Digital expansions along arithmetic progressions

Lukas Spiegelhofer

March 6, 2020, MU Leoben

1 / 33

The basic objects

The binary expansion: every nonnegative integer n admits a unique expansion as a sum of pairwise different powers of 2:

$$n = \varepsilon_0 2^0 + \varepsilon_1 2^1 + \varepsilon_2 2^2 + \cdots,$$

where $\varepsilon_i \in \{0, 1\}$.

The Zeckendorf expansion: every nonnegative integer n admits a unique expansion as a sum of pairwise different, non-adjacent Fibonacci numbers defined by F₀ = 0, F₁ = 1, F_{i+2} = F_i + F_{i+1}:

$$n=\varepsilon_2F_2+\varepsilon_3F_3+\cdots,$$

where $\varepsilon_i \in \{0, 1\}$ and $\varepsilon_{i+1} = 1 \Rightarrow \varepsilon_i = 0$.

The basic objects

► The binary expansion: every nonnegative integer *n* admits a unique expansion as a sum of pairwise different powers of 2:

$$n = \varepsilon_0 2^0 + \varepsilon_1 2^1 + \varepsilon_2 2^2 + \cdots,$$

where $\varepsilon_i \in \{0, 1\}$.

The Zeckendorf expansion: every nonnegative integer n admits a unique expansion as a sum of pairwise different, non-adjacent Fibonacci numbers defined by F₀ = 0, F₁ = 1, F_{i+2} = F_i + F_{i+1}:

$$n=\varepsilon_2F_2+\varepsilon_3F_3+\cdots,$$

where $\varepsilon_i \in \{0, 1\}$ and $\varepsilon_{i+1} = 1 \Rightarrow \varepsilon_i = 0$.

What happens to the digital (binary or Zeckendorf) expansion of n when we add a constant t?

• Let us begin with the binary case and t = 1. The (possibly empty) block of 1s on the right of the binary expansion of n is replaced by 0s, and the 0 to the left of the block is replaced by 1.

$$* 011 \cdots 1 \mapsto *100 \cdots 0 \tag{1}$$

- ► A similar thing happens for t = 2: the rightmost digit of n stays the same and (1) is applied for the remaining digits.
- For t = 3 we have the following cases:

$$\begin{array}{ll} *00 \mapsto *11; & *01^{k}01 \mapsto *10^{k}00; \\ *01^{k}10 \mapsto *10^{k}01; & *01^{k}11 \mapsto *10^{k}10. \end{array}$$

Lukas Spiegelhofer (TU Vienna)

- In this way, we can in principle describe the situation for any given t completely; anagously, this is the case for Zeckendorf.
- However, we obtain long case distinctions for growing t, and a structural principle describing these cases is unavailable. We do not fully understand digital expansions under addition, in particular, repeated addition—that is, along *arithmetic progressions*.
- An apparently simple, unsolved conjecture in this context is *Cusick's conjecture* on the *binary sum-of-digits function*: let s(n) be the number of 1s in the binary expansion of n and let t ≥ 0 be an integer. Is it true that, more often than not, we have s(n + t) ≥ s(n)? In symbols, do we have c_t > 1/2, where

$$c_t = \lim_{N \to \infty} \frac{1}{N} |\{0 \le n < N : s(n+t) \ge s(n)\}|?$$

A related line of research concerns *short* arithmetic progressions. This will lead us to the notion *level of distribution*, which has a strong link to digital expansions of prime numbers.

Lukas Spiegelhofer (TU Vienna) Digi

- In this way, we can in principle describe the situation for any given t completely; anagously, this is the case for Zeckendorf.
- However, we obtain long case distinctions for growing t, and a structural principle describing these cases is unavailable. We do not fully understand digital expansions under addition, in particular, repeated addition—that is, along *arithmetic progressions*.
- An apparently simple, unsolved conjecture in this context is *Cusick's conjecture* on the *binary sum-of-digits function*: let s(n) be the number of 1s in the binary expansion of n and let t ≥ 0 be an integer. Is it true that, more often than not, we have s(n + t) ≥ s(n)? In symbols, do we have c_t > 1/2, where

$$c_t = \lim_{N \to \infty} \frac{1}{N} |\{0 \le n < N : s(n+t) \ge s(n)\}|?$$

A related line of research concerns *short* arithmetic progressions. This will lead us to the notion *level of distribution*, which has a strong link to digital expansions of prime numbers.

Lukas Spiegelhofer (TU Vienna) Digit

- In this way, we can in principle describe the situation for any given t completely; anagously, this is the case for Zeckendorf.
- However, we obtain long case distinctions for growing t, and a structural principle describing these cases is unavailable. We do not fully understand digital expansions under addition, in particular, repeated addition—that is, along *arithmetic progressions*.
- An apparently simple, unsolved conjecture in this context is *Cusick's conjecture* on the *binary sum-of-digits function*: let s(n) be the number of 1s in the binary expansion of n and let t ≥ 0 be an integer. Is it true that, more often than not, we have s(n + t) ≥ s(n)? In symbols, do we have c_t > 1/2, where

$$c_t = \lim_{N \to \infty} \frac{1}{N} |\{0 \le n < N : s(n+t) \ge s(n)\}|?$$

A related line of research concerns *short* arithmetic progressions. This will lead us to the notion *level of distribution*, which has a strong link to digital expansions of prime numbers.

