Möbius orthogonality and the sum-of-digits function

Lukas Spiegelhofer

Joint work with Michael Drmota, Christian Mauduit and Joël Rivat

TU Vienna

July 10, 2019 Numeration 2019, ESI, Vienna

Lukas Spiegelhofer (TU Vienna) Möbius orthogonality and the sum-of-digits function July 10, 2019 1 / 17

The Möbius function

The Möbius µ-function is the inverse of the constant function 1 with respect to Dirichlet convolution:

$$\sum_{d|n} \mu(d) \cdot 1 = \begin{cases} 1, & \text{if } n = 1; \\ 0, & \text{if } n > 1. \end{cases}$$

- More explicitly, if $n = \prod_{p} p^{\nu_{p}}$ is the prime factor decomposition of $n \ge 1$, then $\mu(n) = 0$ if $\nu_{p} > 1$ for some p, and $\mu(n) = (-1)^{\sum_{p} \nu_{p}}$ else.
- It is believed to exhibit random-like behaviour; the Riemann hypothesis is equivalent to the statement

$$\sum_{n \le x} \mu(n) = O\left(x^{1/2 + \varepsilon}\right)$$

for all $\varepsilon > 0$ (while no exponent < 1 is known).

Lukas Spiegelhofer (TU Vienna)

The Möbius function

► The Möbius µ-function is the inverse of the constant function 1 with respect to Dirichlet convolution:

$$\sum_{d|n} \mu(d) \cdot 1 = \begin{cases} 1, & \text{if } n = 1; \\ 0, & \text{if } n > 1. \end{cases}$$

- ▶ More explicitly, if $n = \prod_p p^{\nu_p}$ is the prime factor decomposition of $n \ge 1$, then $\mu(n) = 0$ if $\nu_p > 1$ for some p, and $\mu(n) = (-1)^{\sum_p \nu_p}$ else.
- It is believed to exhibit random-like behaviour; the Riemann hypothesis is equivalent to the statement

$$\sum_{n\leq x}\mu(n)=O\left(x^{1/2+\varepsilon}\right)$$

for all $\varepsilon > 0$ (while no exponent < 1 is known).

Lukas Spiegelhofer (TU Vienna)

Möbius orthogonality

Sarnak's conjecture states that a large class of functions f should be orthogonal to the Möbius function:

$$\sum_{\leq n \leq N} \mu(n) f(n) = o(N)$$

(f satisfies a Möbius randomness principle).

1

- Let f : N → A, where A ⊆ C is a finite set. Such a sequence f is deterministic if the number of factors (contiguous finite subsequences) of f of length k is bounded by exp(o(k)).
- The term "deterministic" is in fact more general, but we don't go into the details.

Conjecture (Sarnak)

Let $f:\mathbb{N}\rightarrow\mathbb{C}$ be a deterministic sequence. Then

$$\sum_{1 \le n \le N} \mu(n) f(n) = o(N).$$

Lukas Spiegelhofer (TU Vienna)

Möbius orthogonality

Sarnak's conjecture states that a large class of functions f should be orthogonal to the Möbius function:

$$\sum_{\leq n \leq N} \mu(n) f(n) = o(N)$$

(f satisfies a Möbius randomness principle).

1

- Let f : N → A, where A ⊆ C is a finite set. Such a sequence f is deterministic if the number of factors (contiguous finite subsequences) of f of length k is bounded by exp(o(k)).
- The term "deterministic" is in fact more general, but we don't go into the details.

Conjecture (Sarnak)

Let $f:\mathbb{N}\rightarrow\mathbb{C}$ be a deterministic sequence. Then

$$\sum_{1 \le n \le N} \mu(n) f(n) = o(N).$$

Lukas Spiegelhofer (TU Vienna)

Möbius orthogonality

Sarnak's conjecture states that a large class of functions f should be orthogonal to the Möbius function:

$$\sum_{\leq n \leq N} \mu(n) f(n) = o(N)$$

(f satisfies a Möbius randomness principle).

