ {0, 1, 2, 3} and the node in T1 that was last visited).

In each step, the contribution of Z(ℓ′) is cancelled out, and the contributions of A(ℓ′) and

Z(ℓ) are added (where ℓ is the currently read digit). More precisely, let (i, ℓ′, j), for 1 ≤ i, j ≤ 7

and 0 ≤ ℓ′ < 4, be the 196 nodes of our new transducer T2. There is an arrow from (j, ℓ′, k) to

(i, ℓ, j′) if and only if j = j′ and A
(ℓ)
j,i = 1 — that is, if there is an arrow from j to i in T1 whose

label has ℓ as its first component. We may now define the weight of an arrow (j, ℓ′, k)→ (i, ℓ, j)

as

Z
(ℓ)
i,j − Z

(ℓ′)
j,k +W

(ℓ′)
j,k .
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The initial node is (1, 0, 1), which corresponds to the fact that leading zeros do not make

a difference. Let us illustrate, by a short but representative example, the easy proof that

the transducer T2 generates the discrepancy sequence. We wish to compute the discrepancy

D41 = D(221)4 . The corresponding path in T2 is given by

(1, 0, 1) −→ (5, 2, 1) −→ (1, 2, 5) −→ (4, 1, 1).

Note that the first and third components correspond to letters in K, that is, to nodes in T1, via
1 ⇌ a, 4 ⇌ b , and 5 ⇌ c . The sum of the weights simplifies, due to a telescoping sum and

W
(0)
1,1 = Z

(0)
1,1 = 0, to

W
(2)
5,1 +W

(2)
1,5 + Z

(1)
4,1 .

The first two summands sum up to deg((22)4) = −1/3 by the construction of our transducer,

while the last summand consists of two parts: the shift in the first line of the first block of (4.3.19)

(which is 0), and the shift in the second component of (4.3.20) (which is 2/3). Summing up,

we obtain D41 = 1/3. It is clear that the proof of the general case is not more complicated this

example.

Since the integers 2 and 4 are multiplicatively dependent, in symbols, 2m = 4n for (m,n) =

(2, 1), the sequence D is also generated by a base-2 transducer. In order to carry out this

reduction to base two, the four arrows starting from a given node in our base-4 transducer have

to be replaced by a complete binary tree of depth 2, where two auxiliary nodes have to be

inserted. The proposition is proved, and thus the first part of Theorem 4.1.2.

The output sum of a base-q transducer is clearly bounded by a constant times the length of

the base-q expansion we feed into the transducer. This immediately yields DN ≪ logN .

We easily see from Figure 4.1 that the integers

(22k)4 = 2
16k − 1

3
and ((110)k)4 = 20

64k − 1

63

have degrees −k and k respectively, for k ≥ 1, and that the letter a is attained at these positions.

Therefore Proposition 4.3.9 implies

D8(16k−1)/3 = −k/3 and D80(64k−1)/63 = k/3 (4.3.22)

for k ≥ 1, and clearly D0 = 0. In particular, {DN : N ≥ 0} = (1/3)Z, which finishes the proof

of Theorem 4.1.2.

By considering the path given by n′ = (22k−1)4 instead, we end up in the node c , and the

position n′ has degree −k + 1. Proposition 4.3.10 implies Dn = −k/3, where n = 4n′ + 2 =

((10)4k)2. This was observed by Jeffrey Shallit (private communication, 2021), but such an

unboundedness result does not seem to be stated in the literature.
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Abstract

We prove a folklore conjecture concerning the sum-of-digits functions in bases two and three:

there are infinitely many positive integers n such that the sum of the binary digits of n equals

the sum of the ternary digits of n.

5.1 Introduction and main result

Representations of the same number x in two or more multiplicatively independent integer bases

apparently look very different. This topic is far from being understood, and the relation of the

base-q1 and the base-q2 expansion to each other is a source of difficult problems.

The base-q expansion is intimately connected to powers of q. In order to understand the

relation of different bases q1 and q2 to each other better we consider, as a start, the arrange-

ment of powers of 2 and 3. Assume that the set containing all powers of two and three (with

nonnegative exponents) is sorted in ascending order:

(an)n≥0 = (1, 2, 3, 4, 8, 9, 16, 27, 32, 64, 81, 128, 243, 256, 512, 729, 1024, . . .)

(this is sequence A006899 in Sloane’s OEIS [140]). In what manner are the powers of two and

three interleaved? Taking logarithms, we see that the answer to this question is encoded in the

Sturmian word

w =
(
⌊(n+ 1)α⌋ − ⌊nα⌋

)
n≥0

,

where α = log 3/ log 2 = log2(3), as follows: start with 30 = 1, append the first w0 = 1 powers

of two — that is, the integer 2 — append 31, then w1 = 2 powers of two, followed by 32 and

w2 = 1 powers of two, and so on. Our question is therefore equivalent to understanding the

101



102 CHAPTER 5. COLLISIONS OF DIGIT SUMS IN BASES 2 AND 3

continued fraction expansion of α (consult, for example, Berthé [15] for an explanation of this

connection). However, it is not even known whether the sequence of partial quotients of α is

bounded, that is, whether α is badly approximable; any system in this sequence has yet to be

found. The number α is transcendental by the Gelfond–Schneider theorem [70, 71]; by Baker’s

theorem [9–11] we obtain ∣∣∣∣ log 3log 2
− p

q

∣∣∣∣ ≥ c

qρ

for all integers q > 0 and p and some effective positive constants c and ρ. More precisely, a

bound for the irrationality measure µ(α) of α, which is the infimum of ρ for which there exists

c such that this estimate holds for all p, q, was given by Rhin [131, Equation (8)]: we have

µ(α) ≤ 8.616. Also, Wu and Wang [162] obtained the bound µ(log 3) ≤ 5.1163051. Note that

badly approximable numbers have irrationality measure 2. We would also like to mention the

interesting blog entry by Tao1 on the topic.

In view of the above problem we have to expect major difficulties when we try to mix different

bases. In this context, the following unsolved conjecture of Furstenberg [69] is of interest,

concerning multiplicatively independent integer bases p, q ≥ 2 (that is, such that pk ̸= qℓ for all

k, ℓ ≥ 1): define

Oa(x) :=
{
akx mod 1 : k ∈ N

}
and let dimH(A) be the Hausdorff dimension of a set A ⊆ [0, 1]. Then

dimH

(
Op(x)

)
+ dimH

(
Oq(x)

)
≥ 1 (5.1.1)

for all irrational x ∈ [0, 1]. Furstenberg’s conjecture underlines the idea stated before: dif-

ferent bases should produce very different representations of the same number. We note the

papers [139, 161] for recent progress on this conjecture, and the recent preprint [1] by Adam-

czewski and Faverjon, where related independence results can be found.

The related topic of studying the base-p expansion of powers of q is very difficult and has

attracted the attention of many researchers; we note the recent preprint [87] by Kerr, Mérai, and

Shparlinski and the references contained therein. Erdős [57] conjectured that the only powers

of two having no digit 2 in its ternary expansion are 1, 4, and 256 (see also Lagarias [92]). This

conjecture is open, and Erdős wrote “[. . . ] as far as I can see, there is no method at our disposal

to attack this conjecture” [57]. Meanwhile, there is a close connection to to Erdős’ squarefree

conjecture [58], stating that the central binomial coefficient
(
2n
n

)
is never squarefree for n ≥ 5.

