The level of distribution of the Zeckendorf sum of digits

Lukas Spiegelhofer
Joint work with Michael Drmota and Clemens Müllner

TU Vienna
February 21, 2019
Topology of planar and higher dimensional self-replicating tiles, Salzburg

The Zeckendorf expansion

Every nonnegative integer n is the sum of different, non-adjacent Fibonacci numbers F_{i} and such a representation is unique \leadsto Zeckendorf expansion.

0	0	0	8	10000	1	16	100100	2
1	1	1	9	10001	2	17	100101	3
2	10	1	10	10010	2	18	101000	2
3	100	1	11	10100	2	19	101001	3
4	101	2	12	10101	3	20	101010	3
5	1000	1	13	100000	1	21	1000000	1
6	1001	2	14	100001	2	22	1000001	2
7	1010	2	15	100010	2	23	1000010	2

- The number of 1 s needed is the Zeckendorf sum of digits $Z(n)$ of n.
- The Zeckendorf expansion is a generalization of the Fibonacci word, which is given by the lowest digit.

A morphic sequence

We are specifically interested in the function $Z(n)$ modulo 2 ; the resulting sequence is morphic and can be obtained by the following substitution σ followed by the projection π.

$$
\sigma:\left\{\begin{array}{lll}
a & \mapsto & a b \\
b & \mapsto & c \\
c & \mapsto & c d \\
d & \mapsto & a
\end{array}\right\}, \quad \pi:\left\{\begin{array}{lll}
a & \mapsto & 0 \\
b & \mapsto & 1 \\
c & \mapsto & 1 \\
d & \mapsto & 0
\end{array}\right\} .
$$

We are interested in the fixed point starting with a. Therefore,

$$
(Z(n) \bmod 2)_{n \geq 0}=(011101001000110001011100 \ldots) .
$$

Möbius orthogonality

Recall that the Möbius function μ is defined by

$$
\mu(n)= \begin{cases}0, & n \text { is divisible by a square; } \\ (-1)^{k}, & n \text { is the product of } k \text { different primes }\end{cases}
$$

Theorem (Drmota, Müllner, S. 2017)

$$
\sum_{0 \leq n<N} \mu(n)(-1)^{Z(n)}=o(N)
$$

- This is one of the first examples of a morphic sequence satisfying a Möbius randomness principle (cf. Sarnak conjecture).
- One goal in this context is to prove a prime number theorem for $Z(n) \bmod 2$: half of all prime numbers should have an even Zeckendorf sum of digits.

An easy start: the parity of $Z(n)$

 Is the Zeckendorf sum-of-digits of n even for "one half" of the integers? In other words, we want to have$$
\sum_{0 \leq n<N}(-1)^{Z(n)}=o(N)
$$

- We set

$$
S_{k}=\sum_{0 \leq n<F_{k}}(-1)^{Z(n)} .
$$

- These numbers satisfy the simple recurrence relation

$$
S_{k+1}=S_{k}+\sum_{F_{k} \leq n<F_{k+1}}(-1)^{Z(n)}=S_{k}-S_{k-1}
$$

which leads to $S_{k+3}=-S_{k}$. From this we get the statement after decomposing [$0, N$) into "Fibonacci intervals" analogous to dyadic intervals.

$Z(n) \bmod 2$ on arithmetic progressions

- With a bit more work using trigonometric detection

$$
\mathbf{1}_{a+d \mathbb{Z}}(n)=\frac{1}{d} \sum_{0 \leq h<d} \exp (2 \pi i h(n-a) / d)
$$

we can also obtain

$$
\sum_{0 \leq n<N}(-1)^{Z(n d+a)}=o(N)
$$

for each given $d \geq 1$ and $a \geq 0$.

- However, the error cannot be uniform in d and a! (van der Waerden's theorem.) \leadsto we are interested in certain averages - level of distribution.

The level of distribution

The following result is work in progress.
Theorem (Drmota, Müllner, S. 2019+)
The Zeckendorf sum-of-digits function modulo 2 has level of distribution 1. More precisely, for all $\varepsilon>0$ we have

$$
\sum_{D \leq d<2 D} \max _{\substack{y, z \geq 0 \\ z-y \leq x}} \max _{0 \leq a<d}\left|\sum_{\substack{y \leq n<z \\ n \equiv a \bmod d}}(-1)^{Z(n)}\right|=\mathcal{O}\left(x^{1-\eta}\right)
$$

for some $\eta>0$ depending on ε, where $D=x^{1-\varepsilon}$.
This is analogous to the main theorem proved in [S. 2018]: The Thue-Morse sequence (the sum-of-digits function in base 2, modulo 2) has level of distribution 1.

The van der Corput trick

In order to prove this, we use the van der Corput inequality as in the work of Mauduit and Rivat on the sum of digits of primes and squares.

