Digital expansions along arithmetic progressions

Lukas Spiegelhofer

TECHNISCHE
WIEN
W I E N Vienna University of Technology

March 6, 2020, MU Leoben

The basic objects

- The binary expansion: every nonnegative integer n admits a unique expansion as a sum of pairwise different powers of 2 :

$$
n=\varepsilon_{0} 2^{0}+\varepsilon_{1} 2^{1}+\varepsilon_{2} 2^{2}+\cdots,
$$

where $\varepsilon_{i} \in\{0,1\}$.

- The Zeckendorf expansion: every nonnegative integer n admits a unique expansion as a sum of pairwise different, non-adjacent Fibonacci numbers defined by $F_{0}=0, F_{1}=1, F_{i+2}=F_{i}+F_{i+1}$:

$$
n=\varepsilon_{2} F_{2}+\varepsilon_{3} F_{3}+\cdots,
$$

where $\varepsilon_{i} \in\{0,1\}$ and $\varepsilon_{i+1}=1 \Rightarrow \varepsilon_{i}=0$.

The basic objects

- The binary expansion: every nonnegative integer n admits a unique expansion as a sum of pairwise different powers of 2 :

$$
n=\varepsilon_{0} 2^{0}+\varepsilon_{1} 2^{1}+\varepsilon_{2} 2^{2}+\cdots,
$$

where $\varepsilon_{i} \in\{0,1\}$.

- The Zeckendorf expansion: every nonnegative integer n admits a unique expansion as a sum of pairwise different, non-adjacent Fibonacci numbers defined by $F_{0}=0, F_{1}=1, F_{i+2}=F_{i}+F_{i+1}$:

$$
n=\varepsilon_{2} F_{2}+\varepsilon_{3} F_{3}+\cdots,
$$

where $\varepsilon_{i} \in\{0,1\}$ and $\varepsilon_{i+1}=1 \Rightarrow \varepsilon_{i}=0$.

The basic question

What happens to the digital (binary or Zeckendorf) expansion of n when we add a constant t ?

- Let us begin with the binary case and $t=1$. The (possibly empty) block of 1 s on the right of the binary expansion of n is replaced by 0 s , and the 0 to the left of the block is replaced by 1 .

$$
\begin{equation*}
* 011 \cdots 1 \mapsto * 100 \cdots 0 \tag{1}
\end{equation*}
$$

- A similar thing happens for $t=2$: the rightmost digit of n stays the same and (1) is applied for the remaining digits.
- For $t=3$ we have the following cases:

$$
\begin{array}{rlrl}
* 00 & \mapsto * 11 ; & & * 01^{k} 01 \mapsto * 10^{k} 00 ; \\
* 01^{k} 10 \mapsto * 10^{k} 01 ; & & * 01^{k} 11 \mapsto * 10^{k} 10 .
\end{array}
$$

The end?

- In this way, we can in principle describe the situation for any given t completely; anagously, this is the case for Zeckendorf.
- However, we obtain long case distinctions for growing t, and a structural principle describing these cases is unavailable. We do not fully understand digital expansions under addition, in particular, repeated addition-that is, along arithmetic progressions.
- An apparently simple, unsolved conjecture in this context is Cusick's conjecture on the binary sum-of-digits function: let $s(n)$ be the number of 1 s in the binary expansion of n and let $t \geq 0$ be an integer. Is it true that, more often than not, we have $s(n+t) \geq s(n)$? In symbols, do we have $c_{t}>1 / 2$, where

$$
c_{t}=\lim _{N \rightarrow \infty} \frac{1}{N}|\{0 \leq n<N: s(n+t) \geq s(n)\}| ?
$$

- A related line of research concerns short arithmetic progressions. This will lead us to the notion level of distribution, which has a strong link to digital expansions of prime numbers.

The end?

- In this way, we can in principle describe the situation for any given t completely; anagously, this is the case for Zeckendorf.
- However, we obtain long case distinctions for growing t, and a structural principle describing these cases is unavailable. We do not fully understand digital expansions under addition, in particular, repeated addition-that is, along arithmetic progressions.
- An apparently simple, unsolved conjecture in this context is Cusick's conjecture on the binary sum-of-digits function: let $s(n)$ be the number of 1 s in the binary expansion of n and let $t \geq 0$ be an integer. Is it true that, more often than not, we have $s(n+t) \geq s(n)$? In symbols, do we have $c_{t}>1 / 2$, where

$$
c_{t}=\lim _{N \rightarrow \infty} \frac{1}{N}|\{0 \leq n<N: s(n+t) \geq s(n)\}| ?
$$

- A related line of research concerns short arithmetic progressions. This will lead us to the notion level of distribution, which has a strong link to digital expansions of prime numbers.

The end?

- In this way, we can in principle describe the situation for any given t completely; anagously, this is the case for Zeckendorf.
- However, we obtain long case distinctions for growing t, and a structural principle describing these cases is unavailable. We do not fully understand digital expansions under addition, in particular, repeated addition-that is, along arithmetic progressions.
- An apparently simple, unsolved conjecture in this context is Cusick's conjecture on the binary sum-of-digits function: let $s(n)$ be the number of 1 s in the binary expansion of n and let $t \geq 0$ be an integer. Is it true that, more often than not, we have $s(n+t) \geq s(n)$? In symbols, do we have $c_{t}>1 / 2$, where

$$
c_{t}=\lim _{N \rightarrow \infty} \frac{1}{N}|\{0 \leq n<N: s(n+t) \geq s(n)\}| ?
$$

- A related line of research concerns short arithmetic progressions. This will lead us to the notion level of distribution, which has a strong link to digital expansions of prime numbers.

The end?