The latter conjecture was proved for all large n by Sárközy [135], and solved completely by

Granville and Ramaré [79]. The connection between these two conjectures can be understood

by considering the identities

ν2

((
2n

n

))
= s2(n) and ν3

((
2n

n

))
= s3(n)−

s3(2n)

2
,

where sq is the sum-of-digits function in base q, and νp is the p-adic valuation of an integer ≥ 1

(with p prime). That is,
(
2n
n

)
is divisible by the square 4 if n ≥ 1 is not a power of two, and so

a stronger form of the (already proved) squarefree conjecture would follow from a proof of the

conjecture that

s3(2
k)− s3(2k+1)/2 ≥ 2 for k ≥ 9. (5.1.2)

In fact, (5.1.2) implies 4 |
(
2n
n

)
or 9 |

(
2n
n

)
for each n ≥ 257, while

(
512
256

)
is divisible by neither 4

nor 3. Equation (5.1.2) in turn would follow if we could prove that the integer 2k contains at

1https://terrytao.wordpress.com/2011/08/21/hilberts-seventh-problem-and-powers-of-2-and-3/
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least two digits equal to 2 in ternary for k ≥ 9: in this case at least two carries appear in the

addition 2k +2k in ternary. We also would like to note the recent preprint [40] by Dimitrov and

Howe on this topic.

The main objects in this paper are the sum-of-digits functions s2 and s3. For a nonneg-

ative integer n and a base q, the integer sq(n) is in fact the minimal number of powers of q

needed to represent n as their sum (which can be proved using that the q-ary expansion is the

lexicographically largest representation of n as a sum of powers of q).

Senge and Straus [138] proved the important theorem that for coprime integers p, q ≥ 2 and

arbitrary c > 0, there are only finitely many integers n ≥ 0 such that

sp(n) ≤ c and sq(n) ≤ c. (5.1.3)

This statement is, at least heuristically, close to Furstenberg’s conjecture (5.1.1): digital expan-

sions of a number in multiplicatively independent bases usually cannot be simple simultaneously.

Extensions of (5.1.3) were proved by Stewart [155], Mignotte [117], Schlickewei [136,137], Pethő–

Tichy [128], and Ziegler [165]. See also [25,28,97] for related results.

Gelfond [73] proposed to prove that

#
{
n ≤ x : sq1(n) ≡ ℓ1 mod m1 and sq2(n) ≡ ℓ2 mod m2

}
=

x

m1m2
+O

(
xδ
)

(5.1.4)

for some δ < 1, where q1, q2 ≥ 2 are coprime bases, m1,m2 are integers satisfying gcd(m1, q1 −
1) = gcd(m2, q2 − 1) = 1, and ℓ1, ℓ2 ∈ Z. A weak error term o(1) for this problem was proved

by Bésineau [17], while the full statement was obtained by D.-H. Kim [88].

Drmota [41, Theorem 4] proved (among other things) an asymptotic formula for the propor-

tion
1

x
#
{
n < x : sq1(n) = k1, sq2(n) = k2

}
, (5.1.5)

where q1, q2 ≥ 2 are coprime bases, with an error term (log x)−1. This may be called a local

limit theorem for the joint sum-of-digits function n 7→ (sp(n), sq(n)). Note that Bésineau’s result

follows as a special case, as the two sum-of-digits functions on [0, x) are mostly found close to

their expected values, compare (5.2.48) below.

We also wish to note the recent paper by Drmota, Mauduit, and Rivat [47], who proved a

result on the sum of digits of prime numbers in two different bases.

The starting point for the present paper is the article [38] by Deshouillers, Habsieger, Lan-

dreau, and Laishram.

“[. . . ] it seems to be unknown whether there are infinitely many integers n for which

s2(n) = s3(n) or even for which |s2(n)− s3(n)| is significantly small.” [38]

They prove the following result.

Theorem. For sufficiently large N , we have

#
{
n ≤ N : |s3(n)− s2(n)| ≤ 0.1457205 log n

}
> N0.970359.

Note that the difference s3(n)− s2(n) is expected to have a value around C log n, where

C =
1

log 3
− 1

log 4
= 0.18889 . . . ;
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by the above theorem there exist indeed many integers n such the difference |s2(n) − s3(n)| is
“significantly small”.

This result was extended by La Bretèche, Stoll, and Tenenbaum [31], who proved in particular

that {
sp(n)/sq(n) : n ≥ 1} (5.1.6)

is dense in R+ for all multiplicatively independent integer bases p, q ≥ 2.

We also wish to note the papers [114] by Mauduit and Sárközy, and by Mauduit, Pomerance,

and Sárközy [105]. In these papers, integers with a fixed sum of digits and corresponding

asymptotic formulas are studied, and possible extensions to several bases are addressed.

Let us call a natural number n such that s2(n) = s3(n) a collision (of s2 and s3). The

question on the infinitude of collisions, mentioned in [38], is not a new one. M. Drmota (private

communication to the author) received a hand-written letter from A. Hildebrand more than

twenty years ago, in which the very same problem was presented.

In the present paper, we give a definite answer to this question.

Theorem 5.1.1. There exist infinitely many nonnegative integers n such that

s2(n) = s3(n). (5.1.7)

More precisely, for all δ > 0 we have

#
{
n < N : s2(n) = s3(n)

}
≫ N

log 3
log 4−δ, (5.1.8)

where the implied constant may depend on δ. Note that log 3/ log 4 = 0.792 . . ..

The difficulty in proving this theorem lies in the separation of the values of s2(n) and

s3(n). The sum-of-digits functions can be thought of as a sum of independent, identically

distributed random variables, and they concentrate (according to Hoeffding’s inequality, for

example) around the values 1
2 log2N and log3N respectively, where 0 ≤ n < N . More precisely,

the variances are of order logN , and the tails of these distributions decay as least as fast

as exp(−C(x − µ)2/σ2), where µ is the expected value, and σ2 the variance. Since the gap

(1/ log 3 − 1/ log 4) logN comprises ≍ (logN)1/2 standard deviations, we can only expect a

number ≪ Nδ of collisions, where δ < 1 is some constant. In the light of this argument, we see

that our result cannot be too far from the true number of collisions.

The increasing sequence s2,3 of nonnegative integers n such that s2(n) = s3(n) is listed as

entry A037301 in the OEIS [140]. The question whether this sequence is infinite had to remain

open there. The first few collisions are as follows:

n in binary 0 1 110 111 1010 1011 1100 1101 10010 10011 10101 100100

n in ternary 0 1 20 21 101 102 110 111 200 201 210 1100

n in decimal 0 1 6 7 10 11 12 13 18 19 21 36.

