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The Möbius function

I The Möbius µ-function is the inverse of the constant function 1 with
respect to Dirichlet convolution:

∑
d |n

µ(d) · 1 =

{
1, if n = 1;

0, if n > 1.

I More explicitly, if n =
∏

p p
νp is the prime factor decomposition of

n ≥ 1, then µ(n) = 0 if νp > 1 for some p, and µ(n) = (−1)
∑

p νp

else.

I It is believed to exhibit random-like behaviour; the Riemann
hypothesis is equivalent to the statement∑

n≤x
µ(n) = O

(
x1/2+ε

)
for all ε > 0 (while no exponent < 1 is known).
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Möbius orthogonality
I Sarnak’s conjecture states that a large class of functions f should be

orthogonal to the Möbius function:∑
1≤n≤N

µ(n)f (n) = o(N)

(f satisfies a Möbius randomness principle).
I Let f : N→ A, where A ⊆ C is a finite set. Such a sequence f is

deterministic if the number of factors (contiguous finite
subsequences) of f of length k is bounded by exp(o(k)).

I The term “deterministic” is in fact more general, but we don’t go into
the details.

Conjecture (Sarnak)

Let f : N→ C be a deterministic sequence. Then∑
1≤n≤N

µ(n)f (n) = o(N).
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Möbius orthogonality and digitally defined sequences

I It follows from Dartyge–Tenenbaum (2005) that∑
1≤n≤N

(−1)s2(pn)−s2(qn) = o(N),

where s2 is the binary sum of digits of n and p, q are different odd
positive integers.

I Applying the (Bourgain–Sarnak–Ziegler–)Daboussi–Kátai criterion
(which we state later), we obtain∑

1≤n≤N
µ(n)t(n) = o(N),

where t is the Thue–Morse sequence defined by t(n) = (−1)s2(n).

I C. Müllner (2017) generalized this to all automatic sequences, thus
verifying Sarnak’s conjecture for this class of functions.
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Möbius orthogonality and more digitally defined sequences
I Drmota, Müllner and S. proved that∑

n<N

µ(n)(−1)Z(n) = o(N),

where Z is the Zeckendorf sum-of-digits function: Z (n) is the minimal
number of Fibonacci numbers needed to represent n as their sum.

I We note that the factor complexity pk of automatic sequences
satisfies pk ≤ Ck for some C , while pk ≤ C2k

2 for morphic sequences
such as (−1)Z(n). Therefore they are deterministic.

I Possible generalization: Zeckendorf-automatic sequences!

automatic

Zeckendorf-automatic

t

(−1)Z(n)

morphic∗

Lukas Spiegelhofer (TU Vienna) Möbius orthogonality and the sum-of-digits function July 10, 2019 5 / 17
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Möbius orthogonality for a non-deterministic sequence
We want to prove the following theorem.

Theorem (Drmota, Mauduit, Rivat, S. 2019+)∑
n<N

µ(n)t(n2) = o(N).

I The analogous statement for Λ instead of µ is open; this would prove
a result on the sum of digits of squares of primes.

I This result shows Möbius orthogonality for a non-deterministic
sequence: the sequence n 7→ t(n2) has full factor complexity pk = 2k

(Moshe 2007), in fact it is a normal sequence (Drmota, Mauduit,
Rivat 2019) and even looks random (open).
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First ingredient of the proof
We will use the (Bourgain–Sarnak–Ziegler–)Daboussi–Kátai criterion.

Proposition ((BSZ)DK)

Let f : N→ C be bounded and∑
n≤x

f (pn)f (qn) = o(x)

for all pairs (p, q) of distinct primes such that p, q > M. Then∑
n≤x

µ(n)f (n) = o(x).

I We have to verify this for the function f (n) = t(n2), therefore we
need to show that ∑

n≤x
t(p2n2)t(q2n2) = o(x). (1)
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Second ingredient of the proof

We are concerned with g(n) = t(p2n)t(q2n) and need to show that∑
n≤x g(n2) = o(x).

For this, we use Mauduit and Rivat (2019).

Theorem (Corollary of MR2019)

Assume that h : N→ {z ∈ C : |z | = 1} satisfies a certain carry property
and has uniformly small Fourier coefficients,

1

2λ

∑
0≤u<2λ

h(2κu) e(−ut)� 2−ηλ

for some η > 0, uniformly for t ∈ R and κ ≤ cλ. Then∑
n≤N

h(n2) = o(N).

Lukas Spiegelhofer (TU Vienna) Möbius orthogonality and the sum-of-digits function July 10, 2019 8 / 17



Second ingredient of the proof

We are concerned with g(n) = t(p2n)t(q2n) and need to show that∑
n≤x g(n2) = o(x).

For this, we use Mauduit and Rivat (2019).

