Möbius orthogonality and the sum-of-digits function

Lukas Spiegelhofer

Joint work with Michael Drmota, Christian Mauduit and Joël Rivat

TU Vienna

July 10, 2019
Numeration 2019, ESI, Vienna

The Möbius function

- The Möbius μ-function is the inverse of the constant function 1 with respect to Dirichlet convolution:

$$
\sum_{d \mid n} \mu(d) \cdot 1= \begin{cases}1, & \text { if } n=1 \\ 0, & \text { if } n>1\end{cases}
$$

- More explicitly, if $n=\prod_{p} p^{\nu_{p}}$ is the prime factor decomposition of $n \geq 1$, then $\mu(n)=0$ if $\nu_{p}>1$ for some p, and $\mu(n)=(-1)^{\sum_{p} \nu_{p}}$ else.
- It is believed to exhibit random-like behaviour; the Riemann hypothesis is equivalent to the statement

$$
\sum_{n \leq x} \mu(n)=O\left(x^{1 / 2+\varepsilon}\right)
$$

for all $\varepsilon>0$ (while no exponent <1 is known).

The Möbius function

- The Möbius μ-function is the inverse of the constant function 1 with respect to Dirichlet convolution:

$$
\sum_{d \mid n} \mu(d) \cdot 1= \begin{cases}1, & \text { if } n=1 \\ 0, & \text { if } n>1\end{cases}
$$

- More explicitly, if $n=\prod_{p} p^{\nu_{p}}$ is the prime factor decomposition of $n \geq 1$, then $\mu(n)=0$ if $\nu_{p}>1$ for some p, and $\mu(n)=(-1)^{\sum_{p} \nu_{p}}$ else.
- It is believed to exhibit random-like behaviour; the Riemann hypothesis is equivalent to the statement

$$
\sum_{n \leq x} \mu(n)=O\left(x^{1 / 2+\varepsilon}\right)
$$

for all $\varepsilon>0$ (while no exponent <1 is known).

Möbius orthogonality

- Sarnak's conjecture states that a large class of functions f should be orthogonal to the Möbius function:

$$
\sum_{1 \leq n \leq N} \mu(n) f(n)=o(N)
$$

(f satisfies a Möbius randomness principle).

- Let $f: \mathbb{N} \rightarrow A$, where $A \subseteq \mathbb{C}$ is a finite set. Such a sequence f is deterministic if the number of factors (contiguous finite subsequences) of f of length k is bounded by $\exp (o(k))$.
- The term "deterministic" is in fact more general, but we don't go into the details.

Conjecture (Sarnak)
Let $f: \mathbb{N} \rightarrow \mathbb{C}$ be a deterministic sequence. Then

$$
\sum_{1 \leq n \leq N} \mu(n) f(n)=o(N)
$$

Möbius orthogonality

- Sarnak's conjecture states that a large class of functions f should be orthogonal to the Möbius function:

$$
\sum_{1 \leq n \leq N} \mu(n) f(n)=o(N)
$$

(f satisfies a Möbius randomness principle).

- Let $f: \mathbb{N} \rightarrow A$, where $A \subseteq \mathbb{C}$ is a finite set. Such a sequence f is deterministic if the number of factors (contiguous finite subsequences) of f of length k is bounded by $\exp (o(k))$.
- The term "deterministic" is in fact more general, but we don't go into the details.

Conjecture (Sarnak)
Let $f: \mathbb{N} \rightarrow \mathbb{C}$ be a deterministic sequence. Then

Möbius orthogonality

- Sarnak's conjecture states that a large class of functions f should be orthogonal to the Möbius function:

$$
\sum_{1 \leq n \leq N} \mu(n) f(n)=o(N)
$$

(f satisfies a Möbius randomness principle).

- Let $f: \mathbb{N} \rightarrow A$, where $A \subseteq \mathbb{C}$ is a finite set. Such a sequence f is deterministic if the number of factors (contiguous finite subsequences) of f of length k is bounded by $\exp (o(k))$.
- The term "deterministic" is in fact more general, but we don't go into the details.