Remarks. Note the subsequence (10, 11, 12, 13); contiguous subsequences of N of length greater

than four do not appear in s2,3, since s3 on such a subsequence contains two consecutive up-

steps, while s2 decreases or stays constant after one up-step. We expect that it is possible to

extend our proof to arbitrary patterns in s2,3: for example, we expect that there are infinitely

many n such that

s2(n+ v) = s3(n+ v) for v ∈ {0, 1, 2, 3}, (5.1.9)
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and infinitely many n (the integer n = 13 is an example) such that{
v ∈ {0, . . . , 23} : s2(n+ v) = s3(n+ v)

}
= {0, 5, 6, 8, 23}. (5.1.10)

More generally, every pattern that appears at all should appear infinitely often in s2,3. To this

end, we will have to study certain residue classes modulo 2k3ℓ — note that for n ∈ (2 + 8Z) ∩
(1 + 9Z), for example, we have s2(n+ v)− s3(n+ v) = c for some c and all v ∈ {0, 1, 2, 3}. The
next step would be to scan these “candidate residue classes” for collisions, using our method.

But residue classes of this form are used in our proof anyway, therefore we are optimistic

that the main problems have already been overcome. (Note that also a suitable replacement

for Proposition 5.2.1 below will have to be found. This proposition takes care of the parity

restriction s3(n+ t)− s3(n) ≡ s3(t) mod 2.)

We would like to note that our proof of Theorem 5.1.1 is not a constructive one. We do not

give an algorithm that allows us to find integers n such that s2(n) = s3(n). We leave it as an

open problem to find a construction method for such integers n.

Also, it is a very interesting open problem to prove that s2(p) = s3(p) for infinitely many

prime numbers p. We believe that this question is difficult. This guess is due to the analogy to

missing digit problems, where sparse sets S ⊆ N (that is, #(S ∩ [1, N ])≪ Nδ for some δ < 1) of

a similar kind are studied; Maynard [116], in an important and difficult paper, could prove that

infinitely many primes excluding any given decimal digit exist. Our set S = {n : s2(n) = s3(n)}
is even less understood than the set of integers in Maynard’s result, hence our scepticism.

Plan of the paper.

The main body of the paper concerns the proof of the auxiliary statement, Proposition 5.2.1

below, which directly leads to the main theorem. This proof is organized into three main steps,

represented by Propositions 5.2.2–5.2.4. After the statement of these results, in Section 5.2.1,

we prove Proposition 5.2.1 and thus Theorem 5.1.1 from these three propositions. The three

sections thereafter, Sections 5.2.2, 5.2.3, and 5.2.4, are dedicated to the proofs of the three main

steps. At the end of the paper, we present (mostly difficult) research questions.

Notation. The symbol log denotes the natural logarithm, and loga = 1
log a log is the logarithm

in base a > 1. We use Landau notation, employing the symbols O, ≪, and o. The symbol

f(n) ≍ g(n) abbreviates the statement
(
f(n) ≪ g(n) and g(n) ≪ f(n)

)
, while f(n) ∼ g(n)

means that f(n)/g(n) converges to 1 as n→∞. We also use the exponential e(x) = exp(2πix).

For M ≥ 0, the statement “a is M -close to b” means |a− b| ≤M .

5.2 Proofs

Our main theorem follows from the following proposition.

Proposition 5.2.1. For all δ > 0 the number of n < N such that

s2(n)− s3(n) ∈ {0, 1} (5.2.1)

is bounded below by CN
log 3
log 4−δ (where the constant C may depend on δ).

We call an integer n such that (5.2.1) is satisfied an almost-collision.

Let N ≥ 4 be an integer. We are going to find many collisions in the interval [N, 2N) for all

large enough N , which will prove Theorem 5.1.1. Let ε > 0 be arbitrary throughout this proof.
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This variable is used as exponent of log logN , and its value, as long as it is strictly positive, is

irrelevant for our proof. For given N , we define λ, η, f , m, and J as follows. Set

λ0 := logN, η0 := λ
3/4
0 , f0 := (log λ0)

1/2+ε, m0 := λ
1/2
0 /f0, J0 := f20 ,

λ := ⌊λ0⌋, η := 4⌊η0/4⌋, f := ⌊f0⌋, m := ⌊m0⌋, J := ⌊J0⌋.
(5.2.2)

We wish to give a rough and very imprecise idea of the meaning of this choice of variables.

The length of a binary or ternary expansion of n ∈ [N, 2N) is of size ≍ λ, and the standard

deviation of a (binary or ternary) sum-of-digits function on [N, 2N) is of order ≍ (logN)1/2.

The variable m is smaller than the standard deviation by a factor f (the fineness), and taking J

steps of length m, we cover sufficiently many standard deviations. That is, the tail (comprising

deviations larger than Jm from the expected value) is bounded by λ−D for all D > 0 due to

the presence of ε > 0. Finally, η is the ternary length of certain integers a and b that we choose

freely. It is large enough to allow for differences of ternary sum-of-digits functions larger than

the standard deviation ≍ λ1/2 by any logarithmic factor (log λ)ρ (compare to (5.2.32)), and

small enough so that a concatenation of 2J + 1 ternary expansions of length η is still much

shorter than λ.

After this very informal explanation of our choice of parameters, we give a brief description

of the proof. The search for collisions will consist of three main steps.

1. “Preparation”: find a residue class A′ on which f(n+ t)− f(n) takes prescribed, constant
differences, where f(n) = s2(n)− s3(n);

2. “Rarefaction”: concentrate the values of f(n) into the interval [−Jm, Jm] by finding a

rarefied and truncated arithmetic progression A′′ ⊂ A′, and considering only integers

n ∈ A′′;

3. “Fair share”: select only those n ∈ A′′ such that f(n) ∈ mZ.

Steps 2 and 3 are used to find many values of n from a given given residue class such that

f(n) ∈ Q := {−Jm, (−J + 1)m, . . . , Jm}. The purpose of Step 1 is to define in advance a

larger residue class A′ = L + 2ν3βZ and a set d = {d−J , d−J+1, . . . , dJ} of shifts such that

f(n + dj) − f(n) = jm + ξj for all n ∈ A′, all j ∈ {−J, . . . , J}, and some ξj ∈ {0, 1}. This

procedure yields many n such that f(n) ∈ {0, 1}, by choosing for each index n such that f(n) ∈ Q
the appropriate shift d(n) ∈ d. A short argument involving differences sj(n+1)− sj(n) of sum-

of-digits functions on residue classes (where j ∈ {2, 3}) allows us to get rid of the unpleasant

correction term ξj .

We will prove the following three propositions, corresponding to our three steps.

Proposition 5.2.2. Let β = (2J + 1)η + 1 and choose the integer ν ≥ 1 minimal such that

2ν−1 ≥ 3β. Set

dj :=
(
1(j+1+J)η0

)
3
= 3

3(j+1+J)η − 1

2
. (5.2.3)

There exists L ∈ {0, . . . , 2ν3β − 1} such that L ≡ 9 mod 12, and ξj ∈ {0, 1} for −J ≤ j ≤ J

such that

f(n+ dj)− f(n) = jm+ ξj for all j ∈ {−J, . . . , J} and all n ∈ A′ := L+ 2ν3βN. (5.2.4)

Proposition 5.2.3. For an integer ζ ≥ 0, define

A′′ :=
(
L+ 2ν3β+ζN

)
∩ [N, 2N) (5.2.5)
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and

I :=
{
k ∈ N : N ≤ L+ 2ν3β+ζk < 2N

}
. (5.2.6)

Here ν, β, and L are given by Proposition 5.2.2. For all D > 0 there exists a constant C = C(D)

such that the following statement holds.