Lukas Spiegelhofer (TU Vienna) D

- In this way, we can in principle describe the situation for any given t completely; anagously, this is the case for Zeckendorf.
- However, we obtain long case distinctions for growing t, and a structural principle describing these cases is unavailable. We do not fully understand digital expansions under addition, in particular, repeated addition—that is, along *arithmetic progressions*.
- An apparently simple, unsolved conjecture in this context is *Cusick's conjecture* on the *binary sum-of-digits function*: let s(n) be the number of 1s in the binary expansion of n and let t ≥ 0 be an integer. Is it true that, more often than not, we have s(n + t) ≥ s(n)? In symbols, do we have c_t > 1/2, where

$$c_t = \lim_{N \to \infty} \frac{1}{N} \big| \{ 0 \le n < N : s(n+t) \ge s(n) \} \big|?$$

A related line of research concerns *short* arithmetic progressions. This will lead us to the notion *level of distribution*, which has a strong link to digital expansions of prime numbers.

Section 1

Long arithmetic progressions

Lukas Spiegelhofer (TU Vienna) Digital expansions along arithmetic progressions March 6, 2020 5 / 33

Densities for Cusick's conjecture

Let s be the binary sum-of-digits function. For integers $t \ge 0$ and j we define the asymptotic densities

$$\delta(j,t) = \lim_{N \to \infty} \frac{1}{N} \big| \{ 0 \le n < N : s(n+t) - s(n) = j \} \big|.$$

The condition s(n + t) - s(n) = j is periodic with period $2^{\kappa(j,t)}$; therefore

$$\delta(j,t) = \lim_{N \to \infty} \frac{1}{N} \big| \{ 0 \le \ell < N : s((\ell+1)t) - s(\ell t) = j \} \big|$$

for odd t (this holds for all $t \ge 0$, but $2 \nmid t$ is the interesting case). Cusick's conjecture is therefore about *long arithmetic progressions*.

- The densities $\delta(j, t)$ give us a probability distribution on \mathbb{Z} for each t.
- Clearly, $c_t = \delta(0, t) + \delta(1, t) + \delta(2, t) + \cdots$.

Densities for Cusick's conjecture

Let s be the binary sum-of-digits function. For integers $t \ge 0$ and j we define the asymptotic densities

$$\delta(j,t) = \lim_{N \to \infty} \frac{1}{N} \big| \{ 0 \le n < N : s(n+t) - s(n) = j \} \big|.$$

The condition s(n + t) - s(n) = j is periodic with period $2^{\kappa(j,t)}$; therefore

$$\delta(j,t) = \lim_{N \to \infty} \frac{1}{N} \big| \{ 0 \le \ell < N : s((\ell+1)t) - s(\ell t) = j \} \big|$$

for odd t (this holds for all $t \ge 0$, but $2 \nmid t$ is the interesting case). Cusick's conjecture is therefore about *long arithmetic progressions*.

The densities δ(j, t) give us a probability distribution on Z for each t.
Clearly, c_t = δ(0, t) + δ(1, t) + δ(2, t) + ···.

Densities for Cusick's conjecture

Let s be the binary sum-of-digits function. For integers $t \ge 0$ and j we define the asymptotic densities

$$\delta(j,t) = \lim_{N \to \infty} \frac{1}{N} \big| \{ 0 \le n < N : s(n+t) - s(n) = j \} \big|.$$

The condition s(n + t) - s(n) = j is periodic with period $2^{\kappa(j,t)}$; therefore

$$\delta(j,t) = \lim_{N \to \infty} \frac{1}{N} \big| \{ 0 \le \ell < N : s((\ell+1)t) - s(\ell t) = j \} \big|$$

for odd t (this holds for all $t \ge 0$, but $2 \nmid t$ is the interesting case). Cusick's conjecture is therefore about *long arithmetic progressions*.

• The densities $\delta(j, t)$ give us a probability distribution on \mathbb{Z} for each t.

• Clearly,
$$c_t = \delta(0, t) + \delta(1, t) + \delta(2, t) + \cdots$$
.

A two-dimensional recurrence

.wo-dimensional recurrenceFor t = 1, we have the rule $*01^k \mapsto *10^k$ valid for $k \ge 0$, $\begin{pmatrix} \cdots \\ 0 \\ 0 \\ 1/2 \\ 1/4 \\ 1/8 \\ 1/16 \\ 1/32 \\ \cdots \end{pmatrix}$ (0 for $k \ge 2$;

$$\delta(k,1) = \begin{cases} 0 & \text{for } k \ge 2; \\ 2^{k-2} & \text{for } k \le 1. \end{cases}$$

It follows that $c_1 = 3/4 > 1/2$.

We have the recurrence

 $\delta(i, 2t) = \delta(i, t)$: $\delta(j, 2t+1) = \frac{1}{2}\delta(j-1, t) + \frac{1}{2}\delta(j+1, t+1),$

which permits to compute the values $\delta(j, t)$ efficiently. In particular, $c_t > 1/2$ for $t < 2^{30}$. (≈ 2 CPU hours)

Lukas Spiegelhofer (TU Vienna)

A two-dimensional recurrence

.wo-dimensional recurrenceFor t = 1, we have the rule $*01^k \mapsto *10^k$ valid for $k \ge 0$, $\begin{pmatrix} \cdots \\ 0 \\ 0 \\ 1/2 \\ 1/4 \\ 1/8 \\ 1/16 \\ 1/32 \end{pmatrix}$ (n for $k \ge 2$; $\cdot < 1$.

$$\delta(k,1) = \begin{cases} 0 & \text{for } k \ge 2; \\ 2^{k-2} & \text{for } k \le 1. \end{cases}$$

It follows that $c_1 = 3/4 > 1/2$.