1

- Let f : N → A, where A ⊆ C is a finite set. Such a sequence f is deterministic if the number of factors (contiguous finite subsequences) of f of length k is bounded by exp(o(k)).
- The term "deterministic" is in fact more general, but we don't go into the details.

Conjecture (Sarnak)

Let $f : \mathbb{N} \to \mathbb{C}$ be a deterministic sequence. Then

$$\sum_{1\leq n\leq N}\mu(n)f(n)=o(N).$$

Lukas Spiegelhofer (TU Vienna)

Möbius orthogonality and digitally defined sequences

It follows from Dartyge–Tenenbaum (2005) that

$$\sum_{1 \le n \le N} (-1)^{s_2(pn) - s_2(qn)} = o(N),$$

where s_2 is the binary sum of digits of *n* and *p*, *q* are different odd positive integers.

Applying the (Bourgain–Sarnak–Ziegler–)Daboussi–Kátai criterion (which we state later), we obtain

$$\sum_{\leq n \leq N} \mu(n) \mathbf{t}(n) = o(N),$$

where **t** is the *Thue–Morse sequence* defined by $\mathbf{t}(n) = (-1)^{s_2(n)}$.

C. Müllner (2017) generalized this to all automatic sequences, thus verifying Sarnak's conjecture for this class of functions.

Lukas Spiegelhofer (TU Vienna)

Möbius orthogonality and the sum-of-digits function

July 10, 2019 4 / 17

Möbius orthogonality and digitally defined sequences

▶ It follows from Dartyge–Tenenbaum (2005) that

$$\sum_{1 \le n \le N} (-1)^{s_2(pn) - s_2(qn)} = o(N),$$

where s_2 is the binary sum of digits of n and p, q are different odd positive integers.

 Applying the (Bourgain–Sarnak–Ziegler–)Daboussi–Kátai criterion (which we state later), we obtain

$$\sum_{1\leq n\leq N}\mu(n)\mathbf{t}(n)=o(N),$$

4 / 17

where **t** is the *Thue–Morse sequence* defined by $\mathbf{t}(n) = (-1)^{s_2(n)}$.

 C. Müllner (2017) generalized this to all *automatic sequences*, thus verifying Sarnak's conjecture for this class of functions.

Lukas Spiegelhofer (TU Vienna) Möbius orthogonality and the sum-of-digits function July 10, 2019

Möbius orthogonality and digitally defined sequences

▶ It follows from Dartyge–Tenenbaum (2005) that

$$\sum_{1 \le n \le N} (-1)^{s_2(pn) - s_2(qn)} = o(N),$$

where s_2 is the binary sum of digits of n and p, q are different odd positive integers.

 Applying the (Bourgain–Sarnak–Ziegler–)Daboussi–Kátai criterion (which we state later), we obtain

$$\sum_{1\leq n\leq N}\mu(n)\mathbf{t}(n)=o(N),$$

where **t** is the *Thue–Morse sequence* defined by $\mathbf{t}(n) = (-1)^{s_2(n)}$.

 C. Müllner (2017) generalized this to all *automatic sequences*, thus verifying Sarnak's conjecture for this class of functions.

Möbius orthogonality and more digitally defined sequences

Drmota, Müllner and S. proved that

$$\sum_{n < N} \mu(n) (-1)^{Z(n)} = o(N),$$

where Z is the Zeckendorf sum-of-digits function: Z(n) is the minimal number of Fibonacci numbers needed to represent n as their sum.

- We note that the factor complexity p_k of automatic sequences satisfies p_k ≤ Ck for some C, while p_k ≤ C₂k² for morphic sequences such as (−1)^{Z(n)}. Therefore they are deterministic.
- Possible generalization: Zeckendorf-automatic sequences!

Lukas Spiegelhofer (TU Vienna) Möbius orthogonality and the sum-of-digits function July 10, 2019 5 / 17

Möbius orthogonality and more digitally defined sequences

Drmota, Müllner and S. proved that

$$\sum_{n < N} \mu(n) (-1)^{Z(n)} = o(N),$$

where Z is the Zeckendorf sum-of-digits function: Z(n) is the minimal number of Fibonacci numbers needed to represent n as their sum.