Lemma
Let I be a finite interval in \mathbb{Z} containing N integers and let $a_{n} \in \mathbb{C}$ for $n \in I$. Assume that $R \geq 1$ is an integer. Then

$$
\left|\sum_{n \in I} a_{n}\right|^{2} \leq \frac{N+R-1}{R} \sum_{-R<r<R}\left(1-\frac{|r|}{R}\right) \sum_{\substack{n \in I \\ n+r \in I}} a_{n+r} \overline{a_{n}}
$$

\Rightarrow A sum can be estimated using certain correlations.

The reduced problem

- It follows that we have to estimate the correlations

$$
S_{1}=\sum_{0 \leq n<N}(-1)^{Z(n d+a+r d)-Z(n d+a)}
$$

- Addition of $r d$ will usually not change the digits above λ, where $F_{\lambda} \gg R D$.
- Since we take differences (thanks to van der Corput's inequality!) we can replace Z by the truncated Zeckendorf sum-of-digits function Z_{λ} :

$$
Z_{\lambda}\left(\varepsilon_{2} F_{2}+\cdots+\varepsilon_{\nu} F_{\nu}\right)=\varepsilon_{2}+\cdots+\varepsilon_{\min (\nu, \lambda-1)}
$$

for all $\varepsilon_{i} \in\{0,1\}$ such that $\varepsilon_{i+1}=1 \Rightarrow \varepsilon_{i}=0$.

- It remains to handle

$$
S_{2}=\sum_{0 \leq n<N}(-1)^{Z_{\lambda}(n d+a+r d)-Z_{\lambda}(n d+a)} .
$$

Reducing the number of significant digits

- The function Z_{λ} takes λ many digits into account $\leadsto F_{\lambda}$ many combinations.
- In general, the length N of the sum will be much smaller than F_{λ} (a small power $F_{\lambda}^{\varepsilon}$).
- \leadsto we want to further reduce the number of significant digits. For this, we use a variant of van der Corput's inequality repeatedly.
- In the i-th application, we eliminate the digits between $\lambda-i \mu$ and $\lambda-(i-1) \mu$; in the process, the number of terms in the exponent of (-1) doubles each time.
- Only a small window $[0, \rho)$ of digits remains.

The Zeckendorf Gowers norm

We obtain the expression

$$
S_{3}=\sum_{0 \leq n<N} \prod_{\varepsilon_{0}, \ldots, \varepsilon_{m} \in\{0,1\}}(-1)^{Z_{\lambda}\left(n d+a+\varepsilon_{0} r d+\varepsilon_{1} k_{1} d+\cdots+\varepsilon_{m} k_{m} d\right)}
$$

This process leads us (after a lot of technicalities) to so-called Gowers norms for the Zeckendorf sum-of-digits function: we need to find a nontrivial upper bound for

$$
\sum_{\substack{0 \leq n<F_{\rho} \\ 0 \leq r_{1}, \ldots, r_{m}<F_{\rho}}} \prod_{\varepsilon \in\{0,1\}^{m}}(-1)^{Z_{\rho}(n+\varepsilon \cdot r)} .
$$

Such an estimate was provided by Clemens Müllner.

Detection of digits

The key of transforming S_{3} to a Gowers norm lies in the detection of Zeckendorf digits in an "analytical" way. Let $k \geq 2$ and $n \geq 0$. For $k \geq 2$ and $n=\sum_{i \geq 2} \varepsilon_{i} F_{i}$, we define

$$
v_{k}(n)=\sum_{2 \leq i<k} \varepsilon_{i} F_{i}
$$

- This function cuts off the digits with indices $\geq k$.
- In contrast to the base- q analogue, this function is not periodic. Note that v_{3} is the Fibonacci word $0100101001001 \ldots$
- We are interested in integers n such that $v_{k}(n)=u$.

One-dimensional detection of digits

We define $(\varphi=(\sqrt{5}+1) / 2$ is the golden mean $)$

$$
A_{k}=\left[-\frac{1}{\varphi^{k-1}}, \frac{1}{\varphi^{k}}\right) \quad \text { and } \quad B_{k}=\left[-\frac{1}{\varphi^{k+1}}, \frac{1}{\varphi^{k}}\right) .
$$

Let $p_{k}(n)=(-1)^{k} n \varphi$. Moreover, we set

$$
R_{k}(u)=p_{k}(u)+ \begin{cases}A_{k}, & 0 \leq u<F_{k-1} \\ B_{k}, & F_{k-1} \leq u<F_{k} .\end{cases}
$$

The sets $R_{k}(u)+\mathbb{Z}$ form a partition of \mathbb{R}. Moreover,

$$
p_{k}(n) \in R_{k}\left(v_{k}(n)\right)+\mathbb{Z}
$$

In particular, the Zeckendorf digits of n up to k are fixed if and only if $n \varphi \in I+\mathbb{Z}$ for a certain interval I.
For $k=3$ we rediscover the lowest digit, which is a Sturmian sequence.