We have the recurrence

$$\delta(j, 2t) = \delta(j, t);$$

 $\delta(j, 2t+1) = rac{1}{2}\delta(j-1, t) + rac{1}{2}\delta(j+1, t+1),$

which permits to compute the values $\delta(j, t)$ efficiently. In particular, $c_t > 1/2$ for $t \le 2^{30}$. (≈ 2 CPU hours)

An almost-all result

With this recurrence, it is not hard to compute the mean values

$$m_{\lambda,j} = rac{1}{2^{\lambda}} \sum_{2^{\lambda} \leq t < 2^{\lambda+1}} \delta(j,t).$$

It takes more effort to handle the second moment

$$m_{\lambda,j}^{(2)} = rac{1}{2^{\lambda}} \sum_{2^{\lambda} \leq t < 2^{\lambda+1}} \delta(j,t)^2.$$

Together with Drmota and Kauers, we studied $m^{(2)}$ by analyzing a diagonal of a trivariate generating function asymptotically. Using Chebychev's inequality, we obtained concentration strictly above 1/2! Theorem (Drmota–Kauers–S. 2016) For all $\varepsilon > 0$, we have

$\left| \left\{ 0 \le t < T : 1/2 < c_t < 1/2 + \varepsilon \right\} \right| = T - \mathcal{O}\left(T/\log T \right).$

Lukas Spiegelhofer (TU Vienna)

An almost-all result

With this recurrence, it is not hard to compute the mean values

$$m_{\lambda,j} = rac{1}{2^{\lambda}} \sum_{2^{\lambda} \leq t < 2^{\lambda+1}} \delta(j,t).$$

It takes more effort to handle the second moment

$$m_{\lambda,j}^{(2)} = rac{1}{2^{\lambda}} \sum_{2^{\lambda} \leq t < 2^{\lambda+1}} \delta(j,t)^2.$$

Together with Drmota and Kauers, we studied $m^{(2)}$ by analyzing a diagonal of a trivariate generating function asymptotically. Using Chebychev's inequality, we obtained concentration strictly above 1/2! Theorem (Drmota–Kauers–S. 2016) For all $\varepsilon > 0$, we have

$$\left| \left\{ 0 \le t < T : 1/2 < c_t < 1/2 + \varepsilon \right\} \right| = T - \mathcal{O}\left(T/\log T \right).$$

Lukas Spiegelhofer (TU Vienna)

The Tu–Deng conjecture

Using similar methods, we (S.–Wallner 2019) proved an analogous almost-all result on the *Tu–Deng conjecture* coming from cryptography: for a positive integer k and $1 \le t < 2^k - 1$, this conjecture states that $|S_{t,k}| \le 2^{k-1}$, where

$$S_{t,k} = \Big\{ 0 \le a, b < 2^k - 1 : a + b \equiv t \mod 2^k - 1, s(a) + s(b) < k \Big\}.$$

- ► This has been verified computationally for k ∈ {1,..., 29, 39, 40} by Tu and Deng, and Flori respectively.
- ▶ This conjecture, if true, allows for constructing Boolean functions $\{0,1\}^k \rightarrow \{0,1\}$ with desirable cryptographic properties.

The Tu–Deng conjecture

Using similar methods, we (S.–Wallner 2019) proved an analogous almost-all result on the *Tu–Deng conjecture* coming from cryptography: for a positive integer k and $1 \le t < 2^k - 1$, this conjecture states that $|S_{t,k}| \le 2^{k-1}$, where

$$S_{t,k} = \Big\{ 0 \le a, b < 2^k - 1 : a + b \equiv t \mod 2^k - 1, s(a) + s(b) < k \Big\}.$$

► This has been verified computationally for k ∈ {1,..., 29, 39, 40} by Tu and Deng, and Flori respectively.

9 / 33

▶ This conjecture, if true, allows for constructing Boolean functions $\{0,1\}^k \rightarrow \{0,1\}$ with desirable cryptographic properties.

The Tu–Deng conjecture

Using similar methods, we (S.–Wallner 2019) proved an analogous almost-all result on the *Tu–Deng conjecture* coming from cryptography: for a positive integer k and $1 \le t < 2^k - 1$, this conjecture states that $|S_{t,k}| \le 2^{k-1}$, where

$$S_{t,k} = \Big\{ 0 \le a, b < 2^k - 1 : a + b \equiv t \mod 2^k - 1, s(a) + s(b) < k \Big\}.$$

- ► This has been verified computationally for k ∈ {1,..., 29, 39, 40} by Tu and Deng, and Flori respectively.
- ► This conjecture, if true, allows for constructing Boolean functions {0,1}^k → {0,1} with desirable cryptographic properties.

Current work

A promising different approach (started by Emme and Hubert) is to study moments of $\delta(\cdot, t)$ for fixed t. In this vein, we proved the following weakened form of the conjecture.

Theorem (S., submitted 2019)

Let $\varepsilon > 0$. If t contains at least $B(\varepsilon)$ blocks of 1s, then $c_t > 1/2 - \varepsilon$.