We note that the factor complexity p_k of automatic sequences satisfies p_k ≤ Ck for some C, while p_k ≤ C₂k² for morphic sequences such as (-1)^{Z(n)}. Therefore they are deterministic.

Possible generalization: Zeckendorf-automatic sequences!

Lukas Spiegelhofer (TU Vienna)

Möbius orthogonality and more digitally defined sequences

Drmota, Müllner and S. proved that

$$\sum_{n < N} \mu(n) (-1)^{Z(n)} = o(N),$$

where Z is the Zeckendorf sum-of-digits function: Z(n) is the minimal number of Fibonacci numbers needed to represent n as their sum.

- We note that the factor complexity p_k of automatic sequences satisfies p_k ≤ Ck for some C, while p_k ≤ C₂k² for morphic sequences such as (-1)^{Z(n)}. Therefore they are deterministic.
- Possible generalization: Zeckendorf-automatic sequences!

Möbius orthogonality for a non-deterministic sequence We want to prove the following theorem.

Theorem (Drmota, Mauduit, Rivat, S. 2019+)

 $\sum_{n<N}\mu(n)\mathbf{t}(n^2)=o(N).$

- The analogous statement for Λ instead of µ is open; this would prove a result on the sum of digits of squares of primes.
- ► This result shows Möbius orthogonality for a non-deterministic sequence: the sequence n → t(n²) has full factor complexity p_k = 2^k (Moshe 2007), in fact it is a normal sequence (Drmota, Mauduit, Rivat 2019) and even looks random (open).

Möbius orthogonality for a non-deterministic sequence We want to prove the following theorem.

Theorem (Drmota, Mauduit, Rivat, S. 2019+)

$$\sum_{n$$

The analogous statement for Λ instead of µ is open; this would prove a result on the sum of digits of squares of primes.

► This result shows Möbius orthogonality for a non-deterministic sequence: the sequence n → t(n²) has full factor complexity p_k = 2^k (Moshe 2007), in fact it is a normal sequence (Drmota, Mauduit, Rivat 2019) and even looks random (open).

Möbius orthogonality for a non-deterministic sequence We want to prove the following theorem.

Theorem (Drmota, Mauduit, Rivat, S. 2019+)

$$\sum_{n$$

- The analogous statement for Λ instead of µ is open; this would prove a result on the sum of digits of squares of primes.
- ► This result shows Möbius orthogonality for a non-deterministic sequence: the sequence n → t(n²) has full factor complexity p_k = 2^k (Moshe 2007), in fact it is a normal sequence (Drmota, Mauduit, Rivat 2019) and even looks random (open).

First ingredient of the proof

We will use the (Bourgain–Sarnak–Ziegler–)Daboussi–Kátai criterion. Proposition ((BSZ)DK)

Let $f : \mathbb{N} \to \mathbb{C}$ be bounded and

$$\sum_{n\leq x} f(pn)\overline{f(qn)} = o(x)$$

for all pairs (p,q) of distinct primes such that p,q > M. Then

$$\sum_{n\leq x}\mu(n)f(n)=o(x).$$

We have to verify this for the function f(n) = t(n²), therefore we need to show that

$$\sum_{n \le x} \mathbf{t}(p^2 n^2) \mathbf{t}(q^2 n^2) = o(x).$$
(1)

Lukas Spiegelhofer (TU Vienna)

Möbius orthogonality and the sum-of-digits function

July 10, 2019 7 / 17

First ingredient of the proof We will use the (Bourgain–Sarnak–Ziegler–)Daboussi–Kátai criterion. Proposition ((BSZ)DK)