Conjecture (Sarnak)
Let $f: \mathbb{N} \rightarrow \mathbb{C}$ be a deterministic sequence. Then

$$
\sum_{1 \leq n \leq N} \mu(n) f(n)=o(N)
$$

Möbius orthogonality and digitally defined sequences

- It follows from Dartyge-Tenenbaum (2005) that

$$
\sum_{1 \leq n \leq N}(-1)^{s_{2}(p n)-s_{2}(q n)}=o(N)
$$

where s_{2} is the binary sum of digits of n and p, q are different odd positive integers.

- Applying the (Bourgain-Sarnak-Ziegler-)Daboussi-Kátai criterion (which we state later), we obtain

$$
\sum_{1 \leq n \leq N} \mu(n) t(n)=o(N)
$$

where \mathbf{t} is the Thue-Morse sequence defined by $\mathbf{t}(n)=(-1)^{s_{2}(n)}$.

- C. Müllner (2017) generalized this to all automatic sequences, thus verifying Sarnak's conjecture for this class of functions.

Möbius orthogonality and digitally defined sequences

- It follows from Dartyge-Tenenbaum (2005) that

$$
\sum_{1 \leq n \leq N}(-1)^{s_{2}(p n)-s_{2}(q n)}=o(N)
$$

where s_{2} is the binary sum of digits of n and p, q are different odd positive integers.

- Applying the (Bourgain-Sarnak-Ziegler-)Daboussi-Kátai criterion (which we state later), we obtain

$$
\sum_{1 \leq n \leq N} \mu(n) \mathbf{t}(n)=o(N)
$$

where \mathbf{t} is the Thue-Morse sequence defined by $\mathbf{t}(n)=(-1)^{s_{2}(n)}$.

- C. Müllner (2017) generalized this to all automatic sequences, thus verifying Sarnak's conjecture for this class of functions.

Möbius orthogonality and digitally defined sequences

- It follows from Dartyge-Tenenbaum (2005) that

$$
\sum_{1 \leq n \leq N}(-1)^{s_{2}(p n)-s_{2}(q n)}=o(N)
$$

where s_{2} is the binary sum of digits of n and p, q are different odd positive integers.

- Applying the (Bourgain-Sarnak-Ziegler-)Daboussi-Kátai criterion (which we state later), we obtain

$$
\sum_{1 \leq n \leq N} \mu(n) \mathbf{t}(n)=o(N)
$$

where \mathbf{t} is the Thue-Morse sequence defined by $\mathbf{t}(n)=(-1)^{s_{2}(n)}$.

- C. Müllner (2017) generalized this to all automatic sequences, thus verifying Sarnak's conjecture for this class of functions.

Möbius orthogonality and more digitally defined sequences

- Drmota, Müllner and S. proved that

$$
\sum_{n<N} \mu(n)(-1)^{Z(n)}=o(N),
$$

where Z is the Zeckendorf sum-of-digits function: $Z(n)$ is the minimal number of Fibonacci numbers needed to represent n as their sum.

- We note that the factor complexity p_{k} of automatic sequences satisfies $p_{k} \leq C k$ for some C, while $p_{k} \leq C_{2} k^{2}$ for morphic sequences such as $(-1)^{Z(n)}$. Therefore they are deterministic.
- Possible generalization: Zeckendorf-automatic sequences!

Möbius orthogonality and more digitally defined sequences

- Drmota, Müllner and S. proved that

$$
\sum_{n<N} \mu(n)(-1)^{Z(n)}=o(N)
$$

where Z is the Zeckendorf sum-of-digits function: $Z(n)$ is the minimal number of Fibonacci numbers needed to represent n as their sum.

- We note that the factor complexity p_{k} of automatic sequences satisfies $p_{k} \leq C k$ for some C, while $p_{k} \leq C_{2} k^{2}$ for morphic sequences such as $(-1)^{Z(n)}$. Therefore they are deterministic.
- Possible generalization: Zeckendorf-automatic sequences!