With Wallner, we are currently proving a stronger theorem:

Theorem (S., Wallner, in preparation)

Assume that K is the number of blocks of 1s in t. There exist (explicit) $\sigma \asymp K$ and $\alpha > 0$ such that for all $j \in \mathbb{Z}$,

$$\delta(j,t) = \alpha \exp\left(-\frac{j^2}{2\sigma}\right) + \mathcal{O}(K^{-1}).$$

In particular, $c_t > 1/2 - O(K^{-1/2})$.

Lukas Spiegelhofer (TU Vienna)

Current work

A promising different approach (started by Emme and Hubert) is to study moments of $\delta(\cdot, t)$ for fixed t. In this vein, we proved the following weakened form of the conjecture.

Theorem (S., submitted 2019)

Let $\varepsilon > 0$. If t contains at least $B(\varepsilon)$ blocks of 1s, then $c_t > 1/2 - \varepsilon$. With Wallner, we are currently proving a stronger theorem:

Theorem (S., Wallner, in preparation)

Assume that K is the number of blocks of 1s in t. There exist (explicit) $\sigma \asymp K$ and $\alpha > 0$ such that for all $j \in \mathbb{Z}$,

$$\delta(j, t) = \alpha \exp\left(-\frac{j^2}{2\sigma}\right) + \mathcal{O}(K^{-1}).$$

In particular, $c_t > 1/2 - \mathcal{O}(K^{-1/2})$.

Lukas Spiegelhofer (TU Vienna)

Current work

A promising different approach (started by Emme and Hubert) is to study moments of $\delta(\cdot, t)$ for fixed t. In this vein, we proved the following weakened form of the conjecture.

Theorem (S., submitted 2019)

Let $\varepsilon > 0$. If t contains at least $B(\varepsilon)$ blocks of 1s, then $c_t > 1/2 - \varepsilon$. With Wallner, we are currently proving a stronger theorem:

Theorem (S., Wallner, in preparation)

Assume that K is the number of blocks of 1s in t. There exist (explicit) $\sigma \asymp K$ and $\alpha > 0$ such that for all $j \in \mathbb{Z}$,

$$\delta(j,t) = \alpha \exp\left(-\frac{j^2}{2\sigma}\right) + \mathcal{O}(K^{-1}).$$

In particular, $c_t > 1/2 - \mathcal{O}(K^{-1/2})$.

Lukas Spiegelhofer (TU Vienna)

Current work, continued

This is proved by a detailed analysis of the *characteristic function* of $\delta(\cdot, t)$, viz.

$$\gamma_t(artheta) = \sum_{n\geq 0} e^{2\pi i artheta(s(n+t)-s(n))} = \sum_{j\in\mathbb{Z}} \delta(j,t) e^{2\pi i j artheta}$$

For each ϑ , we have the *one-dimensional* recurrence

$$\begin{split} \gamma_1(\vartheta) &= \frac{\mathsf{e}(\vartheta)}{2 - \mathsf{e}(-\vartheta)};\\ \gamma_{2t}(\vartheta) &= \gamma_t(\vartheta);\\ \gamma_{2t+1}(\vartheta) &= \frac{\mathsf{e}(\vartheta)}{2}\gamma_t(\vartheta) + \frac{\mathsf{e}(-\vartheta)}{2}\gamma_{t+1}(\vartheta). \end{split}$$

Probability theoretic tools are also powerful in this context!

Lukas Spiegelhofer (TU Vienna)

Medium-term goals, part ${\rm I}$

- ▶ Prove analogous results for the Tu–Deng conjecture.
- ▶ Consider base-*q* analogues, and the *Zeckendorf sum-of-digits* of *n* + *t*!
- Consider multidimensional generalizations: prove that the densities

$$\delta(j_1, \dots, j_m, t) = \lim_{N \to \infty} \frac{1}{N} |\{ 0 \le n < N : s(n + \ell t) - s(n) = j_\ell$$
for $1 \le \ell \le m \} |$

define a probability distribution close to an *m*-variate Gaussian, and prove statements analogous to Cusick's conjecture. Note that these are questions on *consecutive elements of long arithmetic progressions*.

Section 2

Short arithmetic progressions

Lukas Spiegelhofer (TU Vienna) Digital expansions along arithmetic progressions March 6, 2020 13 / 33

An exponential sum

We are interested in the exponential sum

$$\sum_{0 \le n < N} e(\vartheta s(nt + a)),$$

where $e(x) = exp(2\pi ix)$ and $\vartheta \in \mathbb{R}$, and we wish to obtain upper bounds.

- This allows us to prove statements on the distribution of s(n) mod m along arithmetic progressions.
- Most prominently, we are concerned with the *Thue–Morse sequence* t, which can be defined by t(n) = s(n) mod 2, or by the morphism 0 → 01, 1 → 10. This corresponds to ϑ = 1/2.

 $\mathbf{t} = (01101001100101100101100110001\dots)$

This sequence describes whether an even or an odd number of powers of two is needed to represent n (in the minimal representation).

Lukas Spiegelhofer (TU Vienna) Digital ex

An exponential sum

We are interested in the exponential sum

$$\sum_{0 \le n < N} e(\vartheta s(nt + a)),$$

where $e(x) = exp(2\pi ix)$ and $\vartheta \in \mathbb{R}$, and we wish to obtain upper bounds.

- This allows us to prove statements on the distribution of s(n) mod m along arithmetic progressions.
- Most prominently, we are concerned with the *Thue–Morse sequence* t, which can be defined by t(n) = s(n) mod 2, or by the morphism 0 → 01, 1 → 10. This corresponds to ϑ = 1/2.