Let $f:\mathbb{N}\rightarrow\mathbb{C}$ be bounded and

$$\sum_{n\leq x} f(pn)\overline{f(qn)} = o(x)$$

for all pairs (p,q) of distinct primes such that p,q > M. Then

$$\sum_{n\leq x}\mu(n)f(n)=o(x).$$

We have to verify this for the function f(n) = t(n²), therefore we need to show that

$$\sum_{n \le x} \mathbf{t}(p^2 n^2) \mathbf{t}(q^2 n^2) = o(x).$$
(1)

Lukas Spiegelhofer (TU Vienna)

Möbius orthogonality and the sum-of-digits function

July 10, 2019 7 / 17

Second ingredient of the proof

We are concerned with $g(n) = \mathbf{t}(p^2 n)\mathbf{t}(q^2 n)$ and need to show that $\sum_{n \leq x} g(n^2) = o(x)$.

For this, we use Mauduit and Rivat (2019).

Theorem (Corollary of MR2019)

Assume that $h : \mathbb{N} \to \{z \in \mathbb{C} : |z| = 1\}$ satisfies a certain carry property and has uniformly small Fourier coefficients,

$$\frac{1}{2^{\lambda}} \sum_{0 \le u < 2^{\lambda}} h(2^{\kappa}u) e(-ut) \ll 2^{-\eta\lambda}$$

for some $\eta > 0$, uniformly for $t \in \mathbb{R}$ and $\kappa \leq c\lambda$. Then

$$\sum_{n\leq N}h(n^2)=o(N).$$

Lukas Spiegelhofer (TU Vienna)

Second ingredient of the proof

We are concerned with $g(n) = \mathbf{t}(p^2 n)\mathbf{t}(q^2 n)$ and need to show that $\sum_{n \leq x} g(n^2) = o(x)$.

For this, we use Mauduit and Rivat (2019).

Theorem (Corollary of MR2019)

Assume that $h : \mathbb{N} \to \{z \in \mathbb{C} : |z| = 1\}$ satisfies a certain carry property and has uniformly small Fourier coefficients,

$$\frac{1}{2^{\lambda}}\sum_{0\leq u<2^{\lambda}}h(2^{\kappa}u)\,\mathrm{e}(-ut)\ll 2^{-\eta\lambda}$$

for some $\eta > 0$, uniformly for $t \in \mathbb{R}$ and $\kappa \leq c\lambda$. Then

$$\sum_{n\leq N}h(n^2)=o(N).$$

Lukas Spiegelhofer (TU Vienna)

July 10, 2019 8 / 17

Third ingredient of the proof

The carry property for $f(n) = \mathbf{t}(p^2 n)\mathbf{t}(q^2 n)$ is straightforward to verify; it remains to estimate

$$\sup_{t\in\mathbb{R}}\frac{1}{2^{\lambda}}\sum_{0\leq n<2^{\lambda}}\mathbf{t}(p^{2}n)\mathbf{t}(q^{2}n)\mathbf{e}(-nt).$$

For this, we use a result by Dartyge and Tenenbaum:

Proposition (Corollary of Dartyge–Tenenbaum 2005) Let p' and q' be different odd positive integers. Then

$$\sum_{q \leq n < x+y} \mathbf{t}(p'n)\mathbf{t}(q'n) e(-nt) = O(y^{1-\eta})$$

for some $\eta > 0$, uniformly in t and x.

Important paper, difficult to read and in French!

Lukas Spiegelhofer (TU Vienna)

Third ingredient of the proof

The carry property for $f(n) = \mathbf{t}(p^2 n)\mathbf{t}(q^2 n)$ is straightforward to verify; it remains to estimate

$$\sup_{t\in\mathbb{R}}\frac{1}{2^{\lambda}}\sum_{0\leq n<2^{\lambda}}\mathbf{t}(p^{2}n)\mathbf{t}(q^{2}n)\mathbf{e}(-nt).$$

For this, we use a result by Dartyge and Tenenbaum:

Proposition (Corollary of Dartyge–Tenenbaum 2005) Let p' and q' be different odd positive integers. Then

$$\sum_{x \le n < x+y} \mathbf{t}(p'n)\mathbf{t}(q'n) e(-nt) = O(y^{1-\eta})$$

for some $\eta > 0$, uniformly in t and x.