- In this way, we can in principle describe the situation for any given t completely; anagously, this is the case for Zeckendorf.
- However, we obtain long case distinctions for growing t, and a structural principle describing these cases is unavailable. We do not fully understand digital expansions under addition, in particular, repeated addition-that is, along arithmetic progressions.
- An apparently simple, unsolved conjecture in this context is Cusick's conjecture on the binary sum-of-digits function: let $s(n)$ be the number of 1 s in the binary expansion of n and let $t \geq 0$ be an integer. Is it true that, more often than not, we have $s(n+t) \geq s(n)$? In symbols, do we have $c_{t}>1 / 2$, where

$$
c_{t}=\lim _{N \rightarrow \infty} \frac{1}{N}|\{0 \leq n<N: s(n+t) \geq s(n)\}| ?
$$

- A related line of research concerns short arithmetic progressions. This will lead us to the notion level of distribution, which has a strong link to digital expansions of prime numbers.

Section 1

Long arithmetic progressions

Densities for Cusick's conjecture

Let s be the binary sum-of-digits function.
For integers $t \geq 0$ and j we define the asymptotic densities

$$
\delta(j, t)=\lim _{N \rightarrow \infty} \frac{1}{N}|\{0 \leq n<N: s(n+t)-s(n)=j\}| .
$$

The condition $s(n+t)-s(n)=j$ is periodic with period $2^{\kappa(j, t)}$; therefore

$$
\delta(j, t)=\lim _{N \rightarrow \infty} \frac{1}{N}|\{0 \leq \ell<N: s((\ell+1) t)-s(\ell t)=j\}|
$$

for odd t (this holds for all $t \geq 0$, but $2 \nmid t$ is the interesting case). Cusick's conjecture is therefore about long arithmetic progressions.

- The densities $\delta(j, t)$ give us a probability distribution on \mathbb{Z} for each t.
- Clearly, $c_{t}=\delta(0, t)+\delta(1, t)+\delta(2, t)+\cdots$.

Densities for Cusick's conjecture

Let s be the binary sum-of-digits function.
For integers $t \geq 0$ and j we define the asymptotic densities

$$
\delta(j, t)=\lim _{N \rightarrow \infty} \frac{1}{N}|\{0 \leq n<N: s(n+t)-s(n)=j\}| .
$$

The condition $s(n+t)-s(n)=j$ is periodic with period $2^{\kappa(j, t)}$; therefore

$$
\delta(j, t)=\lim _{N \rightarrow \infty} \frac{1}{N}|\{0 \leq \ell<N: s((\ell+1) t)-s(\ell t)=j\}|
$$

for odd t (this holds for all $t \geq 0$, but $2 \nmid t$ is the interesting case). Cusick's conjecture is therefore about long arithmetic progressions.

- The densities $\delta(j, t)$ give us a probability distribution on \mathbb{Z} for each t.
- Clearly, $c_{t}=\delta(0, t)+\delta(1, t)+\delta(2, t)+\cdots$.

Densities for Cusick's conjecture

Let s be the binary sum-of-digits function.
For integers $t \geq 0$ and j we define the asymptotic densities

$$
\delta(j, t)=\lim _{N \rightarrow \infty} \frac{1}{N}|\{0 \leq n<N: s(n+t)-s(n)=j\}| .
$$

The condition $s(n+t)-s(n)=j$ is periodic with period $2^{\kappa(j, t)}$; therefore

$$
\delta(j, t)=\lim _{N \rightarrow \infty} \frac{1}{N}|\{0 \leq \ell<N: s((\ell+1) t)-s(\ell t)=j\}|
$$

for odd t (this holds for all $t \geq 0$, but $2 \nmid t$ is the interesting case). Cusick's conjecture is therefore about long arithmetic progressions.

- The densities $\delta(j, t)$ give us a probability distribution on \mathbb{Z} for each t.
- Clearly, $c_{t}=\delta(0, t)+\delta(1, t)+\delta(2, t)+\cdots$.

A two-dimensional recurrence

For $t=1$, we have the rule $* 01^{k} \mapsto * 10^{k}$ valid for $k \geq 0$, therefore we have the geometric distribution

$$
\delta(k, 1)= \begin{cases}0 & \text { for } k \geq 2 ; \\ 2^{k-2} & \text { for } k \leq 1 .\end{cases}
$$

It follows that $c_{1}=3 / 4>1 / 2$.

- We have the recurrence

$$
\begin{aligned}
\delta(j, 2 t) & =\delta(j, t) ; \\
\delta(j, 2 t+1) & =\frac{1}{2} \delta(j-1, t)+\frac{1}{2} \delta(j+1, t+1),
\end{aligned}
$$

which permits to compute the values $\delta(j, t)$ efficiently. In particular, $c_{t}>1 / 2$ for $t \leq 2^{30}$. (≈ 2 CPU hours)

A two-dimensional recurrence

For $t=1$, we have the rule $* 01^{k} \mapsto * 10^{k}$ valid for $k \geq 0$, therefore we have the geometric distribution

$$
\delta(k, 1)= \begin{cases}0 & \text { for } k \geq 2 \\ 2^{k-2} & \text { for } k \leq 1\end{cases}
$$

It follows that $c_{1}=3 / 4>1 / 2$.