There exists a sequence
(
ζN
)
N≥4

of nonnegative integers such that

ζN ∼ log3(N)
(
1− log 3/ log 4

)
as N →∞, and for all N and all but at most

C|I|λ−D integers n ∈ A′′, the quantity f(n) is Jm-close to 0.

(5.2.7)

Note that I and A′′ in this statement depend on ζ = ζN , which in turn depends on N .

Proposition 5.2.4. Using the set A′′ from (5.2.5), we set

P := #
{
n ∈ A′′ : f(n) ∈ mZ

}
. (5.2.8)

As N →∞, we have

P =
|I|
m

(
1 + o(1)

)
. (5.2.9)

That is, the residue class mZ receives the expected ratio λ−1/2(log λ)1/2+ε of the values of f(n) =

s2(n)− s3(n) along the finite arithmetic progression A′′ defined in (5.2.5).

5.2.1 Deriving Theorem 5.1.1 from Propositions 5.2.2–5.2.4

The expected number P of integers n ∈ A′′ such that f(n) ∈ mZ is given by Proposition 5.2.4.

At the same time, Proposition 5.2.3 states that for all D > 0, f(n) lies in the interval [−Jm, Jm]

for |I|(1−O(λ−D)) many integers n ∈ A′′ (where the implied constant depends on D). Note that

for D > 1/2 this error term is of smaller magnitude than P . Consequently, any choice D > 1/2

will yield many integers n ∈ A′′ such that s2(n) − s3(n) = jm for some j ∈ {−J, . . . , J}.
By (5.2.4) the integer n′ = n+ d−j satisfies s2(n

′)− s3(n′) ∈ {0, 1}. Noting that ζ ≍ logN and

Jη ≪ (logN)3/4(log logN)1+2ε, we see that the shifts dj are asymptotically smaller than the

common difference 2ν3β+ζ of A′′. Varying N , we get an almost-collision (as in Proposition 5.2.1)

in each large enough interval [N, 2N) and thus the qualitative statement in Theorem 5.1.1.

Considering the asymptotic sizes of ν, β, and ζ, it is easy to see that the interval I defined

in (5.2.6) is in fact of size ≫ N log 3/ log 4−δ for all δ > 0. Most k ∈ I yield a value f̃(k) =

f(L + 2ν3β+ζk) ∈ [−Jm, Jm] by (5.2.7), and the expected proportion ∼ m−1 ≫ (logN)−1/2

of them satisfy f̃(k) ∈ mZ, see (5.2.9). These k yield pairwise different values k + dj(k) as

before. Here the integer j = j(k) is chosen suitably from {−J, . . . , J} in order to force an

almost-collision.

Let δ > 0 be given and set A = log 3/ log 4 − δ. If the number of n < N such that

s2(n) − s3(n) = 0 and n ≡ 9 mod 12 is ≫ NA, there is nothing to be done. Otherwise, we

note that n ≡ 9 mod 12 is equivalent to
(
n ≡ 0 mod 3 and n ≡ 1 mod 4

)
, therefore s3(n+ 1) =

s3(n)+1 and s2(n+1) = s2(n). The existence of a number≫ NA of solutions of s2(n)−s3(n) = 1

on (9 + 12Z)∩ [N, 2N) therefore implies a number ≫ NA of collisions on (10 + 12Z)∩ [N, 2N).

This establishes (5.1.8) and completes the proof.

Remark 11. In the last step towards finding almost-collisions — choosing j ∈ {−J, . . . , J}
suitably — the “element of non-constructiveness” in our argument is clearly visible. Currently

we do not have any control over the choice of j.

In order to prove Theorem 5.1.1, it is sufficient to establish Propositions 5.2.2–5.2.4.
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5.2.2 Constant differences of sum-of-digits functions — proof of Propo-
sition 5.2.2

We will use blocks in ternary, whose lengths are given by the integer η. Let us choose nonnegative

integers d−J , d−J+1, . . . , dJ by concatenating such blocks of ternary digits. Set

b :=
(
1η
)
3
=

3η − 1

2
,

where 1η denotes η-fold repetition of the digit 1. Define dj , for −J ≤ j ≤ J , by (j +1+ J)-fold

concatenation of 1η, with 0 appended at the right, as in (5.2.3). The emphasis on “blocks of

length η” will become clear in the construction of the integers kj further down (see (5.2.36)).

Since the ternary expansion of dj consists of blocks 1111 and ends with 0, we have dj ≡ 0 mod 12

(note that 4 | (1111)3 = 40). Choose the integer ν ≥ 1 minimal so that

2ν−1 ≥ 3(2J+1)η+1. (5.2.10)

In particular,

dj < 2ν−1. (5.2.11)

The next important step consists in choosing a certain integer a ∈ {1, . . . , 2ν−1−1}; its meaning

will become clear in a moment. The size restrictions imply dj + a < 2ν for all j ∈ {−J, . . . , J}.
This means in particular that no carry from the (ν−1)th to the νth digit occurs in the addition

dj + a, which implies the simple but important identity

s2
(
2νn+ a+ dj

)
− s2

(
2νn+ a

)
= s

(ν)
2 (a+ dj)− s(ν)2 (a) (5.2.12)

for all n ≥ 0. The function defined by s
(ν)
2 (n) = s2(n mod 2ν) is the truncated binary sum-

of-digits function. Note that the right hand side of (5.2.12) is independent of n; we want

to use Chebychev’s inequality for choosing a value a such that these values are small for all

j ∈ {−J, . . . , J}. In order to obtain an estimate for the variance, needed for Chebychev’s

inequality, we adapt parts from [149]. For integers t, L ≥ 0 and j, we define a probability mass

function φ( , t, L) by

φ(j, t, L) :=
1

2L
#
{
0 ≤ n < 2L : s

(L)
2 (n+ t)− s(L)

2 (n) = j
}
, (5.2.13)

and the characteristic function

ωt(ϑ,L) :=
∑
j∈Z

φ(j, t, L) e(jϑ) =
1

2L

∑
0≤n<2L

e
(
ϑs

(L)
2 (n+ t)− ϑs(L)

2 (n)
)
, (5.2.14)

where e(x) = exp(2πix). Noting that

s
(L+1)
2 (2n) = s

(L)
2 (n) and s

(L+1)
2 (2n+ 1) = s

(L)
2 (n) + 1, (5.2.15)

the proof of the following statement is not difficult and left to the reader.

Lemma 5.2.5. For all t, L ≥ 0 and j ∈ Z we have

φ(j, 1, L) =


2j−2, −L+ 2 ≤ j ≤ 1;

2−L, j = −L;
0, otherwise,

φ(j, 2t, L+ 1) = φ(j, t, L),

φ(j, 2t+ 1, L+ 1) =
1

2
φ(j − 1, t, L) +

1

2
φ(j + 1, t+ 1, L).