Important paper, difficult to read and in French!

Lukas Spiegelhofer (TU Vienna) Möbius orthogonality and the sum-of-digits function

Summary

.

Summarizing:

Dartyge–Tenenbaum implies that uniformly in t and x,

$$\sum_{x\leq n< x+y} \mathbf{t}(p^2 n) \mathbf{t}(q^2 n) \mathbf{e}(-nt) = O(y^{1-\eta}).$$

Mauduit–Rivat implies that

$$\sum_{0\leq n< N} \mathbf{t}(p^2 n^2) \mathbf{t}(q^2 n^2) = o(N).$$

Daboussi–Kátai implies that

$$\sum_{n \le x} \mu(n) \mathbf{t}(n^2) = o(x).$$

Lukas Spiegelhofer (TU Vienna)

Möbius orthogonality and the sum-of-digits function

July 10, 2019 10 / 17

Summary

.

Summarizing:

Dartyge–Tenenbaum implies that uniformly in t and x,

$$\sum_{x\leq n< x+y} \mathbf{t}(p^2n)\mathbf{t}(q^2n)\mathbf{e}(-nt) = O(y^{1-\eta}).$$

Mauduit–Rivat implies that

$$\sum_{0\leq n< N} \mathbf{t}(p^2 n^2) \mathbf{t}(q^2 n^2) = o(N).$$

Daboussi–Kátai implies that

$$\sum_{n \le x} \mu(n) \mathbf{t}(n^2) = o(x).$$

Lukas Spiegelhofer (TU Vienna)

Möbius orthogonality and the sum-of-digits function

July 10, 2019 10 / 17

Summary

.

Summarizing:

Dartyge–Tenenbaum implies that uniformly in t and x,

$$\sum_{x\leq n< x+y} \mathbf{t}(p^2n)\mathbf{t}(q^2n)\mathbf{e}(-nt) = O(y^{1-\eta}).$$

Mauduit–Rivat implies that

$$\sum_{0\leq n< N} \mathbf{t}(p^2 n^2) \mathbf{t}(q^2 n^2) = o(N).$$

Daboussi–Kátai implies that

$$\sum_{n\leq x}\mu(n)\mathbf{t}(n^2)=o(x).$$

Lukas Spiegelhofer (TU Vienna)

Möbius orthogonality and the sum-of-digits function

July 10, 2019 10 / 17

A generalization: *b*-multiplicative sequences

We also want to prove Möbius orthogonality for the sequence $g(n^2)$, where g is *strictly b-multiplicative*. Such a function g is of the form

$$g(0) = 1$$
 and $g(\varepsilon_0 b^0 + \dots + \varepsilon_{\nu} b^{\nu}) = g(\varepsilon_0) \cdots g(\varepsilon_{\nu}).$ (2)

That is, each digit $\neq 0$ gets assigned a *weight*, and these weights are multiplied. The Thue–Morse sequence is the function g satisfying (2) for b = 2 and g(1) = -1.

Theorem (DMRS 2019+)

Let $b \ge 2$ be an integer and g a strictly b-multiplicative function. Then

$$\sum_{n\leq N}\mu(n)g(n^2)=o(N).$$

Note that g(n) = 1 is strictly *b*-multiplicative, and the statement degenerates into $\sum_{n \le N} \mu(n) = o(N)$, which is the prime number theorem.

Lukas Spiegelhofer (TU Vienna)

Möbius orthogonality and the sum-of-digits function

July 10, 2019 11 / 17

A generalization: *b*-multiplicative sequences

We also want to prove Möbius orthogonality for the sequence $g(n^2)$, where g is *strictly b-multiplicative*. Such a function g is of the form

$$g(0)=1$$
 and $g(arepsilon_0 b^0+\dots+arepsilon_
u b^
u)=g(arepsilon_0)\dots g(arepsilon_
u).$ (2)

That is, each digit $\neq 0$ gets assigned a *weight*, and these weights are multiplied. The Thue–Morse sequence is the function g satisfying (2) for b = 2 and g(1) = -1.