One-dimensional detection is not sufficient

- However, the intervals corresponding to consecutive digit combinations are separated from each other: We have $R_{5}(0)+\mathbb{Z} \approx[-0.145,0.090)+\mathbb{Z}$ (corresponding to 000), while $R_{5}(1)+\mathbb{Z} \approx[0.236,0.472)+\mathbb{Z}$ (corresponding to 001). In between lies the interval corresponding to 100.
- In order to detect digits between indices $\lambda-i \mu$ and $\lambda-(i-1) \mu$, we would need a union of many small intervals $l ; \leadsto$ too many!
- We therefore work with a two-dimensional detection of Zeckendorf digits.

Two-dimensional detection

We introduce the function $\tilde{p}: \mathbb{N} \rightarrow \mathbb{R}^{2}$ by

$$
\tilde{p}_{k}(n)=\left(\frac{n}{\varphi^{k}}, \frac{n}{\varphi^{k+1}}\right) .
$$

The closure of the set of points $\tilde{p}_{k}(n) \bmod (1,1)$ is a finite set of lines with slope $-F_{k+1} / F_{k}$. Example for $k=3$: slope $-3 / 2$.

Two-dimensional detection of digits

We define parallelograms A_{k} and B_{k} :

$$
\begin{array}{c|c}
A_{k} & B_{k} \\
-\frac{1}{2} \leq F_{k+1} x+F_{k} y<\frac{1}{2} & -\frac{1}{2} \leq F_{k+1} x+F_{k} y<\frac{1}{2} \\
-\varphi<-\frac{1}{\varphi} x+y<1 & -\frac{1}{\varphi} \leq-\frac{1}{\varphi} x+y<1
\end{array}
$$

With their help we define regions R_{u} :

$$
R_{k}(u)=\tilde{p}_{k}(u)+\left\{\begin{array}{lr}
A_{k}, & 0 \leq u<F_{k-1} \\
B_{k}, & F_{k-1} \leq u<F_{k} .
\end{array}\right.
$$

The sets $R_{k}(u)+\mathbb{Z}^{2}$ form a partition of \mathbb{R}^{2} and we have $v_{k}(n)=u$ if and only if $\tilde{p}_{k}(n) \in R_{k}(u)+\mathbb{Z}^{2}$.

The regions R_{u} : 0 significant digits

The regions R_{u} : 1 significant digit

0,1

The regions R_{u} : 2 significant digits

$00,01,10$

The regions R_{u} : 3 significant digits

The limiting fundamental domain

Applying the detection procedure

- In order to prove our result, we wish to prove uniform distribution of the Zeckendorf digits of multiples of d in $[0, \rho)$ and $[\lambda-i \mu, \lambda-(i+1) \mu)$.
- Combining the two types of digit detection and Fourier approximation of the corresponding regions, we see that it is sufficient to estimate

$$
\left\|\frac{h_{1}}{\varphi^{a}}+\frac{h_{2}}{\varphi^{a+1}}+h_{3} \varphi\right\|
$$

from below, where $a=\lambda-i \mu$.

- There are nontrivial cases where the argument is an integer - powers of φ are not linearly independent over \mathbb{Q}.

Applying Binet's formula

- We have the identity

$$
F_{a} \varphi+\frac{(-1)^{a}}{\varphi^{a}}=F_{a+1}
$$

for $a \geq 0$, directly from Binet's formula.

- If we have a solution of $\frac{h_{1}}{\varphi^{a}}+\frac{h_{2}}{\varphi^{a+1}}+h_{3} \varphi=k \in \mathbb{Z}$, this identity yields $\left(h_{1} F_{a}-h_{2} F_{a+1}+h_{3}\right) \varphi \in \mathbb{Z}$ and therefore

$$
h_{1} F_{a}-h_{2} F_{a+1}+h_{3}=0
$$

- We have to exclude these exceptional cases. $\underbrace{4!\}}$

The last slide: basic algebraic number theory

- The ring of integers in $\mathbb{Q}(\sqrt{5})$ is given by $\mathbb{Z}[\varphi]$; the norm of $k+\ell \varphi$ is therefore a nonzero integer for $(k, \ell) \neq(0,0)$.
If $x=\frac{h_{1}}{\varphi^{a}}+\frac{h_{2}}{\varphi^{a+1}}+h_{3} \varphi$ is not an integer, we obtain, if L is the integer closest to x,

$$
\begin{aligned}
1 & \leq\left|\mathcal{N}\left(h_{1} \varphi+h_{2}+h_{3} \varphi^{a+2}-L \varphi^{a+1}\right)\right| \\
& =\left|h_{1} \varphi+h_{2}+h_{3} \varphi^{a+2}-L \varphi^{a+1}\right| \underbrace{\left|h_{1} \bar{\varphi}+h_{2}+h_{3} \bar{\varphi}^{a+2}-L \bar{\varphi}^{a+1}\right|}_{\ll \max \left\{h_{1}, h_{2}, h_{3}\right\}=M}
\end{aligned}
$$

- It follows that

$$
\|x\| \gg \frac{1}{\varphi^{a+1} M}
$$

Thank you!

