The level of distribution of the Thue-Morse sequence

Lukas Spiegelhofer
Vienna University of Technology
April 19, 2018
Kooperationsworkshop SFB 55, Linz

Section 1

Arithmetic subsequences of the Thue-Morse sequence

The Thue-Morse sequence \mathbf{t}

(1) is an automatic sequence:

(2) is the base-2 sum-of-digits function s, modulo 2 .
(3) is the fixed point, starting with 0 , of the substitution

$$
\begin{aligned}
& 0 \mapsto 01 \\
& 1 \mapsto 10 .
\end{aligned}
$$

(4) can be constructed starting with $\mathbf{t}^{(0)}=0$ and setting $\mathbf{t}^{(k+1)}=\mathbf{t}^{(k)} \overline{\mathbf{t}^{(k)}}$ (Boolean complement).

The Thue-Morse sequence, continued

A less well-known characterization uses the Koch snowflake curve.
(5) The sequence $n \mapsto(-1)^{s(n)} \mathrm{e}(-n / 3)$ describes the orientation of the nth segment in the unscaled snowflake curve:

Thue-Morse, 16×16.

In particular, there are $\ll k$ many subwords of length k (as for any automatic sequence).

Thue-Morse along arithmetic progressions

011010011001011010010110011010011001011001101001011010

Thue-Morse along arithmetic progressions

011010011001011010010110011010011001011001101001011010

Thue-Morse along arithmetic progressions

$$
\begin{array}{llllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}
$$

Thue-Morse along arithmetic progressions

$$
\begin{array}{llllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}
$$

More Os than 1s (Newman's phenomenon), but not in the main term.
Theorem (Gelfond 1968)
Let $d \geq 1$ and a be integers. There is an absolute $\lambda<1$ such that

$$
|\{1 \leq n \leq x: \mathbf{t}(n)=0, n \equiv a \bmod d\}|=\frac{x}{2 d}+\mathcal{O}\left(x^{\lambda}\right)
$$

Thue-Morse along arithmetic progressions

$$
\begin{array}{llllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}
$$

More Os than 1s (Newman's phenomenon), but not in the main term.
Theorem (Gelfond 1968)
Let $d \geq 1$ and a be integers. There is an absolute $\lambda<1$ such that

$$
|\{1 \leq n \leq x: \mathbf{t}(n)=0, n \equiv a \bmod d\}|=\frac{x}{2 d}+\mathcal{O}\left(x^{\lambda}\right) .
$$

That is, for all $d \geq 1$ and $a<d$ we have

$$
\sum_{1 \leq m \leq M}(-1)^{s(m d+a)} \ll M^{\lambda}
$$

The error term for sums over APs

- We cannot get a uniform constant C in the estimate

$$
\sum_{1 \leq m \leq M}(-1)^{s(m d+a)} \leq C M^{\lambda}
$$

- This follows since there are arbitrarily long arithmetic progressions on which \mathbf{t} is constant.

The error term for sums over APs

- We cannot get a uniform constant C in the estimate

$$
\sum_{1 \leq m \leq M}(-1)^{s(m d+a)} \leq C M^{\lambda}
$$

- This follows since there are arbitrarily long arithmetic progressions on which \mathbf{t} is constant.
- Therefore we look at a certain average over d.

Theorem (Fouvry-Mauduit 1996)

$$
\sum_{1 \leq d \leq D} \max _{1 \leq y \leq x} \max _{0 \leq a<d}\left|\sum_{\substack{0 \leq n<y \\ n \equiv a \bmod d}}(-1)^{s(n)}\right| \leq C x^{1-\eta}
$$

for some $\eta>0$ and C and $D=x^{0.5924}$.

The error term for sums over APs

- We cannot get a uniform constant C in the estimate

$$
\sum_{1 \leq m \leq M}(-1)^{s(m d+a)} \leq C M^{\lambda}
$$

- This follows since there are arbitrarily long arithmetic progressions on which \mathbf{t} is constant.
- Therefore we look at a certain average over d.