Theorem (DMRS 2019+)

Let $b \ge 2$ be an integer and g a strictly b-multiplicative function. Then

$$\sum_{n\leq N}\mu(n)g(n^2)=o(N).$$

Note that g(n) = 1 is strictly *b*-multiplicative, and the statement degenerates into $\sum_{n \le N} \mu(n) = o(N)$, which is the prime number theorem.

11 / 17

Generalizing Dartyge-Tenenbaum

- In fact, the "trivial" part of the theorem concerns b-multiplicative functions g satisfying g(n) = e(αs_q(n)), where α(b − 1) ∈ Z (we write e(x) = exp(2πix)). This is the periodic case, since s_b(n) ≡ n mod b − 1 ("preuve par neuf") → prime number theorem in arithmetic progressions.
- ▶ We need to generalize Dartyge–Tenenbaum: for distinct positive integers p', q' not divisible by b (in fact squares of large different primes are sufficient), we have to show

$$\sum_{n \le y} g(p'n)g(q'n) e(-nt) = O(y^{1-\eta})$$

for some $\eta > 0$, uniformly in *t*.

Lukas Spiegelhofer (TU Vienna) Möbius orthogonality and the sum-of-digits function July 10, 2019 12 / 17

Generalizing Dartyge-Tenenbaum

- In fact, the "trivial" part of the theorem concerns b-multiplicative functions g satisfying g(n) = e(αs_q(n)), where α(b − 1) ∈ Z (we write e(x) = exp(2πix)). This is the periodic case, since s_b(n) ≡ n mod b − 1 ("preuve par neuf") → prime number theorem in arithmetic progressions.
- ▶ We need to generalize Dartyge–Tenenbaum: for distinct positive integers p', q' not divisible by b (in fact squares of large different primes are sufficient), we have to show

$$\sum_{n\leq y} g(p'n)g(q'n)e(-nt) = O(y^{1-\eta})$$

for some $\eta > 0$, uniformly in *t*.

Lukas Spiegelhofer (TU Vienna) Möbius orthogonality and the sum-of-digits function July 10, 2019 12 / 17

Different bases

Drmota, Mauduit and Rivat (submitted) proved in particular the following result on the sum-of-digits function s_b in two different bases.

Theorem (Drmota, Mauduit, Rivat 2019+)

Assume that $b_1, b_2 \ge 2$ are coprime, and $\alpha_1, \alpha_2 \in \mathbb{R}$ such that $\alpha_1(b_1-1) \notin \mathbb{Z}$ and $\alpha_2(b_2-1) \notin \mathbb{Z}$. Then

$$\sum_{n$$

and

$$\sum_{n$$

Here Λ is the von Mangoldt function, defined by $\Lambda(p^k) = \log p$ for primes p and integers $k \ge 0$, and $\Lambda(n) = 0$ if n contains two different primes in its prime factor decomposition.

Different bases

Drmota, Mauduit and Rivat (submitted) proved in particular the following result on the sum-of-digits function s_b in two different bases.

Theorem (Drmota, Mauduit, Rivat 2019+)

Assume that $b_1, b_2 \ge 2$ are coprime, and $\alpha_1, \alpha_2 \in \mathbb{R}$ such that $\alpha_1(b_1 - 1) \notin \mathbb{Z}$ and $\alpha_2(b_2 - 1) \notin \mathbb{Z}$. Then

$$\sum_{n$$

 \sim deterministic for rational $lpha_1, lpha_2$

and

$$\sum_{n$$

Here Λ is the von Mangoldt function, defined by $\Lambda(p^k) = \log p$ for primes p and integers $k \ge 0$, and $\Lambda(n) = 0$ if n contains two different primes in its prime factor decomposition.