(5.2.16)
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The characteristic function satisfies∣∣ωt(ϑ,L)
∣∣ ≤ 1,

ω2t(ϑ,L+ 1) = ωt(ϑ,L),

ω2t+1(ϑ,L+ 1) =
e(ϑ)

2
ωt(ϑ,L) +

e(−ϑ)
2

ωt+1(ϑ,L) for t ≥ 1.

(5.2.17)

The recurrence (5.2.17) leads to a recurrence for the moments

mk(t, L) :=
∑
j∈Z

φ(j, t, L)jk (5.2.18)

of φ( , t, L). Using the identity

ωt(ϑ,L) =
∑
j∈Z

δ(j, t) e(jx) =
∑
k≥0

mk(t, L)

k!

(
2πiϑ

)k
(5.2.19)

(all involved series are absolutely convergent), we obtain

mk(t, L) =
k!

(2πi)k
[
ϑk
]
ωt(ϑ,L), (5.2.20)

from which we can iteratively obtain recurrences for the moments mk(t, L).

From (5.2.16) we clearly see thatm0(t, L) =
∑

j∈Z φ(j, t, L) = 1,m1(t, L) =
∑

j∈Z jφ(j, t, L) =

0, φ(j, 2t, L+1) = φ(j, t, L), andm2(1, L) = 2−2−L+1. Moreover, (5.2.17), (5.2.19), and (5.2.20)

imply

m2(2t+ 1, L+ 1) = − 1

4π2

[
ϑ2
]((

1 + 2πiϑ− 2π2ϑ2
)(
1−

(
2π2
)
m2(t, L)

)
+
(
1− 2πiϑ− 2π2ϑ2

)(
1−

(
2π2
)
m2(t+ 1, L)

))
= m2(t, L)/2 +m2(t+ 1, L)/2 + 1.

Summarizing, for all k ≥ 0, t ≥ 1, and L ≥ 0, we have

m0(t, L) = 1,

m1(t, L) = 0,

m2(1, L) = 2− 2−L+1,

mk(2t, L+ 1) = mk(t, L),

m2(2t+ 1, L+ 1) =
m2(t, L) +m2(t+ 1, L)

2
+ 1.

(5.2.21)

From the recurrence (5.2.17) for the characteristic function we could easily obtain recurrences

for the higher moments too (compare [149, (2·11)]), but here we only need the first and second

moments. In analogy to Corollary 2.3 in [153] we obtain the following statement.

There exists a constant C such that for all integers B,L ≥ 1, and t ≥ 1 having B

blocks of 1s,

m2(t, L) ≤ CB.
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However, we only need the following version, which follows directly from (5.2.21): we have

m2(t, ν) ≤ 2ν for all t, ν ≥ 1 such that t < 2ν . (5.2.22)

In particular, this holds for t = dj defined in (5.2.3), and for this estimate we do not need to

know what dj looks like in binary. We are interested in the differences on the right hand side

of (5.2.12). By Chebychev’s inequality and (5.2.22), the number of integers a ∈ {0, . . . , 2ν − 1}
such that ∣∣∣s(ν)2 (a+ dj)− s(ν)2 (a)

∣∣∣ ≤ R2(2ν)
1/2 (5.2.23)

is bounded below by

2ν
(
1− 1/R2

2

)
.

Intersecting 2J +1 sets, we obtain the set of a < 2ν that satisfy (5.2.23) for all j ∈ {−J, . . . , J},
having cardinality ≥ 2ν(1− (2J+1)/R2

2). We choose R2 = λ/(2ν), which is ≍ λ1/8/(log λ)1/2+ε

as N →∞. It follows that the set of a ∈ {0, . . . , 2ν − 1} satisfying∣∣∣s(ν)2 (a+ dj)− s(ν)2 (a)
∣∣∣ ≤ λ1/2 for all j ∈ {−J, . . . , J} (5.2.24)

has at least

2ν
(
1−O

(
(log λ)2+4ελ−1/4

))
elements, by the definitions (5.2.2). Since powers win against logarithms for large N , we obtain

some integer a with the properties that

a ≡ 1 mod 4,

0 ≤ a < 2ν−1, and

|δj | ≤ λ1/2 for all j ∈ {−J, . . . , J},

(5.2.25)

where

δj := s
(ν)
2 (a+ dj)− s(ν)2 (a). (5.2.26)

Note that the first two restrictions in (5.2.25) will pose no problem since asymptotically

almost all a < 2ν (as N →∞) satisfy the third.

By (5.2.12) we have therefore found an arithmetic progression

A = a+ 2νN (5.2.27)

such that each of the sequences

σj =
(
s2(m+ dj)− s2(m)

)
m∈A

,

for −J ≤ j ≤ J , is constant, and attains a value δj bounded by λ1/2 in absolute value.

In the next step, the ternary sum of digits will come into play, and we rarefy the progression

A by a factor 3β , where

β = (2J + 1)η + 1. (5.2.28)

Note that η ≍ λ3/4 has been used in the definition (5.2.3) of the values dj before. The selection

of this subsequence has to be carried out with care, so that certain differences f(n+ dj)− f(n),
where

f(n) = s2(n)− s3(n), (5.2.29)
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are attained on this rarefied progression for −J ≤ j ≤ J . Sure enough, in order to obtain these

differences we will have to “repair” the deviation δj from 0 caused by the differences of binary

sums of digits. We are going to select a residue class B = K + 3βN, where K < 3β , on which

certain differences

s3(n+ dj)− s3(n) (5.2.30)

occur for n ∈ B. This process will be executed step by step, thinning out the current residue

class by a factor 3η for each j ∈ {−J, . . . , J}. We have found a certain arithmetic progression

A in (5.2.27). A sub-progression A′ of A having the desired difference properties in bases 2 and

3 — that is, s2(n+ dj)− s2(n) = δj and (5.2.39) below — will be obtained by the intersection

A ∩B = (a+ 2νN) ∩
(
K + 3βN

)
= L+ 2ν3βN, (5.2.31)

where 0 ≤ L < 2ν3β . We need to find K. This number will in fact be divisible by 3 (hence the

definition of dj as a multiple of three) — together with a ≡ 1 mod 4 this leads to L ≡ 9 mod 12.

The construction is similar to the definition of dj , where we concatenated ternary expansions of

length η, given by b =
(
1η
)
3
. We begin with the integer k−J . By our preparation, the quantity

Jm+ δ−J (of size λ1/2 times a logarithmic factor) is considerably smaller than η (of size λ3/4).

The large number of 1s in b can be used to find some a ∈ {0, . . . , 3η−1 − 1} and ξ ∈ {0, 1}
such that

s3
(
a+ b

)
− s3(a) = Jm+ δ−J − ξ. (5.2.32)

In fact, such an integer a is found by assembling blocks of length four of ternary digits, where

no carry between these blocks occurs, using the following addition patterns in base 3:

0112

+ 1111

= 2000.

0202

+ 1111

= 2020,

0200

+ 1111

= 2011.

