The level of distribution of the Thue–Morse sequence

Lukas Spiegelhofer

Vienna University of Technology

April 19, 2018 Kooperationsworkshop SFB 55, Linz

Section 1

Arithmetic subsequences of the Thue–Morse sequence

The Thue–Morse sequence t

(1) is an automatic sequence:

- (2) is the base-2 sum-of-digits function s, modulo 2.
- (3) is the fixed point, starting with 0, of the substitution

 $0 \mapsto 01$ $1 \mapsto 10.$

(4) can be constructed starting with $\mathbf{t}^{(0)} = 0$ and setting $\mathbf{t}^{(k+1)} = \mathbf{t}^{(k)} \overline{\mathbf{t}^{(k)}}$ (Boolean complement).

The Thue-Morse sequence, continued

A less well-known characterization uses the Koch snowflake curve.

(5) The sequence $n \mapsto (-1)^{s(n)} e(-n/3)$ describes the orientation of the *n*th segment in the unscaled snowflake curve:

Thue–Morse, 16×16 .

In particular, there are $\ll k$ many subwords of length k (as for any automatic sequence).

Lukas Spiegelhofer (TU Vienna)

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

More 0s than 1s (Newman's phenomenon), but not in the main term. Theorem (Gelfond 1968)

Let $d \geq 1$ and a be integers. There is an absolute $\lambda < 1$ such that

$$\left|\left\{1 \leq n \leq x : \mathbf{t}(n) = 0, n \equiv a \mod d\right\}\right| = \frac{x}{2d} + \mathcal{O}(x^{\lambda}).$$

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

More 0s than 1s (Newman's phenomenon), but not in the main term. Theorem (Gelfond 1968) Let d > 1 and a be integers. There is an absolute $\lambda < 1$ such that

$$\left|\{1 \le n \le x : \mathbf{t}(n) = 0, n \equiv a \mod d\}\right| = \frac{x}{2d} + \mathcal{O}(x^{\lambda}).$$

That is, for all $d \ge 1$ and a < d we have

$$\sum_{1\leq m\leq M} (-1)^{s(md+a)} \ll M^{\lambda}.$$

Lukas Spiegelhofer (TU Vienna)

Level of distribution of the Thue-Morse sequence

April 19, 2018 6 / 16

▶ We cannot get a uniform constant *C* in the estimate

$$\sum_{1 \le m \le M} (-1)^{s(md+a)} \le CM^{\lambda}.$$

This follows since there are arbitrarily long arithmetic progressions on which t is constant.

▶ We cannot get a uniform constant *C* in the estimate

$$\sum_{1 \le m \le M} (-1)^{s(md+a)} \le CM^{\lambda}.$$

- This follows since there are arbitrarily long arithmetic progressions on which t is constant.
- ▶ Therefore we look at a certain average over *d*.

Theorem (Fouvry–Mauduit 1996)

$$\sum_{1 \le d \le D} \max_{1 \le y \le x} \max_{0 \le a < d} \left| \sum_{\substack{0 \le n < y \\ n \equiv a \bmod d}} (-1)^{s(n)} \right| \le C x^{1-\eta}$$

for some $\eta > 0$ and C and $D = x^{0.5924}$.

Lukas Spiegelhofer (TU Vienna)

▶ We cannot get a uniform constant *C* in the estimate

$$\sum_{1 \le m \le M} (-1)^{s(md+a)} \le CM^{\lambda}.$$

- This follows since there are arbitrarily long arithmetic progressions on which t is constant.
- ▶ Therefore we look at a certain average over *d*.

Theorem (Fouvry-Mauduit 1996) $\sum_{1 \le d \le D} \max_{1 \le y \le x} \max_{0 \le a < d} \left| \sum_{\substack{0 \le n < y \\ n \equiv a \mod d}} (-1)^{s(n)} \right| \le Cx^{1-\eta}$ for some $\eta > 0$ and C and $D = x^{0.5924}$.

Lukas Spiegelhofer (TU Vienna)

• We cannot get a uniform constant C in the estimate

$$\sum_{1 \le m \le M} (-1)^{s(md+a)} \le CM^{\lambda}.$$

- This follows since there are arbitrarily long arithmetic progressions on which t is constant.
- Therefore we look at a certain average over d.

Lukas Spiegelhofer (TU Vienna)

The level of distribution of the Thue-Morse sequence

Theorem (Spiegelhofer 2018+)

The Thue–Morse sequence has level of distribution 1. More precisely, let $0 < \varepsilon < 1$. There exist $\eta > 0$ and C such that

$$\sum_{1 \le d \le D} \max_{\substack{0 \le y \le x \ 0 \le a < d}} \max_{\substack{0 \le n < y \\ n \equiv a \bmod d}} (-1)^{s(n)} \bigg| \le C x^{1-\eta}$$

for $D = x^{1-\varepsilon}$.