Sums of type I and II

▶ The method of proof of Drmota–Mauduit–Rivat uses sums of type I and II: In order to bound the sum $\sum_{n} \mu(n)F(n)$, it is sufficient to estimate certain sums

$$\sum_{m} \max_{I} \left| \sum_{n \in I} F(mn) \right| \quad (type I)$$

and

$$\sum_{m}\sum_{n}a_{m}b_{n}F(mn) \quad \text{(type II)}.$$

DMR's proof is not sufficient to handle three or more bases.

Excursus: the level of distribution

Theorem (S. 2019+)

The Thue–Morse sequence has level of distribution 1. More precisely, for all $\varepsilon > 0$ we have

$$\sum_{\substack{M \le m < 2M}} \max_{\substack{y,z \ge 0 \\ z-y \le x}} \max_{\substack{0 \le a < d \\ n \equiv a \bmod m}} \left| \sum_{\substack{y \le n < z \\ n \equiv a \bmod m}} (-1)^{s_2(n)} \right| = O(x^{1-\eta})$$

for some $\eta > 0$ depending on ε , where $M = x^{1-\varepsilon}$.

- ▶ This is similar to a sum of type I, allowing *m* to be a large power of *n*.
- This improvement on sums of type I simplifies the treatment of sums of type II! (cf. e.g. Heath–Brown's identity)

Lukas Spiegelhofer (TU Vienna) Möbius orthogonality and the sum-of-digits function July 10, 2019 15 / 17

Excursus: the level of distribution

Theorem (S. 2019+)

The Thue–Morse sequence has level of distribution 1. More precisely, for all $\varepsilon > 0$ we have

$$\sum_{\substack{M \le m < 2M}} \max_{\substack{y, z \ge 0 \\ z - y \le x}} \max_{\substack{0 \le a < d \\ n \equiv a \bmod m}} \left| \sum_{\substack{y \le n < z \\ n \equiv a \bmod m}} (-1)^{s_2(n)} \right| = O(x^{1 - \eta})$$

for some $\eta > 0$ depending on ε , where $M = x^{1-\varepsilon}$.

- ▶ This is similar to a sum of type I, allowing *m* to be a large power of *n*.
- This improvement on sums of type I simplifies the treatment of sums of type II! (cf. e.g. Heath–Brown's identity)

Lukas Spiegelhofer (TU Vienna) Möbius orthogonality and the sum-of-digits function July 10, 2019 15 / 17

Excursus: the level of distribution

Theorem (S. 2019+)

The Thue–Morse sequence has level of distribution 1. More precisely, for all $\varepsilon > 0$ we have

$$\sum_{\substack{y,z \ge 0 \\ z-y \le x}} \max_{\substack{y,z \ge 0 \\ n \le a \text{ mod } m}} \left| \sum_{\substack{y \le n < z \\ n \equiv a \text{ mod } m}} (-1)^{s_2(n)} \right| = O(x^{1-\eta})$$

for some $\eta > 0$ depending on ε , where $M = x^{1-\varepsilon}$.

- This is similar to a sum of type I, allowing m to be a large power of n.
- This improvement on sums of type I simplifies the treatment of sums of type II! (cf. e.g. Heath-Brown's identity)

An approach to the problem announced in the abstract

We plan to extend the theorem prove a result on the level of distribution of

$$e(\vartheta_1 s_{b_1}(n) + \cdots + \vartheta_k s_{b_k}(n)),$$

which is of intrinsic interest; via simplified sums of type II this might lead to a proof of the statements

$$\sum_{n\leq N} \mu(n) e(\vartheta_1 s_{b_1}(n) + \dots + \vartheta_k s_{b_k}(n)) = o(N)$$

and

$$\sum_{n\leq N} \Lambda(n) e(\vartheta_1 s_{b_1}(n) + \cdots + \vartheta_k s_{b_k}(n)) = o(N).$$

Lukas Spiegelhofer (TU Vienna) Möbius orthogonality and the sum-of-digits function July 10, 2019 16 / 17

Thank you!

Lukas Spiegelhofer (TU Vienna) Möbius orthogonality and the sum-of-digits function July 10, 2019 17 / 17