- We have the recurrence

$$
\begin{aligned}
\delta(j, 2 t) & =\delta(j, t) \\
\delta(j, 2 t+1) & =\frac{1}{2} \delta(j-1, t)+\frac{1}{2} \delta(j+1, t+1),
\end{aligned}
$$

which permits to compute the values $\delta(j, t)$ efficiently. In particular, $c_{t}>1 / 2$ for $t \leq 2^{30}$. (≈ 2 CPU hours)

An almost-all result

With this recurrence, it is not hard to compute the mean values

$$
m_{\lambda, j}=\frac{1}{2^{\lambda}} \sum_{2^{\lambda} \leq t<2^{\lambda+1}} \delta(j, t)
$$

It takes more effort to handle the second moment

$$
m_{\lambda, j}^{(2)}=\frac{1}{2^{\lambda}} \sum_{2^{\lambda} \leq t<2^{\lambda+1}} \delta(j, t)^{2} .
$$

Together with Drmota and Kauers, we studied $m^{(2)}$ by analyzing a diagonal of a trivariate generating function asymptotically. Using Chebychev's inequality, we obtained concentration strictly above $1 / 2$!
Theorem (Drmota-Kauers-S. 2016)
For all $\varepsilon>0$, we have

$$
\left|\left\{0 \leq t<T: 1 / 2<c_{t}<1 / 2+\varepsilon\right\}\right|=T-\mathcal{O}(T / \log T) .
$$

An almost-all result

With this recurrence, it is not hard to compute the mean values

$$
m_{\lambda, j}=\frac{1}{2^{\lambda}} \sum_{2^{\lambda} \leq t<2^{\lambda+1}} \delta(j, t)
$$

It takes more effort to handle the second moment

$$
m_{\lambda, j}^{(2)}=\frac{1}{2^{\lambda}} \sum_{2^{\lambda} \leq t<2^{\lambda+1}} \delta(j, t)^{2} .
$$

Together with Drmota and Kauers, we studied $m^{(2)}$ by analyzing a diagonal of a trivariate generating function asymptotically. Using Chebychev's inequality, we obtained concentration strictly above $1 / 2$! Theorem (Drmota-Kauers-S. 2016)
For all $\varepsilon>0$, we have

$$
\left|\left\{0 \leq t<T: 1 / 2<c_{t}<1 / 2+\varepsilon\right\}\right|=T-\mathcal{O}(T / \log T)
$$

The Tu-Deng conjecture

Using similar methods, we (S.-Wallner 2019) proved an analogous almost-all result on the $T u$-Deng conjecture coming from cryptography: for a positive integer k and $1 \leq t<2^{k}-1$, this conjecture states that $\left|S_{t, k}\right| \leq 2^{k-1}$, where

$$
S_{t, k}=\left\{0 \leq a, b<2^{k}-1: a+b \equiv t \bmod 2^{k}-1, s(a)+s(b)<k\right\} .
$$

- This has been verified computationally for $k \in\{1, \ldots, 29,39,40\}$ by Tu and Deng, and Flori respectively.
- This conjecture, if true, allows for constructing Boolean functions $\{0,1\}^{k} \rightarrow\{0,1\}$ with desirable cryptographic properties.

The Tu-Deng conjecture

Using similar methods, we (S.-Wallner 2019) proved an analogous almost-all result on the $T u$-Deng conjecture coming from cryptography: for a positive integer k and $1 \leq t<2^{k}-1$, this conjecture states that $\left|S_{t, k}\right| \leq 2^{k-1}$, where

$$
S_{t, k}=\left\{0 \leq a, b<2^{k}-1: a+b \equiv t \bmod 2^{k}-1, s(a)+s(b)<k\right\} .
$$

- This has been verified computationally for $k \in\{1, \ldots, 29,39,40\}$ by Tu and Deng, and Flori respectively.
- This conjecture, if true, allows for constructing Boolean functions $\{0,1\}^{k} \rightarrow\{0,1\}$ with desirable cryptographic properties.

The Tu-Deng conjecture

Using similar methods, we (S.-Wallner 2019) proved an analogous almost-all result on the $T u$-Deng conjecture coming from cryptography: for a positive integer k and $1 \leq t<2^{k}-1$, this conjecture states that $\left|S_{t, k}\right| \leq 2^{k-1}$, where

$$
S_{t, k}=\left\{0 \leq a, b<2^{k}-1: a+b \equiv t \bmod 2^{k}-1, s(a)+s(b)<k\right\} .
$$

- This has been verified computationally for $k \in\{1, \ldots, 29,39,40\}$ by Tu and Deng, and Flori respectively.
- This conjecture, if true, allows for constructing Boolean functions $\{0,1\}^{k} \rightarrow\{0,1\}$ with desirable cryptographic properties.

Current work

A promising different approach (started by Emme and Hubert) is to study moments of $\delta(\cdot, t)$ for fixed t. In this vein, we proved the following weakened form of the conjecture.

Theorem (S., submitted 2019)
Let $\varepsilon>0$. If t contains at least $B(\varepsilon)$ blocks of 1 s , then $c_{t}>1 / 2-\varepsilon$.
With Wallner, we are currently proving a stronger theorem:
Theorem (S., Wallner, in preparation)
Assume that K is the number of blocks of 1 s in t. There
exist (explicit) $\sigma \asymp K$ and $\alpha>0$ such that for all $j \in \mathbb{Z}$,

$$
\delta(j, t)=\alpha \exp \left(-\frac{j^{2}}{2 \sigma}\right)+\mathcal{O}\left(K^{-1}\right)
$$

In particular, $c_{t}>1 / 2-\mathcal{O}\left(K^{-1 / 2}\right)$.

Current work

A promising different approach (started by Emme and Hubert) is to study moments of $\delta(\cdot, t)$ for fixed t. In this vein, we proved the following weakened form of the conjecture.

Theorem (S., submitted 2019)
Let $\varepsilon>0$. If t contains at least $B(\varepsilon)$ blocks of 1 s , then $c_{t}>1 / 2-\varepsilon$.
With Wallner, we are currently proving a stronger theorem:
Theorem (S., Wallner, in preparation)
Assume that K is the number of blocks of 1 s in t. There exist (explicit) $\sigma \asymp K$ and $\alpha>0$ such that for all $j \in \mathbb{Z}$,

$$
\delta(j, t)=\alpha \exp \left(-\frac{j^{2}}{2 \sigma}\right)+\mathcal{O}\left(K^{-1}\right) .
$$

In particular, $c_{t}>1 / 2-\mathcal{O}\left(K^{-1 / 2}\right)$.