The level of distribution of the Thue-Morse sequence

Theorem (Spiegelhofer 2018+)

The Thue–Morse sequence has level of distribution 1. More precisely, let $0 < \varepsilon < 1$. There exist $\eta > 0$ and C such that

$$\sum_{1 \le d \le D} \max_{0 \le y \le x} \max_{0 \le a < d} \left| \sum_{\substack{0 \le n < y \\ n \equiv a \bmod d}} (-1)^{s(n)} \right| \le C x^{1 - \eta}$$

for $D = x^{1-\varepsilon}$.

This is a statement on *sparse* arithmetic progressions: the Thue–Morse sequence usually shows cancellation along *N*-term arithmetic progressions having common difference ~ N^R, where R > 0 is arbitrary.

Sparse arithmetic subsequences of TM

TM along short arithmetic subsequences (with respect to the common difference) even seems to behave randomly.

 128×128 terms, common difference $=3^{21} \rightsquigarrow$ chaos!

Lukas Spiegelhofer (TU Vienna)

Sparse arithmetic subsequences of TM

TM along short arithmetic subsequences (with respect to the common difference) even seems to behave randomly.

Lukas Spiegelhofer (TU Vienna)

Theorem (Müllner, Spiegelhofer 2017)

Every finite sequence over $\{0,1\}$ appears as an arithmetic subsequence of the Thue–Morse sequence.

Theorem (Müllner, Spiegelhofer 2017)

Every finite sequence over $\{0,1\}$ appears as an arithmetic subsequence of the Thue–Morse sequence.

This is a corollary of the following statement: for most $d \sim N^{2-\varepsilon}$, the number of times that $\omega \in \{0, 1\}^L$ appears as a subword of $(\mathbf{t}(nd + a))_{n < N}$ is close to the expected value.

Theorem (Müllner, Spiegelhofer 2017)

Every finite sequence over $\{0,1\}$ appears as an arithmetic subsequence of the Thue–Morse sequence.

This is a corollary of the following statement: for most $d \sim N^{2-\varepsilon}$, the number of times that $\omega \in \{0, 1\}^L$ appears as a subword of $(\mathbf{t}(nd + a))_{n < N}$ is close to the expected value.

\$\$\$

² Handle occurrences of subwords in $n \mapsto \mathbf{t}(nd + a)$ for $d \sim N^R$.

Theorem (Müllner, Spiegelhofer 2017)

Every finite sequence over $\{0,1\}$ appears as an arithmetic subsequence of the Thue–Morse sequence.

This is a corollary of the following statement: for most $d \sim N^{2-\varepsilon}$, the number of times that $\omega \in \{0, 1\}^L$ appears as a subword of $(\mathbf{t}(nd + a))_{n < N}$ is close to the expected value.

\$ \$ \$

 $\stackrel{\frown}{2}$ Handle occurrences of subwords in $n \mapsto \mathbf{t}(nd + a)$ for $d \sim N^R$.

?? Pseudorandom properties: is t(nd + a) a good PRNG?

Section 2

Sparse infinite subsequences of Thue–Morse

The sum of digits of $\lfloor n^c \rfloor$ is an approximation to the problem "the sum of digits of p(n)".

The sum of digits of $\lfloor n^c \rfloor$ is an approximation to the problem "the sum of digits of p(n)".

Theorem (Corollary of Mauduit-Rivat 2005)

Let 1 < c < 1.4. There exists a $\eta > 0$ such that

$$\sum_{1 \le n \le x} (-1)^{s(\lfloor n^c \rfloor)} \ll x^{1-\eta}.$$

In particular, for 1 < c < 1.4, the sequence $n \mapsto t(\lfloor n^c \rfloor)$ is simply normal.

Theorem (Mauduit–Rivat 2009, Acta Math.)

The Thue–Morse sequence along the sequence of squares is simply normal.

Theorem (Mauduit–Rivat 2009, Acta Math.)

The Thue–Morse sequence along the sequence of squares is simply normal.

Theorem (Drmota–Mauduit–Rivat 2018)

The Thue–Morse sequence along the sequence of squares is normal: every block $B \in \{0,1\}^k$ appears as a subword with asymptotic frequency $1/2^k$.

Theorem (Mauduit–Rivat 2009, Acta Math.)

The Thue–Morse sequence along the sequence of squares is simply normal.

Theorem (Drmota–Mauduit–Rivat 2018)

The Thue–Morse sequence along the sequence of squares is normal: every block $B \in \{0, 1\}^k$ appears as a subword with asymptotic frequency $1/2^k$.

• What about exponents $c \in [1.4, 2)$?

Theorem (Spiegelhofer 2014)

The Thue–Morse sequence along $\lfloor n^c \rfloor$ is simply normal for $1 < c \le 1.42$.

Theorem (Mauduit–Rivat 2009, Acta Math.)

The Thue–Morse sequence along the sequence of squares is simply normal.