 $\mathbf{t} = (\texttt{011010011001011001011001100101}\dots)$

This sequence describes whether an even or an odd number of powers of two is needed to represent n (in the minimal representation).

Gelfond's theorem

Theorem (Gelfond 1968) Let $d \ge 1$ and $a \in \mathbb{Z}$. Then

$$\left|\left\{1 \le n \le x : \mathbf{t}(n) = 0, n \equiv a \mod d\right\}\right| = \frac{x}{2d} + \mathcal{O}(x^{\lambda})$$

for some absolute λ .

• That is, for all $d \ge 1$ and a < d we have

$$\sum_{1\leq m\leq M}(-1)^{s(md+a)}\ll M^{\lambda}.$$

The implied constant depends on d (there are arbitrarily long APs on which **t** is constant!).

▶ Therefore we look at a certain average over *d*.

Theorem (Fouvry-Mauduit 1996)

$$\sum_{1 \le d \le D} \max_{1 \le y \le x} \max_{0 \le a < d} \left| \sum_{\substack{0 \le n < y \\ n \equiv a \bmod d}} (-1)^{s(n)} \right| \le C x^{1-\eta}$$

for some $\eta > 0$ and $D = x^{0.5924}$.

- The number 0.5924 is a *level of distribution* of the Thue–Morse sequence.
- Note that we have "trivial" summands (of size ≈ x/d) for d = 2^λ + 1, where x ≤ 2^{2λ}. These don't matter in the sum.
- For d close to D, the APs have x^{0.4076+O(η)} many terms and common difference ~ x^{0.5924}. Note that 0.5924/0.4076 ≈ 1.453 → short arithmetic progressions!

The level of distribution

- The number 0.5924 is a *level of distribution* of the Thue–Morse sequence.
- Note that we have "trivial" summands (of size ≈ x/d) for d = 2^λ + 1, where x ≤ 2^{2λ}. These don't matter in the sum.
- For d close to D, the APs have x^{0.4076+O(η)} many terms and common difference ~ x^{0.5924}. Note that 0.5924/0.4076 ≈ 1.453 → short arithmetic progressions!

- The number 0.5924 is a *level of distribution* of the Thue–Morse sequence.
- Note that we have "trivial" summands (of size ≈ x/d) for d = 2^λ + 1, where x ≤ 2^{2λ}. These don't matter in the sum.
- For d close to D, the APs have x^{0.4076+O(η)} many terms and common difference ~ x^{0.5924}. Note that 0.5924/0.4076 ≈ 1.453 → short arithmetic progressions!

- The number 0.5924 is a *level of distribution* of the Thue–Morse sequence.
- Note that we have "trivial" summands (of size ≍ x/d) for d = 2^λ + 1, where x ≤ 2^{2λ}. These don't matter in the sum.
- For d close to D, the APs have x^{0.4076+O(η)} many terms and common difference ~ x^{0.5924}. Note that 0.5924/0.4076 ≈ 1.453 → short arithmetic progressions!

- The number 0.5924 is a *level of distribution* of the Thue–Morse sequence.
- Note that we have "trivial" summands (of size ≍ x/d) for d = 2^λ + 1, where x ≤ 2^{2λ}. These don't matter in the sum.
- For d close to D, the APs have x^{0.4076+O(η)} many terms and common difference ~ x^{0.5924}. Note that 0.5924/0.4076 ≈ 1.453 → short arithmetic progressions!

- The number 0.5924 is a *level of distribution* of the Thue–Morse sequence.
- Note that we have "trivial" summands (of size ≍ x/d) for d = 2^λ + 1, where x ≤ 2^{2λ}. These don't matter in the sum.
- For d close to D, the APs have x^{0.4076+O(η)} many terms and common difference ~ x^{0.5924}. Note that 0.5924/0.4076 ≈ 1.453 → short arithmetic progressions!

Theorem (S., submitted 2018)

The Thue–Morse sequence has level of distribution 1. More precisely, let $0 < \varepsilon < 1$. There exist $\eta > 0$ and C such that

$$\sum_{1 \le d \le D} \max_{\substack{y,z \ge 0 \ 0 \le a < d}} \max_{\substack{y \le n < z \\ n \equiv a \bmod d}} \left| \sum_{\substack{y \le n < z \\ n \equiv a \bmod d}} (-1)^{s(n)} \right| \le C x^{1-\eta}$$

for $D = x^{1-\varepsilon}$.

▶ This is a statement on very short arithmetic progressions: the Thue–Morse sequence usually shows cancellation along *N*-term arithmetic progressions having common difference $\sim N^R$, where R > 0 is arbitrary ($R \le 1.454$ for Fouvry–Mauduit).

Theorem (S., submitted 2018)

The Thue–Morse sequence has level of distribution 1. More precisely, let $0 < \varepsilon < 1$. There exist $\eta > 0$ and C such that

$$\sum_{1 \le d \le D} \max_{\substack{y,z \ge 0 \\ z-y \le x}} \max_{0 \le a < d} \left| \sum_{\substack{y \le n < z \\ n \equiv a \bmod d}} (-1)^{s(n)} \right| \le C x^{1-\eta}$$

for $D = x^{1-\varepsilon}$.

► This is a statement on very short arithmetic progressions: the Thue–Morse sequence usually shows cancellation along N-term arithmetic progressions having common difference ~ N^R, where R > 0 is arbitrary (R ≤ 1.454 for Fouvry–Mauduit).