Current work

A promising different approach (started by Emme and Hubert) is to study moments of $\delta(\cdot, t)$ for fixed t. In this vein, we proved the following weakened form of the conjecture.

Theorem (S., submitted 2019)
Let $\varepsilon>0$. If t contains at least $B(\varepsilon)$ blocks of 1 s , then $c_{t}>1 / 2-\varepsilon$.
With Wallner, we are currently proving a stronger theorem:
Theorem (S., Wallner, in preparation)
Assume that K is the number of blocks of 1 s in t. There exist (explicit) $\sigma \asymp K$ and $\alpha>0$ such that for all $j \in \mathbb{Z}$,

$$
\delta(j, t)=\alpha \exp \left(-\frac{j^{2}}{2 \sigma}\right)+\mathcal{O}\left(K^{-1}\right) .
$$

In particular, $c_{t}>1 / 2-\mathcal{O}\left(K^{-1 / 2}\right)$.

Current work, continued

This is proved by a detailed analysis of the characteristic function of $\delta(\cdot, t)$, viz.

$$
\gamma_{t}(\vartheta)=\sum_{n \geq 0} e^{2 \pi i \vartheta(s(n+t)-s(n))}=\sum_{j \in \mathbb{Z}} \delta(j, t) e^{2 \pi i j \vartheta}
$$

For each ϑ, we have the one-dimensional recurrence

$$
\begin{aligned}
\gamma_{1}(\vartheta) & =\frac{\mathrm{e}(\vartheta)}{2-\mathrm{e}(-\vartheta)} \\
\gamma_{2 t}(\vartheta) & =\gamma_{t}(\vartheta) ; \\
\gamma_{2 t+1}(\vartheta) & =\frac{\mathrm{e}(\vartheta)}{2} \gamma_{t}(\vartheta)+\frac{\mathrm{e}(-\vartheta)}{2} \gamma_{t+1}(\vartheta) .
\end{aligned}
$$

Probability theoretic tools are also powerful in this context!

Medium-term goals, part I

- Prove analogous results for the Tu-Deng conjecture.
- Prove the full sum-of-digits conjecture of Cusick. 桨
- Consider base- q analogues, and the Zeckendorf sum-of-digits of $n+t$!
- Consider multidimensional generalizations: prove that the densities

$$
\begin{aligned}
& \left.\delta\left(j_{1}, \ldots, j_{m}, t\right)=\lim _{N \rightarrow \infty} \frac{1}{N} \right\rvert\,\left\{0 \leq n<N: s(n+\ell t)-s(n)=j_{\ell}\right. \\
& \text { for } 1 \leq \ell \leq m\} \mid
\end{aligned}
$$

define a probability distribution close to an m-variate Gaussian, and prove statements analogous to Cusick's conjecture. Note that these are questions on consecutive elements of long arithmetic progressions.

Section 2

Short arithmetic progressions

An exponential sum

- We are interested in the exponential sum

$$
\sum_{0 \leq n<N} \mathrm{e}(\vartheta s(n t+a))
$$

where $\mathrm{e}(x)=\exp (2 \pi i x)$ and $\vartheta \in \mathbb{R}$, and we wish to obtain upper bounds.

- This allows us to prove statements on the distribution of $s(n) \bmod m$ along arithmetic progressions.
- Most prominently, we are concerned with the Thue-Morse sequence t, which can be defined by $\mathbf{t}(n)=s(n) \bmod 2$, or by the morphism $0 \mapsto 01,1 \mapsto 10$. This corresponds to $\vartheta=1 / 2$.

$$
\mathbf{t}=(01101001100101101001011001101001 \ldots)
$$

This sequence describes whether an even or an odd number of powers of two is needed to represent n (in the minimal representation).

An exponential sum

- We are interested in the exponential sum

$$
\sum_{0 \leq n<N} \mathrm{e}(\vartheta s(n t+a))
$$

where $\mathrm{e}(x)=\exp (2 \pi i x)$ and $\vartheta \in \mathbb{R}$, and we wish to obtain upper bounds.

- This allows us to prove statements on the distribution of $s(n) \bmod m$ along arithmetic progressions.
- Most prominently, we are concerned with the Thue-Morse sequence \mathbf{t}, which can be defined by $\mathbf{t}(n)=s(n)$ mod 2 , or by the morphism $0 \mapsto 01,1 \mapsto 10$. This corresponds to $\vartheta=1 / 2$.

$$
\mathbf{t}=(01101001100101101001011001101001 \ldots)
$$

This sequence describes whether an even or an odd number of powers of two is needed to represent n (in the minimal representation).

Gelfond's theorem

Theorem (Gelfond 1968)
Let $d \geq 1$ and $a \in \mathbb{Z}$. Then

$$
|\{1 \leq n \leq x: \mathbf{t}(n)=0, n \equiv a \bmod d\}|=\frac{x}{2 d}+\mathcal{O}\left(x^{\lambda}\right)
$$

for some absolute λ.

- That is, for all $d \geq 1$ and $a<d$ we have

$$
\sum_{1 \leq m \leq M}(-1)^{s(m d+a)} \ll M^{\lambda}
$$

The implied constant depends on d (there are arbitrarily long APs on which \mathbf{t} is constant!).

- Therefore we look at a certain average over d.

The level of distribution

Theorem (Fouvry-Mauduit 1996)

$$
\sum_{1 \leq d \leq D} \max _{1 \leq y \leq x} \max _{0 \leq a<d}\left|\sum_{\substack{0 \leq n<y \\ n \equiv a \bmod d}}(-1)^{s(n)}\right| \leq C x^{1-\eta}
$$

for some $\eta>0$ and $D=x^{0.5924}$.