We see that each block of length four can be used to obtain a variation ∈ {−2, 0, 2} of the

ternary sum of digits; there are η/4 ≫ λ3/4 such blocks, while the needed variation is ≍
λ1/2(log λ)1/2+ε and thus much smaller. Moreover, by construction (5.2.2), the integer η is

divisible by four, so there are no phenomena due to trailing digits. Using any ξ ∈ {0, 1} and

a < 3η−1 satisfying (5.2.32), we set

k−J := 3a and ξ−J := ξ. (5.2.33)

Trivially, we obtain

s3
(
k−J + d−J

)
− s3

(
k−J

)
= Jm+ δ−J − ξ−J . (5.2.34)

Since a < 3η−1, there does not appear a carry to the η + 1th ternary digit in the addition

k−J + d−J . Assume that kj−1 has already been defined, for some −J < j ≤ J . In analogy to

the above, choose a ∈ {0, . . . , 3η−1 − 1} and ξ ∈ {0, 1} in such a way that

s3(a+ b)− s3(a) = −m− δj−1 + ξj−1 + δj − ξ, (5.2.35)

and set

kj = kj−1 + 3(j+J)η+1a and ξj := ξ. (5.2.36)

Note that the target value satisfies −m − δj−1 + ξj−1 + δj − ξ ≪ λ1/2, which is again small

compared to the number of 1s in b. Since carry propagation between blocks of length η is not
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possible by construction (as in the case j = −J), we obtain by concatenating blocks of length η

and applying a telescoping sum,

s3
(
kj + dj

)
− s3

(
kj
)
= −jm+ δj − ξj for all j ∈ {−J, . . . , J}. (5.2.37)

Finally, set K = kJ and note that β = (2J + 1)η + 1 according to (5.2.28), so that K < 3β . By

construction (note that the ternary digits of dj from (j + 1 + J)η + 1 on are zero) we have

s3(K + dj)− s3(K) = −jm+ δj − ξj for all j ∈ {−J, . . . , J}. (5.2.38)

Similar to (5.2.12), noting that there is no carry propagation in base three to the βth digit in

the addition K + dj , we have in fact

s3(n+ dj)− s3(n) = −jm+ δj − ξj (5.2.39)

for all n ∈ K+3βN. Define L by (5.2.31). By construction, the residue class L+2ν3βZ is a subset

of both 3Z and 1 + 4Z, therefore L ≡ 9 mod 12, and we obtain the difference property (5.2.4)

and thus Proposition 5.2.2.

5.2.3 Small values of f(n) — proof of Proposition 5.2.3

By our difference property (5.2.4) it is sufficient to prove the existence of (many) elements

n ∈ A′ such that

f(n) ∈ Q, where Q = {jm : −J ≤ j ≤ J}. (5.2.40)

After all, for each n satisfying (5.2.40) we can adjust the value of f , up to a correction term

∈ {0, 1}, by any amount c ∈ Q using a suitably chosen shift d(n) ∈ {d−J , d−J+1, . . . , dJ}.
Having done so, we arrive at the desired property f(n + d(n)) ∈ {0, 1}. Since for each given

N the constructed quantities dj are nonnegative and smaller than the common difference of A′

— by (5.2.3) we have dj < 2ν3β — this will show that there are infinitely many solutions to

s2(n)−s3(n) ∈ {0, 1}, and in fact we will give a quantitative lower bound. Proving that (5.2.40)

has many solutions in A′ will be the subject of this and the following section, constituting the

second (“rarefaction”) and third (“fair share”) stages of our proof, respectively.

In the present section we are concerned with restricting our residue class A′ in order to

obtain f(n) ∈ [−Jm, Jm] for many integers n in the new set A′′. The third step will consist in

the study of the property f(n) ∈ mZ, which will be carried out in Section 5.2.4.

Note that for allM , the value s2(a+nM) will be C
√
logN -close to log4(N) for asymptotically

almost all n < N as N → ∞, while s3(a + nM) will be C
√
logN -close to log3(N) most of the

time. Therefore a concentration property of f(n) can only be satisfied for a finite segment of

any arithmetic progression. The fact that the values of f can be concentrated around zero by

selecting a finite arithmetic subsequence is an essential point. It is based on the consideration

that 3τn has the same ternary sum of digits as n for all integers τ ≥ 0, while the binary sum of

digits — usually — increases considerably under multiplication by 3τ . This small remark is in

fact the main idea that started the research on the present paper.

Recall the definition (5.2.5) of A′′, for a natural number ζ that will be chosen in due course.

Suitable choice of ζ will cause most values of f along A′′ to lie in the interval [−Jm, Jm]. At

this point we only note that 3ζ will be much larger than 2ν and 3β , in orders of magnitude,

ν ≍ β ≍ λ3/4(log λ)1+2ε, while ζ ≍ λ. Trivially, (5.2.4) is satisfied on the subsequence A′′ too.

We are therefore interested in the expression

f
(
L+ 2ν3β+ζk

)
= s2

(
L+ 2ν3β+ζk

)
− s3

(
L+ 2ν3β+ζk

)
, (5.2.41)
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where k varies in the interval I defined in (5.2.6). We can decompose (5.2.41) in the form

f
(
L+ 2ν3β+ζk

)
= s2

(
b2 + 3β+ζk

)
− s3

(
b3 + 2νk

)
+ s2(r2)− s3(r3), (5.2.42)

where
b2 =

⌊
2−νL

⌋
and b3 =

⌊
3−β−ζL

⌋
,

r2 = L mod 2ν and r3 = L mod 3β+ζ .

Let us choose

ζ0 := log3(N)

(
1− log 3

log 4

)
+ s3(L)− s2(r2) +

ν

2
− β, and ζ := ⌊ζ0⌋. (5.2.43)

We have r2 < 2ν , and L < 2ν3β ; moreover, it follows from the definitions that ν = o(logN) and

β = o(logN). Therefore ζ ∼ C log3N , where the constant equals

C = 1− log 3

2 log 2
= 0.207 . . . . (5.2.44)

In particular, 3ζ ≥ 2ν for all large N . Since L < 2ν3β , we have in fact

b3 = 0 and r3 = L.

That is, r2 and r3 do not depend on the particular choice of ζ ≥ ν log3 2. In (5.2.43) this

freedom is used in order to define the rarefaction parameter ζ suitably. This in turn determines

the arithmetic progression A′′ defined in (5.2.5). Note that we have already replaced r3 by L in

the definition of ζ0 in order to avoid a circular definition. This procedure, as we will see, very

accurately defines an interval around zero in which f(n), for n ∈ A′′, can be found most of the

time. That is, (5.2.41) is close to zero for most k ∈ I.
We study the values

f2(k) = s2
(
b2 + 3β+ζk

)
and f3(k) = s3

(
2νk
)

(5.2.45)

separately, as k varies in I.

Sure enough, the study of (5.2.45) will be infeasible in general using current techniques. This

is the case because we encounter problems arising from powers of 2 and 3, as considered in the

introduction. In our application however, the interval I is of the form

I = [M, 2M +O(1)] (5.2.46)

for some M considerably larger than 2ν and 3β+ζ , which enables us to prove a nontrivial state-

ment on the distributions of f2(k) and f3(k).