Theorem (Fouvry-Mauduit 1996)
for some $\eta>0$ and C and $D=x^{0.5924}$ observed - expected

The error term for sums over APs

- We cannot get a uniform constant C in the estimate

$$
\sum_{1 \leq m \leq M}(-1)^{s(m d+a)} \leq C M^{\lambda}
$$

- This follows since there are arbitrarily long arithmetic progressions on which \mathbf{t} is constant.
- Therefore we look at a certain average over d.

Theorem (Fouvry-Mauduit 1996) selects the "worst" AP contained in $[0, x)$

for some $\eta>0$ and C and $D=x^{0.5924}$. observed - expected

The level of distribution of the Thue-Morse sequence

Theorem (Spiegelhofer 2018+)
The Thue-Morse sequence has level of distribution 1. More precisely, let $0<\varepsilon<1$. There exist $\eta>0$ and C such that

$$
\sum_{1 \leq d \leq D} \max _{0 \leq y \leq x} \max _{0 \leq a<d}\left|\sum_{\substack{0 \leq n<y \\ n \equiv a \bmod d}}(-1)^{s(n)}\right| \leq C x^{1-\eta}
$$

for $D=x^{1-\varepsilon}$.

The level of distribution of the Thue-Morse sequence

Theorem (Spiegelhofer 2018+)
The Thue-Morse sequence has level of distribution 1. More precisely, let $0<\varepsilon<1$. There exist $\eta>0$ and C such that

$$
\sum_{1 \leq d \leq D} \max _{0 \leq y \leq x} \max _{0 \leq a<d}\left|\sum_{\substack{0 \leq n<y \\ n \equiv a \bmod d}}(-1)^{s(n)}\right| \leq C x^{1-\eta}
$$

for $D=x^{1-\varepsilon}$.

- This is a statement on sparse arithmetic progressions: the Thue-Morse sequence usually shows cancellation along N -term arithmetic progressions having common difference $\sim N^{R}$, where $R>0$ is arbitrary.

Sparse arithmetic subsequences of TM

TM along short arithmetic subsequences (with respect to the common difference) even seems to behave randomly.

128×128 terms, common difference $=3^{21} \leadsto$ chaos $!$

Sparse arithmetic subsequences of TM

TM along short arithmetic subsequences (with respect to the common difference) even seems to behave randomly.

128×128 terms, common difference $=3^{21} \leadsto$ chaos!

Does every pattern occur?

Theorem (Müllner, Spiegelhofer 2017)
Every finite sequence over $\{0,1\}$ appears as an arithmetic subsequence of the Thue-Morse sequence.

Does every pattern occur?

Theorem (Müllner, Spiegelhofer 2017)
Every finite sequence over $\{0,1\}$ appears as an arithmetic subsequence of the Thue-Morse sequence.

This is a corollary of the following statement: for most $d \sim N^{2-\varepsilon}$, the number of times that $\omega \in\{0,1\}^{L}$ appears as a subword of $(\mathbf{t}(n d+a))_{n<N}$ is close to the expected value.

Does every pattern occur?

Theorem (Müllner, Spiegelhofer 2017)

Every finite sequence over $\{0,1\}$ appears as an arithmetic subsequence of the Thue-Morse sequence.

This is a corollary of the following statement: for most $d \sim N^{2-\varepsilon}$, the number of times that $\omega \in\{0,1\}^{L}$ appears as a subword of $(\mathbf{t}(n d+a))_{n<N}$ is close to the expected value.
纸 Handle occurrences of subwords in $n \mapsto \mathbf{t}(n d+a)$ for $d \sim N^{R}$.

Does every pattern occur?

Theorem (Müllner, Spiegelhofer 2017)
Every finite sequence over $\{0,1\}$ appears as an arithmetic subsequence of the Thue-Morse sequence.

This is a corollary of the following statement: for most $d \sim N^{2-\varepsilon}$, the number of times that $\omega \in\{0,1\}^{L}$ appears as a subword of $(\mathbf{t}(n d+a))_{n<N}$ is close to the expected value.
Handle occurrences of subwords in $n \mapsto \mathbf{t}(n d+a)$ for $d \sim N^{R}$.
?? Pseudorandom properties: is $\mathbf{t}(n d+a)$ a good PRNG?