Möbius orthogonality and more digitally defined sequences

- Drmota, Müllner and S. proved that

$$
\sum_{n<N} \mu(n)(-1)^{Z(n)}=o(N)
$$

where Z is the Zeckendorf sum-of-digits function: $Z(n)$ is the minimal number of Fibonacci numbers needed to represent n as their sum.

- We note that the factor complexity p_{k} of automatic sequences satisfies $p_{k} \leq C k$ for some C, while $p_{k} \leq C_{2} k^{2}$ for morphic sequences such as $(-1)^{Z(n)}$. Therefore they are deterministic.
- Possible generalization: Zeckendorf-automatic sequences!

Möbius orthogonality for a non-deterministic sequence

 We want to prove the following theorem.Theorem (Drmota, Mauduit, Rivat, S. 2019+)

$$
\sum_{n<N} \mu(n) \mathbf{t}\left(n^{2}\right)=o(N)
$$

- The analogous statement for Λ instead of μ is open; this would prove a result on the sum of digits of squares of primes.
- This result shows Möbius orthogonality for a non-deterministic sequence: the sequence $n \mapsto \mathbf{t}\left(n^{2}\right)$ has full factor complexity $p_{k}=2^{k}$ (Moshe 2007), in fact it is a normal sequence (Drmota, Mauduit, Rivat 2019) and even looks random (open).

Möbius orthogonality for a non-deterministic sequence

 We want to prove the following theorem.Theorem (Drmota, Mauduit, Rivat, S. 2019+)

$$
\sum_{n<N} \mu(n) \mathbf{t}\left(n^{2}\right)=o(N)
$$

- The analogous statement for Λ instead of μ is open; this would prove a result on the sum of digits of squares of primes.
- This result shows Möbius orthogonality for a non-deterministic sequence: the sequence $n \mapsto \mathbf{t}\left(n^{2}\right)$ has full factor complexity $p_{k}=2^{k}$ (Moshe 2007), in fact it is a normal sequence (Drmota, Mauduit, Rivat 2019) and even looks random (open).

Möbius orthogonality for a non-deterministic sequence

 We want to prove the following theorem.Theorem (Drmota, Mauduit, Rivat, S. 2019+)

$$
\sum_{n<N} \mu(n) \mathbf{t}\left(n^{2}\right)=o(N) .
$$

- The analogous statement for Λ instead of μ is open; this would prove a result on the sum of digits of squares of primes.
- This result shows Möbius orthogonality for a non-deterministic sequence: the sequence $n \mapsto \mathbf{t}\left(n^{2}\right)$ has full factor complexity $p_{k}=2^{k}$ (Moshe 2007), in fact it is a normal sequence (Drmota, Mauduit, Rivat 2019) and even looks random (open).

First ingredient of the proof

We will use the (Bourgain-Sarnak-Ziegler-)Daboussi-Kátai criterion.
Proposition ((BSZ)DK)
Let $f: \mathbb{N} \rightarrow \mathbb{C}$ be bounded and

$$
\sum_{n \leq x} f(p n) \overline{f(q n)}=o(x)
$$

for all pairs (p, q) of distinct primes such that $p, q>M$. Then

$$
\sum_{n \leq x} \mu(n) f(n)=o(x)
$$

- We have to verify this for the function $f(n)=\mathbf{t}\left(n^{2}\right)$, therefore we need to show that

$$
\begin{equation*}
\sum_{n \leq x} \mathbf{t}\left(p^{2} n^{2}\right) \mathbf{t}\left(q^{2} n^{2}\right)=o(x) \tag{1}
\end{equation*}
$$

First ingredient of the proof

We will use the (Bourgain-Sarnak-Ziegler-)Daboussi-Kátai criterion.
Proposition ((BSZ)DK)
Let $f: \mathbb{N} \rightarrow \mathbb{C}$ be bounded and

$$
\sum_{n \leq x} f(p n) \overline{f(q n)}=o(x)
$$

for all pairs (p, q) of distinct primes such that $p, q>M$. Then

$$
\sum_{n \leq x} \mu(n) f(n)=o(x)
$$

- We have to verify this for the function $f(n)=\mathbf{t}\left(n^{2}\right)$, therefore we need to show that

$$
\begin{equation*}
\sum_{n \leq x} \mathbf{t}\left(p^{2} n^{2}\right) \mathbf{t}\left(q^{2} n^{2}\right)=o(x) \tag{1}
\end{equation*}
$$