Patterns in \mathbf{t}

t along short arithmetic subsequences even seems to behave randomly.

 $N = 128 \times 128$ terms, common difference $N^R = 3^{21}$

We know that every finite sequence on $\{0,1\}$ appears as an arithmetic subsequence of **t**. But how often?

Lukas Spiegelhofer (TU Vienna)

Patterns in \mathbf{t}

t along short arithmetic subsequences even seems to behave randomly.

Sparse infinite subsequences

We are interested in *Piatetski-Shapiro subsequences* of **t**: for c > 1 not an integer we consider $\mathbf{t}(|n^c|)$.

For 1 < c < 2 we can approximate $\lfloor n^c \rfloor$ by *Beatty sequences* $\lfloor n\alpha + \beta \rfloor$, and by the same method as for APs we can also prove a Beatty sequence variant of the level of distribution.

Corollary (S.)

Assume that 1 < c < 2. Then the sequence **t** along $\lfloor n^c \rfloor$ attains both values 0 and 1 with asymptotic frequency 1/2.

This improves Mauduit-Rivat 1995, 2005; S. 2014; Müllner-S. 2015.

We also wish to obtain *normality* of Piatetski-Shapiro subsequences of t! Every finite sequence in {0,1}^L should appear with asymptotic frequency 2^{-L} in the sequence n → t([n^c]) for 1 < c < 2, improving the range 1 < c < 3/2 by Müllner and S. (2015).</p>

Sparse infinite subsequences

We are interested in *Piatetski-Shapiro subsequences* of **t**: for c > 1 not an integer we consider $t(\lfloor n^c \rfloor)$.

For 1 < c < 2 we can approximate $\lfloor n^c \rfloor$ by *Beatty sequences* $\lfloor n\alpha + \beta \rfloor$, and by the same method as for APs we can also prove a Beatty sequence variant of the level of distribution.

Corollary (S.)

Assume that 1 < c < 2. Then the sequence **t** along $\lfloor n^c \rfloor$ attains both values 0 and 1 with asymptotic frequency 1/2.

This improves Mauduit-Rivat 1995, 2005; S. 2014; Müllner-S. 2015.

We also wish to obtain *normality* of Piatetski-Shapiro subsequences of t! Every finite sequence in {0,1}^L should appear with asymptotic frequency 2^{-L} in the sequence n → t([n^c]) for 1 < c < 2, improving the range 1 < c < 3/2 by Müllner and S. (2015).</p>

In order to handle $\sum_{0 \le n < x} e(\vartheta s(nd + a))$, we successively reduce the digits to be taken into account by s. For an integer $\mu \ge 0$ we define the *truncation*

 $s_{\mu}(n) = s(n \bmod 2^{\mu}),$

which is 2^{μ} -periodic.

The essential tool is Van der Corput's inequality.

Lemma

Let J be a finite interval containing N integers and let a_n be a complex number for $n \in J$. For all integers $R \ge 1$ we have

$$\left|\sum_{n\in J}a_n\right|^2 \leq \frac{N+R-1}{R}\sum_{|r|< R}\left(1-\frac{|r|}{R}\right)\sum_{\substack{n\in J\\n+r\in J}}a_{n+r}\overline{a_n}.$$

We only need to estimate *correlations*, where r is much smaller than n.

Lukas Spiegelhofer (TU Vienna)

In order to handle $\sum_{0 \le n < x} e(\vartheta s(nd + a))$, we successively reduce the digits to be taken into account by s. For an integer $\mu \ge 0$ we define the *truncation*

 $s_{\mu}(n) = s(n \bmod 2^{\mu}),$

which is 2^{μ} -periodic.

The essential tool is Van der Corput's inequality.

Lemma

Let J be a finite interval containing N integers and let a_n be a complex number for $n \in J$. For all integers $R \ge 1$ we have

$$\left|\sum_{n\in J}a_n\right|^2 \leq \frac{N+R-1}{R}\sum_{|r|< R}\left(1-\frac{|r|}{R}\right)\sum_{\substack{n\in J\\n+r\in J}}a_{n+r}\overline{a_n}.$$

We only need to estimate *correlations*, where r is much smaller than n.

Lukas Spiegelhofer (TU Vienna)

- Therefore the expression $e(\vartheta s(nd + rd + a) \vartheta s(nd + a))$ arises.
- The summand *rd* usually does not change the digits at indices significantly larger than log₂(*rd*), therefore we may replace *s* by the truncated version *s*_λ.
- ► This is Mauduit–Rivat 2009, 2010. The new thing is that we can apply this iteratively by using a variant of Van der Corput. In each step, we eliminate the digits between $\lambda (j + 1)\mu$ and $\lambda j\mu$, until only the 2^{τ} -periodic function s_{τ} is left, where $\tau = \lambda m\mu$.
- Since 2^T is now much smaller than x, we have in fact reduced the problem to *long arithmetic progressions*: as n runs through [0, x), the value nd is uniformly distributed in Z/2^TZ.
- ▶ Finally, we need an estimate of a so-called *Gowers uniformity norm* of the Thue–Morse sequence. This was found by Konieczny.