Section 2

Sparse infinite subsequences of Thue-Morse

The Thue-Morse sequence along sparse subsequences

The sum of digits of $\left\lfloor n^{c}\right\rfloor$ is an approximation to the problem "the sum of digits of $p(n)$ ".

The Thue-Morse sequence along sparse subsequences

The sum of digits of $\left\lfloor n^{c}\right\rfloor$ is an approximation to the problem "the sum of digits of $p(n)$ ".

Theorem (Corollary of Mauduit-Rivat 2005)
Let $1<c<1.4$. There exists a $\eta>0$ such that

$$
\sum_{1 \leq n \leq x}(-1)^{s\left(\left\lfloor n^{c}\right\rfloor\right)} \ll x^{1-\eta}
$$

In particular, for $1<c<1.4$, the sequence $n \mapsto \mathbf{t}\left(\left\lfloor n^{c}\right\rfloor\right)$ is simply normal.

The Thue-Morse sequence along sparse subsequences

Theorem (Mauduit-Rivat 2009, Acta Math.)
The Thue-Morse sequence along the sequence of squares is simply normal.

The Thue-Morse sequence along sparse subsequences

Theorem (Mauduit-Rivat 2009, Acta Math.)

The Thue-Morse sequence along the sequence of squares is simply normal.
Theorem (Drmota-Mauduit-Rivat 2018)
The Thue-Morse sequence along the sequence of squares is normal: every block $B \in\{0,1\}^{k}$ appears as a subword with asymptotic frequency $1 / 2^{k}$.

The Thue-Morse sequence along sparse subsequences

Theorem (Mauduit-Rivat 2009, Acta Math.)

The Thue-Morse sequence along the sequence of squares is simply normal.
Theorem (Drmota-Mauduit-Rivat 2018)
The Thue-Morse sequence along the sequence of squares is normal: every block $B \in\{0,1\}^{k}$ appears as a subword with asymptotic frequency $1 / 2^{k}$.

- What about exponents $c \in[1.4,2)$?

Theorem (Spiegelhofer 2014)
The Thue-Morse sequence along $\left\lfloor n^{c}\right\rfloor$ is simply normal for $1<c \leq 1.42$.

The Thue-Morse sequence along sparse subsequences

Theorem (Mauduit-Rivat 2009, Acta Math.)

The Thue-Morse sequence along the sequence of squares is simply normal.
Theorem (Drmota-Mauduit-Rivat 2018)
The Thue-Morse sequence along the sequence of squares is normal: every block $B \in\{0,1\}^{k}$ appears as a subword with asymptotic frequency $1 / 2^{k}$.

- What about exponents $c \in[1.4,2)$?

Theorem (Spiegelhofer 2014)
The Thue-Morse sequence along $\left\lfloor n^{c}\right\rfloor$ is simply normal for $1<c \leq 1.42$.
Theorem (Müllner-Spiegelhofer 2017)
The Thue-Morse sequence along $\left\lfloor n^{c}\right\rfloor$ is normal for $1<c<1.5$.

Application: the Thue-Morse sequence along $\left\lfloor n^{c}\right\rfloor$

Theorem (Spiegelhofer 2018+)
The Thue-Morse sequence along $\left\lfloor n^{c}\right\rfloor$ is simply normal for $1<c<2$.

Application: the Thue-Morse sequence along $\left\lfloor n^{c}\right\rfloor$

Theorem (Spiegelhofer 2018+)
The Thue-Morse sequence along $\left\lfloor n^{c}\right\rfloor$ is simply normal for $1<c<2$. $\xrightarrow{4 \text { I }}$ The Thue-Morse sequence along $\left\lfloor n^{c}\right\rfloor$ is normal for $1<c<2$.

Application: the Thue-Morse sequence along $\left\lfloor n^{c}\right\rfloor$

Theorem (Spiegelhofer 2018+)
The Thue-Morse sequence along $\left\lfloor n^{c}\right\rfloor$ is simply normal for $1<c<2$. $\xrightarrow{4 \text { 纪 }}$ The Thue-Morse sequence along $\left\lfloor n^{c}\right\rfloor$ is normal for $1<c<2$.