Second ingredient of the proof

We are concerned with $g(n)=\mathbf{t}\left(p^{2} n\right) \mathbf{t}\left(q^{2} n\right)$ and need to show that $\sum_{n \leq x} g\left(n^{2}\right)=o(x)$.
For this, we use Mauduit and Rivat (2019).
Theorem (Corollary of MR2019)
Assume that $h: \mathbb{N} \rightarrow\{z \in \mathbb{C}:|z|=1\}$ satisfies a certain carry property and has uniformly small Fourier coefficients,

$$
\frac{1}{2^{\lambda}} \sum_{0 \leq u<2^{\lambda}} h\left(2^{\kappa} u\right) \mathrm{e}(-u t) \ll 2^{-\eta \lambda}
$$

for some $\eta>0$, uniformly for $t \in \mathbb{R}$ and $\kappa \leq c \lambda$. Then

$$
\sum_{n \leq N} h\left(n^{2}\right)=o(N)
$$

Second ingredient of the proof

We are concerned with $g(n)=\mathbf{t}\left(p^{2} n\right) \mathbf{t}\left(q^{2} n\right)$ and need to show that $\sum_{n \leq x} g\left(n^{2}\right)=o(x)$.
For this, we use Mauduit and Rivat (2019).
Theorem (Corollary of MR2019)
Assume that $h: \mathbb{N} \rightarrow\{z \in \mathbb{C}:|z|=1\}$ satisfies a certain carry property and has uniformly small Fourier coefficients,

$$
\frac{1}{2^{\lambda}} \sum_{0 \leq u<2^{\lambda}} h\left(2^{\kappa} u\right) \mathrm{e}(-u t) \ll 2^{-\eta \lambda}
$$

for some $\eta>0$, uniformly for $t \in \mathbb{R}$ and $\kappa \leq c \lambda$. Then

$$
\sum_{n \leq N} h\left(n^{2}\right)=o(N) .
$$

Third ingredient of the proof

The carry property for $f(n)=\mathbf{t}\left(p^{2} n\right) \mathbf{t}\left(q^{2} n\right)$ is straightforward to verify; it remains to estimate

$$
\sup _{t \in \mathbb{R}} \frac{1}{2^{\lambda}} \sum_{0 \leq n<2^{\lambda}} \mathbf{t}\left(p^{2} n\right) \mathbf{t}\left(q^{2} n\right) \mathrm{e}(-n t)
$$

For this, we use a result by Dartyge and Tenenbaum:
Proposition (Corollary of Dartyge-Tenenbaum 2005)
Let p^{\prime} and q^{\prime} be different odd positive integers. Then

for some $\eta>0$, uniformly in t and x.
> Important paper, difficult to read and in French!

Third ingredient of the proof

The carry property for $f(n)=\mathbf{t}\left(p^{2} n\right) \mathbf{t}\left(q^{2} n\right)$ is straightforward to verify; it remains to estimate

$$
\sup _{t \in \mathbb{R}} \frac{1}{2^{\lambda}} \sum_{0 \leq n<2^{\lambda}} \mathbf{t}\left(p^{2} n\right) \mathbf{t}\left(q^{2} n\right) \mathrm{e}(-n t)
$$

For this, we use a result by Dartyge and Tenenbaum:
Proposition (Corollary of Dartyge-Tenenbaum 2005) Let p^{\prime} and q^{\prime} be different odd positive integers. Then

$$
\sum_{x \leq n<x+y} \mathbf{t}\left(p^{\prime} n\right) \mathbf{t}\left(q^{\prime} n\right) \mathrm{e}(-n t)=O\left(y^{1-\eta}\right)
$$

for some $\eta>0$, uniformly in t and x.

- Important paper, difficult to read and in French!