- Therefore the expression $e(\vartheta s(nd + rd + a) \vartheta s(nd + a))$ arises.
- The summand *rd* usually does not change the digits at indices significantly larger than log₂(*rd*), therefore we may replace *s* by the truncated version *s*_λ.
- ► This is Mauduit–Rivat 2009, 2010. The new thing is that we can apply this iteratively by using a variant of Van der Corput. In each step, we eliminate the digits between λ (j + 1)μ and λ jμ, until only the 2^τ-periodic function s_τ is left, where τ = λ mμ.
- Since 2^τ is now much smaller than x, we have in fact reduced the problem to *long arithmetic progressions*: as n runs through [0, x), the value nd is uniformly distributed in Z/2^τZ.
- ▶ Finally, we need an estimate of a so-called *Gowers uniformity norm* of the Thue–Morse sequence. This was found by Konieczny.

- Therefore the expression $e(\vartheta s(nd + rd + a) \vartheta s(nd + a))$ arises.
- The summand *rd* usually does not change the digits at indices significantly larger than log₂(*rd*), therefore we may replace *s* by the truncated version *s*_λ.
- ► This is Mauduit–Rivat 2009, 2010. The new thing is that we can apply this iteratively by using a variant of Van der Corput. In each step, we eliminate the digits between λ (j + 1)μ and λ jμ, until only the 2^τ-periodic function s_τ is left, where τ = λ mμ.
- Since 2^τ is now much smaller than x, we have in fact reduced the problem to *long arithmetic progressions*: as n runs through [0, x), the value nd is uniformly distributed in Z/2^τZ.
- ▶ Finally, we need an estimate of a so-called *Gowers uniformity norm* of the Thue–Morse sequence. This was found by Konieczny.

- Therefore the expression $e(\vartheta s(nd + rd + a) \vartheta s(nd + a))$ arises.
- The summand *rd* usually does not change the digits at indices significantly larger than log₂(*rd*), therefore we may replace *s* by the truncated version *s*_λ.
- ► This is Mauduit–Rivat 2009, 2010. The new thing is that we can apply this iteratively by using a variant of Van der Corput. In each step, we eliminate the digits between λ (j + 1)μ and λ jμ, until only the 2^τ-periodic function s_τ is left, where τ = λ mμ.
- Since 2^τ is now much smaller than x, we have in fact reduced the problem to *long arithmetic progressions*: as n runs through [0, x), the value nd is uniformly distributed in Z/2^τZ.
- ► Finally, we need an estimate of a so-called *Gowers uniformity norm* of the Thue–Morse sequence. This was found by Konieczny.

The level of distribution of Zeckendorf

Let Z(n) be the Zeckendorf sum of digits of n, that is, the minimal number of Fibonacci numbers needed to write n as their sum. The following result will be ready soon.

Theorem (Drmota, Müllner, S., in preparation)

The Zeckendorf sum-of-digits function modulo 2 has level of distribution 1. More precisely, for all $\varepsilon > 0$ we have

$$\sum_{1 \le d \le D} \max_{\substack{y,z \ge 0 \\ z-y \le x}} \max_{\substack{0 \le a < d \\ n \equiv a \bmod d}} \left| \sum_{\substack{y \le n < z \\ n \equiv a \bmod d}} (-1)^{Z(n)} \right| = \mathcal{O}(x^{1-\eta})$$

for some $\eta > 0$ depending on ε , where $D = x^{1-\varepsilon}$.

Cutting away Zeckendorf digits

- ► To handle the sum $\sum_{0 \le n < N} e(\vartheta Z(nd + a))$, we proceed as in the Thue–Morse case.
- We first cut away the digits at indices ≥ λ: for λ ≥ 2 define the truncation v_k (which is not periodic!) by

$$v_k(\varepsilon_2F_2+\varepsilon_3F_3+\cdots)=\varepsilon_2F_2+\cdots+\varepsilon_{\lambda-1}F_{\lambda-1},$$

and set $Z_{\lambda}(n) = Z(v_{\lambda}(n))$.

- ► Next, we cut away digits with indices in [λ (j + 1)µ, λ jµ). This can be accomplished (again) by a variant of Van der Corput's inequality.
- We are left with the function Z_τ, where τ = λ − mμ; the digits below τ of nd + a assume every combination the expected number of times. Therefore we can replace the sum over nd + a by a full sum over n!
- We also need to detect the Zeckendorf digits with indices in J = [a, b) in an analytical way.

Cutting away Zeckendorf digits

- ► To handle the sum $\sum_{0 \le n < N} e(\vartheta Z(nd + a))$, we proceed as in the Thue–Morse case.
- We first cut away the digits at indices ≥ λ: for λ ≥ 2 define the truncation v_k (which is not periodic!) by

$$v_k(\varepsilon_2F_2+\varepsilon_3F_3+\cdots)=\varepsilon_2F_2+\cdots+\varepsilon_{\lambda-1}F_{\lambda-1},$$

and set $Z_{\lambda}(n) = Z(v_{\lambda}(n))$.

- ► Next, we cut away digits with indices in [λ (j + 1)µ, λ jµ). This can be accomplished (again) by a variant of Van der Corput's inequality.
- We are left with the function Z_τ, where τ = λ − mμ; the digits below τ of nd + a assume every combination the expected number of times. Therefore we can replace the sum over nd + a by a full sum over n!
- ▶ We also need to detect the Zeckendorf digits with indices in J = [a, b) in an analytical way.

Cutting away Zeckendorf digits

- ► To handle the sum $\sum_{0 \le n < N} e(\vartheta Z(nd + a))$, we proceed as in the Thue–Morse case.
- We first cut away the digits at indices ≥ λ: for λ ≥ 2 define the truncation v_k (which is not periodic!) by

$$v_k(\varepsilon_2F_2+\varepsilon_3F_3+\cdots)=\varepsilon_2F_2+\cdots+\varepsilon_{\lambda-1}F_{\lambda-1},$$

and set $Z_{\lambda}(n) = Z(v_{\lambda}(n))$.