Theorem (Drmota-Mauduit-Rivat 2018)

The Thue–Morse sequence along the sequence of squares is normal: every block $B \in \{0, 1\}^k$ appears as a subword with asymptotic frequency $1/2^k$.

• What about exponents $c \in [1.4, 2)$?

Theorem (Spiegelhofer 2014)

The Thue–Morse sequence along $\lfloor n^c \rfloor$ is simply normal for $1 < c \le 1.42$.

Theorem (Müllner–Spiegelhofer 2017)

The Thue–Morse sequence along $\lfloor n^c \rfloor$ is normal for 1 < c < 1.5.

Application: the Thue–Morse sequence along $|n^c|$

Theorem (Spiegelhofer 2018+)

The Thue–Morse sequence along $\lfloor n^c \rfloor$ is simply normal for 1 < c < 2.

Application: the Thue–Morse sequence along $\lfloor n^c \rfloor$ Theorem (Spiegelhofer 2018+)

The Thue–Morse sequence along $\lfloor n^c \rfloor$ is simply normal for 1 < c < 2. The Thue–Morse sequence along $\lfloor n^c \rfloor$ is normal for 1 < c < 2. Application: the Thue–Morse sequence along $\lfloor n^c \rfloor$ Theorem (Spiegelhofer 2018+) The Thue–Morse sequence along $\lfloor n^c \rfloor$ is simply normal for 1 < c < 2.

Connection to our main theorem: linear approximation.

120 -Exact approximation for 100 most integers in an interval 80 -60 -40 -• |0.06*n*^{1.7}| ■ 1.6860n - 38.1826 20 -0 +► n 20 $n_0 = 55$ 80

Proposition (Spiegelhofer 2014)

We write $f(x) = x^c$, where 1 < c < 2 is a real number. There exists a constant C such that for all $N \ge 2$ and K > 0 we have

$$\left|\frac{1}{N}\sum_{N < n \leq 2N} (-1)^{s(\lfloor n^c \rfloor)}\right| \leq C\left(f''(N)K^2 + \frac{(\log N)^2}{K} + \frac{J(f'(N),K)}{f'(N)K}\right),$$

where

$$J(D, K) = \int_{D}^{2D} \max_{\beta \ge 0} \left| \sum_{0 \le n < K} (-1)^{s(\lfloor n\alpha + \beta \rfloor)} \right| \mathrm{d}\alpha.$$

Proposition (Spiegelhofer 2014)

We write $f(x) = x^c$, where 1 < c < 2 is a real number. There exists a constant C such that for all $N \ge 2$ and K > 0 we have

$$\begin{aligned} \left| \frac{1}{N} \sum_{N < n \le 2N} (-1)^{s(\lfloor n^c \rfloor)} \right| &\leq C \left(f''(N)K^2 + \frac{(\log N)^2}{K} + \frac{J(f'(N), K)}{f'(N)K} \right), \\ where \\ J(D, K) &= \int_D^{2D} \max_{\beta \ge 0} \left| \sum_{0 \le n < K} (-1)^{s(\lfloor n\alpha + \beta \rfloor)} \right| d\alpha. \end{aligned}$$

Proposition (Spiegelhofer 2014)

We write $f(x) = x^c$, where 1 < c < 2 is a real number. There exists a constant C such that for all $N \ge 2$ and K > 0 we have

$$\begin{aligned} \left| \frac{1}{N} \sum_{N < n \le 2N} (-1)^{s(\lfloor n^c \rfloor)} \right| &\leq C \left(f''(N)K^2 + \frac{(\log N)^2}{K} + \frac{J(f'(N), K)}{f'(N)K} \right), \\ where \\ J(D, K) &= \int_D^{2D} \max_{\beta \ge 0} \left| \sum_{0 \le n < K} (-1)^{s(\lfloor n\alpha + \beta \rfloor)} \right| d\alpha. \end{aligned}$$

The problem is reduced to a Beatty sequence version of our main theorem!

Proposition (Spiegelhofer 2014)

We write $f(x) = x^c$, where 1 < c < 2 is a real number. There exists a constant C such that for all $N \ge 2$ and K > 0 we have

$$\begin{aligned} \left| \frac{1}{N} \sum_{N < n \le 2N} (-1)^{s(\lfloor n^c \rfloor)} \right| &\leq C \left(f''(N)K^2 + \frac{(\log N)^2}{K} + \frac{J(f'(N), K)}{f'(N)K} \right), \\ where \\ J(D, K) &= \int_D^{2D} \max_{\beta \ge 0} \left| \sum_{0 \le n < K} (-1)^{s(\lfloor n\alpha + \beta \rfloor)} \right| d\alpha. \end{aligned}$$

- The problem is reduced to a Beatty sequence version of our main theorem!
- ► The proof of this new statement is analogous to the main theorem.

Thank you! ¹

¹Supported by SFB 55 and the FWF-ANR joint project MuDeRa

Lukas Spiegelhofer (TU Vienna) Level of distribution of the Thue–Morse sequence