In the following, we use the abbreviation α = β + ζ. Let us partition the binary expansion

of b2 + 3αk into two parts, using the integer κ2 = min{m : 2m ≥ 3α}. For all integers k ≥ 0, we

have

s2
(
b2 + 3αk

)
= s2

(⌊
k
3α

2κ2
+ σ

⌋)
+ s2

((
b2 + 3αk

)
mod 2κ2

)
, (5.2.47)

where σ = b22
−κ2 < 1, which follows from b2 ≤ L2−ν < 3β < 2κ2 .

The values of ⌊k3α/2κ2 + σ⌋ start at M̃ +O(1), where M̃ = ρM and ρ = 3α/2κ2 ∈ (1/2, 1),

increase step by step as k runs through I, and remain on the same integer for at most two
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consecutive values of k. Consequently, the distribution of the first summand for k ∈ I originates

from the distribution of s2(k
′) for k′ ∈ I ′, where

I ′ = [M̃ − 1, 2M̃ + 1],

and each number of occurrences is multiplied by a value ∈ {0, 1, 2}. Therefore, using the binomial

distribution, the first summand in (5.2.47) can be found within a short interval containing
1
2 log2M most of the time. More precisely, we apply Hoeffding’s inequality. Construing the

binary sum-of-digits function on [0, 2K) as a sum of independent random variables with mean

1/2, we obtain for all integers T ≥ 0 and real t ≥ 0

1

2T
{
0 ≤ n < 2T :

∣∣s2(n)− T/2∣∣≥ t} ≤ 2 exp
(
−2t2/T

)
. (5.2.48)

We apply this for t = Jm/5 and T minimal such that 2T ≥ 2M̃ + 1. Note that

T ∼ log2

(
N

2ν3β+ζ

)
≍ λ.

Note that we used the definition of ζ for the latter asymptotics. From (5.2.48) we obtain{
k ∈ I :

∣∣s2 (⌊k3α/2κ2 + σ⌋)− T/2
∣∣ ≥ t} ≤ 2

{
k′ ∈ I ′ :

∣∣s2(k′)− T/2∣∣ ≥ t}
≤ 2

{
0 ≤ k′ < 2T :

∣∣s2(k′)− T/2∣∣ ≥ t}
≪ exp

(
−2λ(log λ)1+2ε/(25T )

)
≪ exp

(
−C(log λ)1+2ε

)
≪ λ−D

(5.2.49)

for all D > 0 and some C, as N →∞. Meanwhile, the second summand in (5.2.47) also follows

a binomial distribution, with mean κ2/2 and a corresponding concentration property. For this,

it is important to note that the sum over k is longer than 2κ2 (for large N): this is due to the

observation, given in (5.2.44), that C < 1/2. Therefore, multiples of the odd integer 3α traverse

each residue class modulo 2κ2 in a uniform way. After forming an intersection, the value of

f2(k) = s2(b2 + 3αk) is 2Jm/5-close to the value

E2 =
1

2
log2

(
N

2ν3β+ζ

)
+

1

2
log2 3

β+ζ =
1

2
log2(N)− ν

2
,

for all but O
(
|I|λ−D

)
integers k ∈ I. The contribution of f3(k) = s3(2

νk) can be handled in an

analogous fashion. In this case, the expression f3(k) is 2Jm/5-close to the value

E3 = log3

(
N

2ν3β+ζ

)
+ log3(2

ν) = log3(N)− β − ζ

for all but O
(
|I|λ−D

)
integers k ∈ I. Again, D > 0 is arbitrary. Including the term s2(r2) −

s3(r3) from (5.2.42) leads to the definition of ζ in (5.2.43). Joining the preceding statements

and (5.2.42), noting that the allowed deviation Jm is not surpassed when adding two times the

error 2Jm/5 and also considering the rounding error coming from the floor function ζ = ⌊ζ0⌋,
we obtain Proposition 5.2.3.
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5.2.4 The critical expression modulo m — proof of Proposition 5.2.4

The final piece in the puzzle, which we consider before we proceed to the assembly of these pieces,

is the study of the function f(n) mod m = (s2(n)−s3(n)) mod m along arithmetic progressions.

We are going to adapt the Mauduit–Rivat method for digital problems [44, 46, 47, 51, 100–

103, 109, 111–113], also applied in the papers [48, 120, 122, 123, 127, 148]. This will be used in

order to obtain a statement concerning the number P defined in (5.2.8),

P = #
{
n ∈ A′′ : f(n) ∈ mZ

}
= #

{
k ∈ I : s2

(
b2 + 3β+ζk

)
− s3

(
2νk
)
≡ t mod m

}
,

where t = s3(r3)− s2(r2) (see (5.2.42)). In order to handle this quantity, it is sufficient to study

S0 = S0(ϑ) =
∑
k∈I

e
(
ϑs2
(
b2 + 3β+ζk

)
− ϑs3

(
2νk
))
, (5.2.50)

with ϑ = ℓ/m, where ℓ ∈ {0, . . . ,m− 1}. By orthogonality relations,

P =
|I|
m

+
1

m

∑
1≤b<m

e

(
− bt
m

)
S0

(
b

m

)
, (5.2.51)

and it is sufficient to find an upper bound for S0(ϑ). We apply van der Corput’s inequality (for

example, [111, Lemme 4]), where R ≥ 1 is chosen later:

|S0|2 ≤
|I|+R− 1

R

∑
−R<r<R

(
1− |r|

R

)
×
∑
k∈I

k+r∈I

e
(
ϑ
(
s2
(
b2 + 3β+ζ(k + r)

)
− s2

(
b2 + 3β+ζk

))
− ϑ

(
s3
(
2ν(k + r)

)
− s3

(
2νk
)))

.

Next, we apply a suitable carry propagation lemma in order to “cut off digits”, that is, to

replace s2 and s3 by truncated sum-of-digits functions:

s
(µ2)
2 (n) = s2

(
n mod 2µ2

)
,

s
(µ3)
3 (n) = s3

(
n mod 3µ3

)
,

where µ2, µ3 ≥ 0 are chosen later. See [148, Lemma 4.5] for the base-2 version used here;

an analogous statement holds for all bases, and we also need the completely analogous base-3

variant (the original statement was given in [111, Lemme 5], compare also [109, Lemme 16]).

We discard the condition n+ r ∈ I, and join the cases r and −r, in order to obtain

|S0|2 ≤ |I|2O
(
R

|I|
+

3β+ζR

2µ2
+

2νR

3µ3

)
+

2 |I|
R

∑
0≤r<R

∣∣S1

∣∣, (5.2.52)

where

S1 =
∑
k∈I

e
(
ϑs

(µ2)
2

(
3β+ζk + b2 + 3β+ζr

)
− ϑs(µ2)

2

(
3β+ζk + b2

)
− ϑs(µ3)

3

(
2νk + 2νr

)
+ ϑs

(µ3)
3

(
2νk
))
.

(5.2.53)
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Note that the lowest µ2 binary digits of b2 + 3β+ζk and the lowest µ3 ternary digits of 2νk are

visited uniformly and independently — this is just the Chinese remainder theorem.