- The number 0.5924 is a level of distribution of the Thue-Morse sequence.
- Note that we have "trivial" summands (of size $\asymp x / d$) for $d=2^{\lambda}+1$, where $x \leq 2^{2 \lambda}$. These don't matter in the sum.
- For d close to D, the APs have $x^{0.4076+\mathcal{O}(\eta)}$ many terms and common difference $\sim x^{0.5924}$. Note that $0.5924 / 0.4076 \approx 1.453 \rightarrow$ short arithmetic progressions!

The level of distribution

Theorem (Fouvry-Mauduit 1996)

$$
\begin{aligned}
& \sum_{1 \leq d \leq D} \max _{1 \leq y \leq x} \max _{0 \leq a<d} \sum_{\substack{0 \leq n<y \\
0=a \bmod d}}(-1)^{s(n)} \leq C x^{1-\eta} \\
& 0 \text { and } D=x^{0.5924} \text {. observed - expected }
\end{aligned}
$$

- The number 0.5924 is a level of distribution of the Thue-Morse sequence.
- Note that we have "trivial" summands (of size $\asymp x / d$) for $d=2^{\lambda}+1$, where $x \leq 2^{2 \lambda}$. These don't matter in the sum.
- For d close to D, the APs have $x^{0.4076+\mathcal{O}(\eta)}$ many terms and common difference $\sim x^{0.5924}$. Note that $0.5924 / 0.4076 \approx 1.453 \rightarrow$ short arithmetic progressions!

The level of distribution

Theorem (Fouvry-Mauduit 1996)

- The number 0.5924 is a level of distribution of the Thue-Morse sequence.
- Note that we have "trivial" summands (of size $\asymp x / d$) for $d=2^{\lambda}+1$, where $x \leq 2^{2 \lambda}$. These don't matter in the sum.
- For d close to D, the APs have $x^{0.4076+\mathcal{O}(\eta)}$ many terms and common difference $\sim x^{0.5924}$. Note that $0.5924 / 0.4076 \approx 1.453 \rightarrow$ short arithmetic progressions!

The level of distribution

Theorem (Fouvry-Mauduit 1996)

- The number 0.5924 is a level of distribution of the Thue-Morse sequence.
- Note that we have "trivial" summands (of size $\asymp x / d$) for $d=2^{\lambda}+1$, where $x \leq 2^{2 \lambda}$. These don't matter in the sum.
- For d close to D, the APs have $x^{0.4076+\mathcal{O}(\eta)}$ many terms and common difference $\sim x^{0.5924}$. Note that $0.5924 / 0.4076 \approx 1.453 \rightarrow$ short arithmetic progressions!

The level of distribution

Theorem (Fouvry-Mauduit 1996)

- The number 0.5924 is a level of distribution of the Thue-Morse sequence.
- Note that we have "trivial" summands (of size $\asymp x / d$) for $d=2^{\lambda}+1$, where $x \leq 2^{2 \lambda}$. These don't matter in the sum.
- For d close to D, the APs have $x^{0.4076+O(\eta)}$ many terms and common difference $\sim x^{0.5924}$. Note that 0.5924/0.4076 $\approx 1.453 \rightarrow$ short arithmetic progressions!

The level of distribution

Theorem (Fouvry-Mauduit 1996)

- The number 0.5924 is a level of distribution of the Thue-Morse sequence.
- Note that we have "trivial" summands (of size $\asymp x / d$) for $d=2^{\lambda}+1$, where $x \leq 2^{2 \lambda}$. These don't matter in the sum.
- For d close to D, the APs have $x^{0.4076+\mathcal{O}(\eta)}$ many terms and common difference $\sim x^{0.5924}$. Note that $0.5924 / 0.4076 \approx 1.453 \rightarrow$ short arithmetic progressions!

The level of distribution

Theorem (S., submitted 2018)
The Thue-Morse sequence has level of distribution 1. More precisely, let $0<\varepsilon<1$. There exist $\eta>0$ and C such that

$$
\sum_{1 \leq d \leq D} \max _{\substack{y, z \geq 0 \\ z-y \leq x}} \max _{\substack{0 \leq a<d}}\left|\sum_{\substack{y \leq n<z \\ n \equiv a \bmod d}}(-1)^{s(n)}\right| \leq C x^{1-\eta}
$$

for $D=x^{1-\varepsilon}$.

- This is a statement on very short arithmetic progressions: the Thue-Morse sequence usually shows cancellation along N-term arithmetic progressions having common difference $\sim N^{R}$, where $R>0$ is arbitrary ($R \leq 1.454$ for Fouvry-Mauduit).

The level of distribution

Theorem (S., submitted 2018)
The Thue-Morse sequence has level of distribution 1. More precisely, let $0<\varepsilon<1$. There exist $\eta>0$ and C such that

$$
\sum_{1 \leq d \leq D} \max _{\substack{y, z \geq 0 \\ z-y \leq x}} \max _{0 \leq a<d}\left|\sum_{\substack{y \leq n<z \\ n \equiv a \bmod d}}(-1)^{s(n)}\right| \leq C x^{1-\eta}
$$

for $D=x^{1-\varepsilon}$.

- This is a statement on very short arithmetic progressions: the Thue-Morse sequence usually shows cancellation along N-term arithmetic progressions having common difference $\sim N^{R}$, where $R>0$ is arbitrary ($R \leq 1.454$ for Fouvry-Mauduit).

Patterns in \mathbf{t}

\mathbf{t} along short arithmetic subsequences even seems to behave randomly.

We know that every finite sequence on $\{0,1\}$ appears as an arithmetic subsequence of t. But how often?

Patterns in t

\mathbf{t} along short arithmetic subsequences even seems to behave randomly.

We know that every finite sequence on $\{0,1\}$ appears as an arithmetic subsequence of \mathbf{t}. But how often?