Summary

Summarizing:

- Dartyge-Tenenbaum implies that uniformly in t and x,

$$
\sum_{x \leq n<x+y} \mathbf{t}\left(p^{2} n\right) \mathbf{t}\left(q^{2} n\right) \mathrm{e}(-n t)=O\left(y^{1-\eta}\right) .
$$

- Mauduit-Rivat implies that

$$
\sum_{0 \leq n<N} \mathbf{t}\left(p^{2} n^{2}\right) \mathbf{t}\left(q^{2} n^{2}\right)=o(N) .
$$

- Daboussi-Kátai implies that

$$
\sum_{n \leq x} \mu(n) \mathrm{t}\left(n^{2}\right)=o(x)
$$

Summary

Summarizing:

- Dartyge-Tenenbaum implies that uniformly in t and x,

$$
\sum_{x \leq n<x+y} \mathbf{t}\left(p^{2} n\right) \mathbf{t}\left(q^{2} n\right) \mathrm{e}(-n t)=O\left(y^{1-\eta}\right)
$$

- Mauduit-Rivat implies that

$$
\sum_{0 \leq n<N} \mathbf{t}\left(p^{2} n^{2}\right) \mathbf{t}\left(q^{2} n^{2}\right)=o(N)
$$

- Daboussi-Kátai implies that

$$
\sum_{n \leq x} \mu(n) \mathbf{t}\left(n^{2}\right)=o(x) .
$$

Summary

Summarizing:

- Dartyge-Tenenbaum implies that uniformly in t and x,

$$
\sum_{x \leq n<x+y} \mathbf{t}\left(p^{2} n\right) \mathbf{t}\left(q^{2} n\right) \mathrm{e}(-n t)=O\left(y^{1-\eta}\right)
$$

- Mauduit-Rivat implies that

$$
\sum_{0 \leq n<N} \mathbf{t}\left(p^{2} n^{2}\right) \mathbf{t}\left(q^{2} n^{2}\right)=o(N)
$$

- Daboussi-Kátai implies that

$$
\sum_{n \leq x} \mu(n) \mathbf{t}\left(n^{2}\right)=o(x)
$$

A generalization: b-multiplicative sequences

We also want to prove Möbius orthogonality for the sequence $g\left(n^{2}\right)$, where g is strictly b-multiplicative. Such a function g is of the form

$$
\begin{equation*}
g(0)=1 \quad \text { and } \quad g\left(\varepsilon_{0} b^{0}+\cdots+\varepsilon_{\nu} b^{\nu}\right)=g\left(\varepsilon_{0}\right) \cdots g\left(\varepsilon_{\nu}\right) . \tag{2}
\end{equation*}
$$

That is, each digit $\neq 0$ gets assigned a weight, and these weights are multiplied. The Thue-Morse sequence is the function g satisfying (2) for $b=2$ and $g(1)=-1$.
Theorem (DMRS 2019+)
Let $b \geq 2$ be an integer and g a strictly b-multiplicative function. Then

$$
\sum_{n \leq N} \mu(n) g\left(n^{2}\right)=o(N)
$$

Note that $g(n)=1$ is strictly b-multiplicative, and the statement degenerates into $\sum_{n \leq N} \mu(n)=o(N)$, which is the prime number theorem.

A generalization: b-multiplicative sequences

We also want to prove Möbius orthogonality for the sequence $g\left(n^{2}\right)$, where g is strictly b-multiplicative. Such a function g is of the form

$$
\begin{equation*}
g(0)=1 \quad \text { and } \quad g\left(\varepsilon_{0} b^{0}+\cdots+\varepsilon_{\nu} b^{\nu}\right)=g\left(\varepsilon_{0}\right) \cdots g\left(\varepsilon_{\nu}\right) . \tag{2}
\end{equation*}
$$

That is, each digit $\neq 0$ gets assigned a weight, and these weights are multiplied. The Thue-Morse sequence is the function g satisfying (2) for $b=2$ and $g(1)=-1$.
Theorem (DMRS 2019+)
Let $b \geq 2$ be an integer and g a strictly b-multiplicative function. Then

$$
\sum_{n \leq N} \mu(n) g\left(n^{2}\right)=o(N)
$$

Note that $g(n)=1$ is strictly b-multiplicative, and the statement degenerates into $\sum_{n \leq N} \mu(n)=o(N)$, which is the prime number theorem.