- ► Next, we cut away digits with indices in [λ (j + 1)µ, λ jµ). This can be accomplished (again) by a variant of Van der Corput's inequality.
- We are left with the function Z_τ, where τ = λ − mμ; the digits below τ of nd + a assume every combination the expected number of times. Therefore we can replace the sum over nd + a by a full sum over n!
- ▶ We also need to detect the Zeckendorf digits with indices in J = [a, b) in an analytical way.

Two-dimensional detection

We introduce the function $p : \mathbb{N} \to \mathbb{R}^2$ by $p_k(n) = \left(\frac{n}{\varphi^k}, \frac{n}{\varphi^{k+1}}\right)$. The closure of the set of points $p_k(n) \mod (1, 1)$ is a finite set of lines with slope $-F_{k+1}/F_k$. Example for k = 3: slope -3/2.

Two-dimensional detection

We introduce the function $p : \mathbb{N} \to \mathbb{R}^2$ by $p_k(n) = \left(\frac{n}{\varphi^k}, \frac{n}{\varphi^{k+1}}\right)$. The closure of the set of points $p_k(n) \mod (1,1)$ is a finite set of lines with slope $-F_{k+1}/F_k$. Example for k = 3: slope -3/2.

Lukas Spiegelhofer (TU Vienna)

Two-dimensional detection

We introduce the function $p : \mathbb{N} \to \mathbb{R}^2$ by $p_k(n) = \left(\frac{n}{\varphi^k}, \frac{n}{\varphi^{k+1}}\right)$. The closure of the set of points $p_k(n) \mod (1,1)$ is a finite set of lines with slope $-F_{k+1}/F_k$. Example for k = 3: slope -3/2.

Lukas Spiegelhofer (TU Vienna)

Two-dimensional detection of digits

We define parallelograms A_k and B_k :

$$\begin{vmatrix} A_k \\ -\frac{1}{2} \leq F_{k+1}x + F_k y < \frac{1}{2} \\ -\varphi \leq -\frac{1}{\varphi}x + y < 1 \end{vmatrix} \begin{vmatrix} B_k \\ -\frac{1}{2} \leq F_{k+1}x + F_k y < \frac{1}{2} \\ -\frac{1}{\varphi} \leq -\frac{1}{\varphi}x + y < 1. \end{vmatrix}$$

With their help we define shifted parallelograms R_u :

$$R_k(u) = p_k(u) + \begin{cases} A_k, & 0 \le u < F_{k-1} \\ B_k, & F_{k-1} \le u < F_k. \end{cases}$$

The sets $R_k(u) + \mathbb{Z}^2$ form a partition of \mathbb{R}^2 and we have $v_k(n) = u$ if and only if $p_k(n) \in R_k(u) + \mathbb{Z}^2$.

25 / 33

The regions R_u : 1 significant digit

0,1

The regions R_u : 2 significant digits

00, 01, 10

The regions R_u : 3 significant digits

000,001,010,100,101

Lukas Spiegelhofer (TU Vienna)

The limiting fundamental domain

Lukas Spiegelhofer (TU Vienna)

Finishing the proof idea

- Applying Fourier approximation of suitable regions, we obtain an analytic expression that is close to 1 if the Zeckendorf digits in J = [a, b) are equal to prescribed values, and close to 0 otherwise.
- Finally, we need a *Gowers uniformity norm* of the Zeckendorf sum-of-digits function. These norms are certain iterated correlations and arise from the repeated application of Van der Corput-type inequalities: we need to estimate

 $\sum_{0\leq n,h_1,\ldots,h_r< F_{\lambda}}\prod_{\varepsilon_1,\ldots,\varepsilon_r\in\{0,1\}} e\big(\vartheta(-1)^{\varepsilon_1+\cdots+\varepsilon_r}Z_{\lambda}(n+\varepsilon_1h_1+\cdots+\varepsilon_rh_r)\big).$

This was contributed by Müllner.

Current work: prime numbers

- We want to prove a prime number theorem for the Zeckendorf sum-of-digits function: asymptotically one half of the prime numbers should have an even Zeckendorf sum of digits.
- This extends a theorem by Mauduit and Rivat on the base-q sum of digits of prime numbers.
- It is sufficient to treat sums of type I and II:

$$S_{\mathrm{I}} = \sum_{m} \max_{I} \left| \sum_{n \in I} (-1)^{Z(mn)} \right|;$$

 $S_{\mathrm{II}} = \sum \sum a_{m} b_{n} (-1)^{Z(mn)}.$

Our level of distribution-result allows us to choose *m* very large and *n* very small in S_I; this reduces the amount of work necessary for S_{II}!

m n

Medium-term goals, part II

- Prove a prime number theorem for the Zeckendorf sum-of-digits function.
- ▶ Prove the following: for all k large enough there exists a prime number that is the sum of k different Fibonacci numbers (→ jointly with Drmota and Müllner).
- ▶ Normality of **t** and $Z(n) \mod 2$ along $\lfloor n^c \rfloor$ for 1 < c < 2.

Thank you!¹

¹Supported by the ANR-FWF project MuDeRa, and by the FWF, Project F55. Lukas Spiegelhofer (TU Vienna) Digital expansions along arithmetic progressions March 6, 2020

33 / 33