Sparse infinite subsequences

We are interested in Piatetski-Shapiro subsequences of \mathbf{t} : for $c>1$ not an integer we consider $\mathbf{t}\left(\left\lfloor n^{c}\right\rfloor\right)$.
For $1<c<2$ we can approximate $\left\lfloor n^{c}\right\rfloor$ by Beatty sequences $\lfloor n \alpha+\beta\rfloor$, and by the same method as for APs we can also prove a Beatty sequence variant of the level of distribution.

Corollary (S.)
Assume that $1<c<2$. Then the sequence \mathbf{t} along $\left\lfloor n^{c}\right\rfloor$ attains both values 0 and 1 with asymptotic frequency $1 / 2$.
This improves Mauduit-Rivat 1995, 2005; S. 2014; Müllner-S. 2015.

- We also wish to obtain normality of Piatetski-Shapiro subsequences of \mathbf{t} ! Every finite sequence in $\{0,1\}^{L}$ should appear with asymptotic frequency 2^{-L} in the sequence $n \mapsto \mathbf{t}\left(\left\lfloor n^{c}\right\rfloor\right)$ for $1<c<2$, improving the range $1<c<3 / 2$ by Müllner and S. (2015).

Sparse infinite subsequences

We are interested in Piatetski-Shapiro subsequences of \mathbf{t} : for $c>1$ not an integer we consider $\mathbf{t}\left(\left\lfloor n^{c}\right\rfloor\right)$.
For $1<c<2$ we can approximate $\left\lfloor n^{c}\right\rfloor$ by Beatty sequences $\lfloor n \alpha+\beta\rfloor$, and by the same method as for APs we can also prove a Beatty sequence variant of the level of distribution.

Corollary (S.)

Assume that $1<c<2$. Then the sequence \mathbf{t} along $\left\lfloor n^{c}\right\rfloor$ attains both values 0 and 1 with asymptotic frequency $1 / 2$.
This improves Mauduit-Rivat 1995, 2005; S. 2014; Müllner-S. 2015.

- We also wish to obtain normality of Piatetski-Shapiro subsequences of \mathbf{t} ! Every finite sequence in $\{0,1\}^{L}$ should appear with asymptotic frequency 2^{-L} in the sequence $n \mapsto \mathbf{t}\left(\left\lfloor n^{c}\right\rfloor\right)$ for $1<c<2$, improving the range $1<c<3 / 2$ by Müllner and S. (2015).

Idea of proof of the level of distribution-result, I

In order to handle $\sum_{0 \leq n<x} \mathrm{e}(\vartheta s(n d+a))$, we successively reduce the digits to be taken into account by s. For an integer $\mu \geq 0$ we define the truncation

$$
s_{\mu}(n)=s\left(n \bmod 2^{\mu}\right),
$$

which is 2^{μ}-periodic.
The essential tool is Van der Corput's inequality.

Lemma

Let J be a finite interval containing N integers and let a_{n} be a complex number for $n \in J$. For all integers $R \geq 1$ we have

$$
\left|\sum_{n \in J} a_{n}\right|^{2} \leq \frac{N+R-1}{R} \sum_{|r|<R}\left(1-\frac{|r|}{R}\right) \sum_{\substack{n \in J \\ n+r \in J}} a_{n+r} \overline{a_{n}}
$$

We only need to estimate correlations, where r is much smaller than n.

Idea of proof of the level of distribution-result, I

In order to handle $\sum_{0 \leq n<x} \mathrm{e}(\vartheta s(n d+a))$, we successively reduce the digits to be taken into account by s. For an integer $\mu \geq 0$ we define the truncation

$$
s_{\mu}(n)=s\left(n \bmod 2^{\mu}\right),
$$

which is 2^{μ}-periodic.
The essential tool is Van der Corput's inequality.

Lemma

Let J be a finite interval containing N integers and let a_{n} be a complex number for $n \in J$. For all integers $R \geq 1$ we have

$$
\left|\sum_{n \in J} a_{n}\right|^{2} \leq \frac{N+R-1}{R} \sum_{|r|<R}\left(1-\frac{|r|}{R}\right) \sum_{\substack{n \in J \\ n+r \in J}} a_{n+r} \overline{a_{n}} .
$$

We only need to estimate correlations, where r is much smaller than n.

Idea of proof of the level of distribution-result, II

- Therefore the expression $\mathrm{e}(\vartheta s(n d+r d+a)-\vartheta s(n d+a))$ arises.
- The summand $r d$ usually does not change the digits at indices significantly larger than $\log _{2}(r d)$, therefore we may replace s by the truncated version s_{λ}.
- This is Mauduit-Rivat 2009, 2010. The new thing is that we can apply this iteratively by using a variant of Van der Corput. In each step, we eliminate the digits between $\lambda-(j+1) \mu$ and $\lambda-j \mu$, until only the 2^{τ}-periodic function s_{τ} is left, where $\tau=\lambda-m \mu$.
- Since 2^{τ} is now much smaller than x, we have in fact reduced the problem to long arithmetic progressions: as n runs through $[0, x)$, the value $n d$ is uniformly distributed in $\mathbb{Z} / 2^{\tau} \mathbb{Z}$.
- Finally, we need an estimate of a so-called Gowers uniformity norm of the Thue-Morse sequence. This was found by Konieczny. \square

Idea of proof of the level of distribution-result, II

- Therefore the expression $\mathrm{e}(\vartheta s(n d+r d+a)-\vartheta s(n d+a))$ arises.
- The summand r d usually does not change the digits at indices significantly larger than $\log _{2}(r d)$, therefore we may replace s by the truncated version s_{λ}.
- This is Mauduit-Rivat 2009, 2010. The new thing is that we can apply this iteratively by using a variant of Van der Corput. In each step, we eliminate the digits between $\lambda-(j+1) \mu$ and $\lambda-j \mu$, until only the 2^{τ}-periodic function s_{τ} is left, where $\tau=\lambda-m \mu$.
- Since 2^{τ} is now much smaller than x, we have in fact reduced the problem to long arithmetic progressions: as n runs through $[0, x)$, the value $n d$ is uniformly distributed in $\mathbb{Z} / 2^{\tau} \mathbb{Z}$.
- Finally, we need an estimate of a so-called Gowers uniformity norm of the Thue-Morse sequence. This was found by Konieczny. \square