Generalizing Dartyge-Tenenbaum

- In fact, the "trivial" part of the theorem concerns b-multiplicative functions g satisfying $g(n)=\mathrm{e}\left(\alpha s_{q}(n)\right)$, where $\alpha(b-1) \in \mathbb{Z}$ (we write $\mathrm{e}(x)=\exp (2 \pi i x))$. This is the periodic case, since $s_{b}(n) \equiv n \bmod b-1$ ("preuve par neuf") \leadsto prime number theorem in arithmetic progressions.
- We need to generalize Dartyge-Tenenbaum: for distinct positive integers p^{\prime}, q^{\prime} not divisible by b (in fact squares of large different primes are sufficient), we have to show

$$
\sum_{n \leq y} g\left(p^{\prime} n\right) g\left(q^{\prime} n\right) \mathrm{e}(-n t)=O\left(y^{1-\eta}\right)
$$

for some $\eta>0$, uniformly in t.

Generalizing Dartyge-Tenenbaum

- In fact, the "trivial" part of the theorem concerns b-multiplicative functions g satisfying $g(n)=\mathrm{e}\left(\alpha s_{q}(n)\right)$, where $\alpha(b-1) \in \mathbb{Z}$ (we write $\mathrm{e}(x)=\exp (2 \pi i x))$. This is the periodic case, since $s_{b}(n) \equiv n \bmod b-1$ ("preuve par neuf") \leadsto prime number theorem in arithmetic progressions.
- We need to generalize Dartyge-Tenenbaum: for distinct positive integers p^{\prime}, q^{\prime} not divisible by b (in fact squares of large different primes are sufficient), we have to show

$$
\sum_{n \leq y} g\left(p^{\prime} n\right) g\left(q^{\prime} n\right) \mathrm{e}(-n t)=O\left(y^{1-\eta}\right)
$$

for some $\eta>0$, uniformly in t.

Different bases

Drmota, Mauduit and Rivat (submitted) proved in particular the following result on the sum-of-digits function s_{b} in two different bases.

Theorem (Drmota, Mauduit, Rivat 2019+)
Assume that $b_{1}, b_{2} \geq 2$ are coprime, and $\alpha_{1}, \alpha_{2} \in \mathbb{R}$ such that $\alpha_{1}\left(b_{1}-1\right) \notin \mathbb{Z}$ and $\alpha_{2}\left(b_{2}-1\right) \notin \mathbb{Z}$. Then

$$
\sum_{n<N} \mu(n) \mathrm{e}\left(\alpha_{1} s_{b_{1}}(n)+\alpha_{2} s_{b_{2}}(n)\right)=o(N)
$$

and

$$
\sum_{n<N} \Lambda(n) \mathrm{e}\left(\alpha_{1} s_{b_{1}}(n)+\alpha_{2} s_{b_{2}}(n)\right)=o(N) .
$$

Here Λ is the von Mangoldt function, defined by $\Lambda\left(p^{k}\right)=\log p$ for primes p and integers $k \geq 0$, and $\Lambda(n)=0$ if n contains two different primes in its prime factor decomposition.

Different bases

Drmota, Mauduit and Rivat (submitted) proved in particular the following result on the sum-of-digits function s_{b} in two different bases.

Theorem (Drmota, Mauduit, Rivat 2019+)
Assume that $b_{1}, b_{2} \geq 2$ are coprime, and $\alpha_{1}, \alpha_{2} \in \mathbb{R}$ such that $\alpha_{1}\left(b_{1}-1\right) \notin \mathbb{Z}$ and $\alpha_{2}\left(b_{2}-1\right) \notin \mathbb{Z}$. Then

$$
\sum_{n<N} \mu(n) \mathrm{e}\left(\alpha_{1} s_{b_{1}}(n)+\alpha_{2} s_{b_{2}}(n)\right)=o(N)
$$

and

$$
\sum_{n<N} \Lambda(n) \mathrm{e}\left(\alpha_{1} s_{b_{1}}(n)+\alpha_{2} s_{b_{2}}(n)\right)=o(N) .
$$

Here Λ is the von Mangoldt function, defined by $\Lambda\left(p^{k}\right)=\log p$ for primes p and integers $k \geq 0$, and $\Lambda(n)=0$ if n contains two different primes in its prime factor decomposition.