Connection to our main theorem: linear approximation.

Piatetski-Shapiro via Beatty sequences

Proposition (Spiegelhofer 2014)
We write $f(x)=x^{c}$, where $1<c<2$ is a real number. There exists a constant C such that for all $N \geq 2$ and $K>0$ we have

$$
\left|\frac{1}{N} \sum_{N<n \leq 2 N}(-1)^{s\left(\left\lfloor n^{c}\right\rfloor\right)}\right| \leq C\left(f^{\prime \prime}(N) K^{2}+\frac{(\log N)^{2}}{K}+\frac{J\left(f^{\prime}(N), K\right)}{f^{\prime}(N) K}\right),
$$

where

$$
J(D, K)=\int_{D}^{2 D} \max _{\beta \geq 0}\left|\sum_{0 \leq n<K}(-1)^{s(\lfloor n \alpha+\beta\rfloor)}\right| \mathrm{d} \alpha .
$$

Piatetski-Shapiro via Beatty sequences

Proposition (Spiegelhofer 2014)

We write $f(x)=x^{c}$, where $1<c<2$ is a real number. There exists a constant C such that for all $N \geq 2$ and $K>0$ we have

$$
\begin{aligned}
& \left|\frac{1}{N} \sum_{N<n \leq 2 N}(-1)^{s\left(\left\lfloor n^{c}\right\rfloor\right)}\right| \leq C\left(f^{\prime \prime}(N) K^{2}+\frac{(\log N)^{2}}{K}+\frac{J\left(f^{\prime}(N), K\right)}{f^{\prime}(N) K}\right) \\
& \text { where }
\end{aligned}
$$

$$
J(D, K)=\int_{D}^{2 D} \max _{\beta \geq 0}\left|\sum_{0 \leq n<K}(-1)^{s(\lfloor n \alpha+\beta\rfloor)}\right| \mathrm{d} \alpha .
$$

Piatetski-Shapiro via Beatty sequences

Proposition (Spiegelhofer 2014)

We write $f(x)=x^{c}$, where $1<c<2$ is a real number. There exists a constant C such that for all $N \geq 2$ and $K>0$ we have

$$
\begin{aligned}
& \left|\frac{1}{N} \sum_{N<n \leq 2 N}(-1)^{s\left(\left\lfloor n^{c}\right\rfloor\right)}\right| \leq C\left(f^{\prime \prime}(N) K^{2}+\frac{(\log N)^{2}}{K}+\frac{J\left(f^{\prime}(N), K\right)}{f^{\prime}(N) K}\right) \\
& \text { where }
\end{aligned}
$$

$$
J(D, K)=\int_{D}^{2 D} \max _{\beta \geq 0}\left|\sum_{0 \leq n<K}(-1)^{s(\lfloor n \alpha+\beta\rfloor)}\right| \mathrm{d} \alpha
$$

- The problem is reduced to a Beatty sequence version of our main theorem!

Piatetski-Shapiro via Beatty sequences

Proposition (Spiegelhofer 2014)

We write $f(x)=x^{c}$, where $1<c<2$ is a real number. There exists a constant C such that for all $N \geq 2$ and $K>0$ we have

$$
\begin{aligned}
& \left|\frac{1}{N} \sum_{N<n \leq 2 N}(-1)^{s\left(\left\lfloor n^{c}\right\rfloor\right)}\right| \leq C\left(f^{\prime \prime}(N) K^{2}+\frac{(\log N)^{2}}{K}+\frac{J\left(f^{\prime}(N), K\right)}{f^{\prime}(N) K}\right) \\
& \text { where }
\end{aligned}
$$

$$
J(D, K)=\int_{D}^{2 D} \max _{\beta \geq 0}\left|\sum_{0 \leq n<K}(-1)^{s(\lfloor n \alpha+\beta\rfloor)}\right| \mathrm{d} \alpha .
$$

- The problem is reduced to a Beatty sequence version of our main theorem!
- The proof of this new statement is analogous to the main theorem.

Thank you! ${ }^{\text {' }}$

[^0]
[^0]: ${ }^{1}$ Supported by SFB 55 and the FWF-ANR joint project MuDeRa