We obtain

S1 =
|I|

2µ23µ3

∑
0≤n2<2µ2

e
(
ϑs

(µ2)
2

(
n2 + 3β+ζr

)
− ϑs(µ2)

2 (n2)
)

×
∑

0≤n3<3µ3

e
(
ϑs

(µ3)
3

(
n3 + 2νr

)
− ϑs(µ3)

3 (n3)
)
+O

(
2µ23µ3

)
.

(5.2.54)

For this estimate to be relevant, it is important that the number C defined in (5.2.44) is smaller

than 1/2: the interval I has length ≍ N/(2ν3β+ζ), and we need to run through 2ν3β+ζ many

integers n ∈ I in order to apply the Chinese remainder theorem. In contrast, comparing the

bases 2 and 7, the corresponding constant

C2,7 := 1− (2− 1) log 7

(7− 1) log 2
= 0.532 . . .

will already be greater than 1/2, so new ideas will be needed for bases of “very different size”.

Meanwhile, adjacent bases b and b + 1, for example, can certainly be handled by our method;

the sequence of constants Cb,b+1 decreases to zero as b→∞.

It is sufficient to find a nontrivial estimate for the first factor in (5.2.54), concerning the

binary expansion. We are concerned with the correlation (a characteristic function) we had

in (5.2.14):

ωt(ϑ,L) =
1

2L

∑
0≤n<2L

e
(
ϑs

(L)
2 (n+ t)− ϑs(L)

2 (n)
)
.

Reusing the argument leading to [149, Lemma 2·7], and Lemma 5.2.5, we obtain the following

result.

Lemma 5.2.6. Assume that integers B ≥ 0 and L, t ≥ 1 are given such that t contains at least

2B + 1 blocks of 1s, and t < 2L. Then for all real ϑ,

∣∣ωt(ϑ,L)
∣∣ ≤ (1− 1

2
∥ϑ∥2

)B

.

Our focus therefore lies on the number B of blocks of 1s in the binary expansion of 3β+ζr.

The only thing we need to know about powers of three in this context is the fact that they are

odd integers — we exploit in an essential way the summation over r instead. The parameter R

will be a certain power of N ; in this way, the expected size of B is ≫ λ.

Note that counting the number of blocks of 1s in binary amounts to counting the number

of occurrences of 01 (where the 0 corresponds to the more significant digit), up to an error

O(1). For simplicity, we only count such occurrences where the digit 1 in the block 01 occurs

at an even index. For example, in the binary expansion 10110110 the corresponding number is

1, whereas there exist three blocks of 1s. This simplification will, on average, give 1/2 of the

actual expected value, which is sufficient for our purposes. We are therefore concerned with the

number #1(n) of 1s occurring in the base-4 expansion of n: the number of integers 0 ≤ n < 4K

such that #1(n) = ℓ is given by

4K
(
K

ℓ

)
(1/4)ℓ(3/4)K−ℓ.
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Suppose that we have R = 4K . Note that

r 7→ r3β+ζ mod 4K

is a bijection of the set {0, . . . , 4K−1}. We abbreviate α = 1−∥ϑ∥2/2, and obtain by Lemma 5.2.6

S2 :=
∑

0≤r<R

∣∣∣∣∣∣ 1

2µ2

∑
0≤n2<2µ2

e
(
ϑs

(µ2)
2

(
n2 + 3β+ζr

)
− ϑs(µ2)

2 (n2)
)∣∣∣∣∣∣

≤
∑

0≤ℓ≤K

∑
0≤r<4K

#1(r)=ℓ

α
ℓ−2
2

= 4Kα−1
∑

0≤ℓ≤K

(
K

ℓ

)
(1/4)ℓ(3/4)K−ℓαℓ/2

= 4Kα−1
(√
α/4 + 3/4

)K
.

Since
√
1 + x ≤ 1 + x/2 for x ≥ −1, we have

√
α =

(
1− ∥ϑ∥2/2

)1/2 ≤ 1− 1

4
∥ϑ∥2, (5.2.55)

and the inequality (1 + x)K = exp
(
K log(1 + x)

)
≤ exp(Kx) yields

S2 ≪ 4K exp

(
−K
16
∥ϑ∥2

)
. (5.2.56)

We translate this back to S0, noting that ∥ϑ∥ ≥ 1/m ∼ λ−1/2(log λ)1/2+ε: for some constant

C > 0 (any value C ∈ (0, 1/16) is good enough) we obtain

|S0|2 ≪ |I|2
(
R

|I|
+

3β+ζR

2µ2
+

2νR

3µ3
+ exp

(
−CKλ−1(log λ)1+2ε

))
. (5.2.57)

We see that the last term yields a contribution to S0 that is is smaller than the fair share

|I|m−1 ∼ |I|λ−1/2(log λ)1/2+ε as soon as K ≍ λ, due to the presence of the power (log λ)1+2ε

in the exponent. For this, we need to choose R = 4K as large as some positive (fixed) power

of N . At the same time we have to take care of the other error terms in (5.2.57). It is obvious

that we can choose R ≍ N ι, where ι is small, and 2µ2 resp. 3µ3 larger than R 3β+ζ resp. R 2ν

(by some small power of N), in such a way that 2µ23µ3 is still smaller than |I| (by another

power of N). Such a choice is possible by the fact that ζ < 1/2, and we commented on this

after (5.2.54). We therefore obtain (5.2.9) from (5.2.51) and (5.2.57), which completes the proof

of Proposition 5.2.4 and thus the proof of Theorem 5.1.1.

5.3 Open problems

1. Find a construction method for collisions, and for patterns of collisions as in (5.1.9), (5.1.10).

2. Prove that there are infinitely many prime numbers p such that

s2(p) = s3(p). (5.3.1)
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3. Prove or disprove the asymptotic formula

#
{
n < N : s2(n) = s3(n)

}
∼ cNη (5.3.2)

for some real constants c and η.

4. Prove an asymptotic formula (in k) for the number of solutions of the equation

2µ1 + · · ·+ 2µk = 3ν1 + · · ·+ 3νk , (5.3.3)

and for the numbers

#
{
n ∈ N : s2(n) = s3(n) = k

}
(finiteness in the second case was proved by Senge and Straus [138]).

5. Generalize Theorem 5.1.1 and Problems 1–4 to any pair (q1, q2) of multiplicatively inde-

pendent bases, and to arbitrary families (q1, . . . , qK) of pairwise coprime bases ≥ 2. It

would also be interesting to prove the existence of infinitely many Catalan numbers exactly

divisible by some power of a, where a ≥ 2 is an arbitrary integer. This property can be

defined by

ak∥n⇔
(
ak | n and gcd(na−k, a) = 1

)
. (5.3.4)

6. Study collisions of integer-valued k-regular sequences [3, 7] in coprime bases, generalizing

the sum-of-digits case.
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les fonctions digitales, Acta Arith. 165 (2014), no. 1, 11–45. MR 3263939

[100] Bruno Martin, Christian Mauduit, and Joël Rivat, Théorème des nombres premiers pour
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