Sums of type I and II

- The method of proof of Drmota-Mauduit-Rivat uses sums of type I and II: In order to bound the sum $\sum_{n} \mu(n) F(n)$, it is sufficient to estimate certain sums

$$
\sum_{m} \max _{I}\left|\sum_{n \in I} F(m n)\right| \quad \text { (type I) }
$$

and

$$
\sum_{m} \sum_{n} a_{m} b_{n} F(m n) \quad \text { (type II). }
$$

- DMR's proof is not sufficient to handle three or more bases.

Excursus: the level of distribution

Theorem (S. 2019+)
The Thue-Morse sequence has level of distribution 1. More precisely, for all $\varepsilon>0$ we have

$$
\sum_{M \leq m<2 M} \max _{\substack{y, z \geq 0 \\ z-y \leq x}} \max _{0 \leq a<d}\left|\sum_{\substack{y \leq n<z \\ n \equiv a \bmod m}}(-1)^{s_{2}(n)}\right|=O\left(x^{1-\eta}\right)
$$

for some $\eta>0$ depending on ε, where $M=x^{1-\varepsilon}$.

- This is similar to a sum of type I, allowing m to be a large power of n.
- This improvement on sums of type I simplifies the treatment of sums of type II! (cf. e.g. Heath-Brown's identity)

Excursus: the level of distribution

Theorem (S. 2019+)
The Thue-Morse sequence has level of distribution 1. More precisely, for all $\varepsilon>0$ we have

$$
\sum_{\substack{M \leq m<2 M}} \max _{\substack{y, z \geq 0 \\ z-y \leq x}} \max _{0 \leq a<d}\left|\sum_{\substack{y \leq n<z \\ n \equiv \bmod m}}(-1)^{s_{2}(n)}\right|=O\left(x^{1-\eta}\right)
$$

for some $\eta>0$ depending on ε, where $M=x^{1-\varepsilon}$.

- This is similar to a sum of type I, allowing m to be a large power of n.
- This improvement on sums of type I simplifies the treatment of sums of type II! (cf. e.g. Heath-Brown's identity)

Excursus: the level of distribution

Theorem (S. 2019+)

The Thue-Morse sequence has level of distribution 1. More precisely, for all $\varepsilon>0$ we have

$$
\sum_{\substack{M \leq m<2 M}} \max _{\substack{y, z \geq 0 \\ z-y \leq x}} \max _{0 \leq a<d}\left|\sum_{\substack{y \leq n<z \\ n \equiv \bmod m}}(-1)^{s 2(n)}\right|=O\left(x^{1-\eta}\right)
$$

for some $\eta>0$ depending on ε, where $M=x^{1-\varepsilon}$.

- This is similar to a sum of type I, allowing m to be a large power of n.
- This improvement on sums of type I simplifies the treatment of sums of type II! (cf. e.g. Heath-Brown's identity)

An approach to the problem announced in the abstract

We plan to extend the theorem prove a result on the level of distribution of

$$
\mathrm{e}\left(\vartheta_{1} s_{b_{1}}(n)+\cdots+\vartheta_{k} s_{b_{k}}(n)\right)
$$

which is of intrinsic interest; via simplified sums of type II this might lead to a proof of the statements

$$
\sum_{n \leq N} \mu(n) \mathrm{e}\left(\vartheta_{1} s_{b_{1}}(n)+\cdots+\vartheta_{k} s_{b_{k}}(n)\right)=o(N)
$$

and

$$
\sum_{n \leq N} \Lambda(n) \mathrm{e}\left(\vartheta_{1} s_{b_{1}}(n)+\cdots+\vartheta_{k} s_{b_{k}}(n)\right)=o(N)
$$

Thank you!