Idea of proof of the level of distribution-result, II

- Therefore the expression $\mathrm{e}(\vartheta s(n d+r d+a)-\vartheta s(n d+a))$ arises.
- The summand r d usually does not change the digits at indices significantly larger than $\log _{2}(r d)$, therefore we may replace s by the truncated version s_{λ}.
- This is Mauduit-Rivat 2009, 2010. The new thing is that we can apply this iteratively by using a variant of Van der Corput. In each step, we eliminate the digits between $\lambda-(j+1) \mu$ and $\lambda-j \mu$, until only the 2^{τ}-periodic function s_{τ} is left, where $\tau=\lambda-m \mu$.
- Since 2^{τ} is now much smaller than x, we have in fact reduced the problem to long arithmetic progressions: as n runs through $[0, x)$, the value $n d$ is uniformly distributed in $\mathbb{Z} / 2^{\tau} \mathbb{Z}$.
- Finally, we need an estimate of a so-called Gowers uniformity norm of the Thue-Morse sequence. This was found by Konieczny. \square

Idea of proof of the level of distribution-result, II

- Therefore the expression $\mathrm{e}(\vartheta s(n d+r d+a)-\vartheta s(n d+a))$ arises.
- The summand r d usually does not change the digits at indices significantly larger than $\log _{2}(r d)$, therefore we may replace s by the truncated version s_{λ}.
- This is Mauduit-Rivat 2009, 2010. The new thing is that we can apply this iteratively by using a variant of Van der Corput. In each step, we eliminate the digits between $\lambda-(j+1) \mu$ and $\lambda-j \mu$, until only the 2^{τ}-periodic function s_{τ} is left, where $\tau=\lambda-m \mu$.
- Since 2^{τ} is now much smaller than x, we have in fact reduced the problem to long arithmetic progressions: as n runs through $[0, x)$, the value $n d$ is uniformly distributed in $\mathbb{Z} / 2^{\tau} \mathbb{Z}$.
- Finally, we need an estimate of a so-called Gowers uniformity norm of the Thue-Morse sequence. This was found by Konieczny.

The level of distribution of Zeckendorf

Let $Z(n)$ be the Zeckendorf sum of digits of n, that is, the minimal number of Fibonacci numbers needed to write n as their sum. The following result will be ready soon.

Theorem (Drmota, Müllner, S., in preparation)
The Zeckendorf sum-of-digits function modulo 2 has level of distribution 1. More precisely, for all $\varepsilon>0$ we have

$$
\sum_{1 \leq d \leq D} \max _{\substack{y, z \geq 0 \\ z-y \leq x}} \max _{0 \leq a<d}\left|\sum_{\substack{y \leq n<z \\ n \equiv a \bmod d}}(-1)^{Z(n)}\right|=\mathcal{O}\left(x^{1-\eta}\right)
$$

for some $\eta>0$ depending on ε, where $D=x^{1-\varepsilon}$.

Cutting away Zeckendorf digits

- To handle the sum $\sum_{0 \leq n<N} \mathrm{e}(\vartheta Z(n d+a))$, we proceed as in the Thue-Morse case.
- We first cut away the digits at indices $\geq \lambda$: for $\lambda \geq 2$ define the truncation v_{k} (which is not periodic!) by

$$
v_{k}\left(\varepsilon_{2} F_{2}+\varepsilon_{3} F_{3}+\cdots\right)=\varepsilon_{2} F_{2}+\cdots+\varepsilon_{\lambda-1} F_{\lambda-1},
$$

and set $Z_{\lambda}(n)=Z\left(v_{\lambda}(n)\right)$.

- Next, we cut away digits with indices in $[\lambda-(j+1) \mu, \lambda-j \mu)$. This can be accomplished (again) by a variant of Van der Corput's inequality.
- We are left with the function Z_{τ}, where $\tau=\lambda-m \mu$; the digits below τ of $n d+a$ assume every combination the expected number of times. Therefore we can replace the sum over $n d+a$ by a full sum over n !
- We also need to detect the Zeckendorf digits with indices in $J=[a, b)$ in an analytical way.

Cutting away Zeckendorf digits

- To handle the sum $\sum_{0 \leq n<N} \mathrm{e}(\vartheta Z(n d+a))$, we proceed as in the Thue-Morse case.
- We first cut away the digits at indices $\geq \lambda$: for $\lambda \geq 2$ define the truncation v_{k} (which is not periodic!) by

$$
v_{k}\left(\varepsilon_{2} F_{2}+\varepsilon_{3} F_{3}+\cdots\right)=\varepsilon_{2} F_{2}+\cdots+\varepsilon_{\lambda-1} F_{\lambda-1},
$$

and set $Z_{\lambda}(n)=Z\left(v_{\lambda}(n)\right)$.

- Next, we cut away digits with indices in $[\lambda-(j+1) \mu, \lambda-j \mu)$. This can be accomplished (again) by a variant of Van der Corput's inequality.
- We are left with the function Z_{τ}, where $\tau=\lambda-m \mu$; the digits below τ of $n d+a$ assume every combination the expected number of times. Therefore we can replace the sum over nd $+a$ by a full sum over n !
- We also need to detect the Zeckendorf digits with indices in $J=[a, b)$ in an analytical way.