Theorem (Corollary of MR2019)

Assume that h : N→ {z ∈ C : |z | = 1} satisfies a certain carry property
and has uniformly small Fourier coefficients,

1

2λ

∑
0≤u<2λ

h(2κu) e(−ut)� 2−ηλ

for some η > 0, uniformly for t ∈ R and κ ≤ cλ. Then∑
n≤N

h(n2) = o(N).
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Third ingredient of the proof

The carry property for f (n) = t(p2n)t(q2n) is straightforward to verify; it
remains to estimate

sup
t∈R

1

2λ

∑
0≤n<2λ

t(p2n)t(q2n) e(−nt).

For this, we use a result by Dartyge and Tenenbaum:

Proposition (Corollary of Dartyge–Tenenbaum 2005)

Let p′ and q′ be different odd positive integers. Then∑
x≤n<x+y

t(p′n)t(q′n) e(−nt) = O(y1−η)

for some η > 0, uniformly in t and x .

I Important paper, difficult to read and in French!
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Summary
Summarizing:

I Dartyge–Tenenbaum implies that uniformly in t and x ,∑
x≤n<x+y

t(p2n)t(q2n) e(−nt) = O(y1−η).

.

I Mauduit–Rivat implies that∑
0≤n<N

t(p2n2)t(q2n2) = o(N).

I Daboussi–Kátai implies that∑
n≤x

µ(n)t(n2) = o(x).
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A generalization: b-multiplicative sequences
We also want to prove Möbius orthogonality for the sequence g(n2), where
g is strictly b-multiplicative. Such a function g is of the form

g(0) = 1 and g(ε0b
0 + · · ·+ ενb

ν) = g(ε0) · · · g(εν). (2)

That is, each digit 6= 0 gets assigned a weight, and these weights are
multiplied. The Thue–Morse sequence is the function g satisfying (2) for
b = 2 and g(1) = −1.

Theorem (DMRS 2019+)

Let b ≥ 2 be an integer and g a strictly b-multiplicative function. Then∑
n≤N

µ(n)g(n2) = o(N).

Note that g(n) = 1 is strictly b-multiplicative, and the statement
degenerates into

∑
n≤N µ(n) = o(N), which is the prime number theorem.
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Generalizing Dartyge–Tenenbaum

I In fact, the “trivial” part of the theorem concerns b-multiplicative
functions g satisfying g(n) = e(αsq(n)), where α(b − 1) ∈ Z (we
write e(x) = exp(2πix)). This is the periodic case, since
sb(n) ≡ n mod b − 1 (“preuve par neuf”) ; prime number theorem
in arithmetic progressions.

I We need to generalize Dartyge–Tenenbaum: for distinct positive
integers p′, q′ not divisible by b (in fact squares of large different
primes are sufficient), we have to show∑

n≤y
g(p′n)g(q′n) e(−nt) = O(y1−η)

for some η > 0, uniformly in t.
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Different bases

Drmota, Mauduit and Rivat (submitted) proved in particular the following
result on the sum-of-digits function sb in two different bases.

Theorem (Drmota, Mauduit, Rivat 2019+)

Assume that b1, b2 ≥ 2 are coprime, and α1, α2 ∈ R such that
α1(b1 − 1) 6∈ Z and α2(b2 − 1) 6∈ Z. Then∑

n<N

µ(n) e(α1sb1(n) + α2sb2(n)) = o(N)

deterministic for rational α1, α2

and ∑
n<N

Λ(n) e(α1sb1(n) + α2sb2(n)) = o(N).

Here Λ is the von Mangoldt function, defined by Λ(pk) = log p for primes
p and integers k ≥ 0, and Λ(n) = 0 if n contains two different primes in its
prime factor decomposition.
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Sums of type I and II

I The method of proof of Drmota–Mauduit–Rivat uses sums of type I
and II: In order to bound the sum

∑
n µ(n)F (n), it is sufficient to

estimate certain sums

∑
m

max
I

∣∣∣∣∣∑
n∈I

F (mn)

∣∣∣∣∣ (type I)

and ∑
m

∑
n

ambnF (mn) (type II).

I DMR’s proof is not sufficient to handle three or more bases.
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Excursus: the level of distribution

Theorem (S. 2019+)

The Thue–Morse sequence has level of distribution 1. More precisely, for
all ε > 0 we have

∑
M≤m<2M

max
y ,z≥0
z−y≤x

max
0≤a<d

∣∣∣∣∣∣∣
∑

y≤n<z
n≡a mod m

(−1)s2(n)

∣∣∣∣∣∣∣ = O(x1−η)

for some η > 0 depending on ε, where M = x1−ε.

I This is similar to a sum of type I, allowing m to be a large power of n.

I This improvement on sums of type I simplifies the treatment of sums
of type II! (cf. e.g. Heath–Brown’s identity)
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An approach to the problem announced in the abstract

We plan to extend the theorem prove a result on the level of distribution of

e(ϑ1sb1(n) + · · ·+ ϑksbk (n)),

which is of intrinsic interest; via simplified sums of type II this might lead
to a proof of the statements∑

n≤N
µ(n) e(ϑ1sb1(n) + · · ·+ ϑksbk (n)) = o(N)

and ∑
n≤N

Λ(n) e(ϑ1sb1(n) + · · ·+ ϑksbk (n)) = o(N).
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Thank you!
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