Cutting away Zeckendorf digits

- To handle the sum $\sum_{0 \leq n<N} \mathrm{e}(\vartheta Z(n d+a))$, we proceed as in the Thue-Morse case.
- We first cut away the digits at indices $\geq \lambda$: for $\lambda \geq 2$ define the truncation v_{k} (which is not periodic!) by

$$
v_{k}\left(\varepsilon_{2} F_{2}+\varepsilon_{3} F_{3}+\cdots\right)=\varepsilon_{2} F_{2}+\cdots+\varepsilon_{\lambda-1} F_{\lambda-1},
$$

and set $Z_{\lambda}(n)=Z\left(v_{\lambda}(n)\right)$.

- Next, we cut away digits with indices in $[\lambda-(j+1) \mu, \lambda-j \mu)$. This can be accomplished (again) by a variant of Van der Corput's inequality.
- We are left with the function Z_{τ}, where $\tau=\lambda-m \mu$; the digits below τ of $n d+a$ assume every combination the expected number of times. Therefore we can replace the sum over nd $+a$ by a full sum over $n!$
- We also need to detect the Zeckendorf digits with indices in $J=[a, b)$ in an analytical way.

Two-dimensional detection

We introduce the function $p: \mathbb{N} \rightarrow \mathbb{R}^{2}$ by $p_{k}(n)=\left(\frac{n}{\varphi^{k}}, \frac{n}{\varphi^{k+1}}\right)$. The closure of the set of points $p_{k}(n) \bmod (1,1)$ is a finite set of lines with slope $-F_{k+1} / F_{k}$. Example for $k=3$: slope $-3 / 2$.

Two-dimensional detection

We introduce the function $p: \mathbb{N} \rightarrow \mathbb{R}^{2}$ by $p_{k}(n)=\left(\frac{n}{\varphi^{k}}, \frac{n}{\varphi^{k+1}}\right)$. The closure of the set of points $p_{k}(n) \bmod (1,1)$ is a finite set of lines with slope $-F_{k+1} / F_{k}$. Example for $k=3$: slope $-3 / 2$.

Two-dimensional detection

We introduce the function $p: \mathbb{N} \rightarrow \mathbb{R}^{2}$ by $p_{k}(n)=\left(\frac{n}{\varphi^{k}}, \frac{n}{\varphi^{k+1}}\right)$. The closure of the set of points $p_{k}(n) \bmod (1,1)$ is a finite set of lines with slope $-F_{k+1} / F_{k}$. Example for $k=3$: slope $-3 / 2$.

Two-dimensional detection of digits

We define parallelograms A_{k} and B_{k} :

$$
\begin{array}{c|c}
A_{k} & B_{k} \\
-\frac{1}{2} \leq F_{k+1} x+F_{k} y<\frac{1}{2} & -\frac{1}{2} \leq F_{k+1} x+F_{k} y<\frac{1}{2} \\
-\varphi \leq-\frac{1}{\varphi} x+y<1 & -\frac{1}{\varphi} \leq-\frac{1}{\varphi} x+y<1
\end{array}
$$

With their help we define shifted parallelograms R_{u} :

$$
R_{k}(u)=p_{k}(u)+ \begin{cases}A_{k}, & 0 \leq u<F_{k-1} \\ B_{k}, & F_{k-1} \leq u<F_{k} .\end{cases}
$$

The sets $R_{k}(u)+\mathbb{Z}^{2}$ form a partition of \mathbb{R}^{2} and we have $v_{k}(n)=u$ if and only if $p_{k}(n) \in R_{k}(u)+\mathbb{Z}^{2}$.

The regions R_{u} : 1 significant digit

0,1

The regions R_{u} : 2 significant digits

$00,01,10$

The regions R_{u} : 3 significant digits

The limiting fundamental domain

Finishing the proof idea

- Applying Fourier approximation of suitable regions, we obtain an analytic expression that is close to 1 if the Zeckendorf digits in $J=[a, b)$ are equal to prescribed values, and close to 0 otherwise.
- Finally, we need a Gowers uniformity norm of the Zeckendorf sum-of-digits function. These norms are certain iterated correlations and arise from the repeated application of Van der Corput-type inequalities: we need to estimate

$$
\sum_{0 \leq n, h_{1}, \ldots, h_{r}<F_{\lambda}} \prod_{\varepsilon_{1}, \ldots, \varepsilon_{r} \in\{0,1\}} \mathrm{e}\left(\vartheta(-1)^{\varepsilon_{1}+\cdots+\varepsilon_{r}} Z_{\lambda}\left(n+\varepsilon_{1} h_{1}+\cdots+\varepsilon_{r} h_{r}\right)\right) .
$$

This was contributed by Müllner.

Current work: prime numbers

- We want to prove a prime number theorem for the Zeckendorf sum-of-digits function: asymptotically one half of the prime numbers should have an even Zeckendorf sum of digits.
- This extends a theorem by Mauduit and Rivat on the base-q sum of digits of prime numbers.
- It is sufficient to treat sums of type I and II:

$$
\begin{aligned}
& S_{\mathrm{I}}=\sum_{m} \max _{I}\left|\sum_{n \in I}(-1)^{Z(m n)}\right| ; \\
& S_{\mathrm{II}}=\sum_{m} \sum_{n} a_{m} b_{n}(-1)^{Z(m n)} .
\end{aligned}
$$

- Our level of distribution-result allows us to choose m very large and n very small in $S_{\text {I }}$; this reduces the amount of work necessary for $S_{\text {II }}$!

Medium-term goals, part II

- Prove a prime number theorem for the Zeckendorf sum-of-digits function.
- Prove the following: for all k large enough there exists a prime number that is the sum of k different Fibonacci numbers $(\rightarrow$ jointly with Drmota and Müllner).
- Normality of \mathbf{t} and $Z(n) \bmod 2$ along $\left\lfloor n^{c}\right\rfloor$ for $1<c<2$.

Thank you! ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ Supported by the ANR-FWF project MuDeRa, and by the FWF, Project F55.
 Lukas Spiegelhofer (TU Vienna) Digital expansions along arithmetic progressions
 March 6, 2020

