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The basic objects

I The binary expansion: every nonnegative integer n admits a unique
expansion as a sum of pairwise different powers of 2:

n = ε020 + ε121 + ε222 + · · · ,

where εi ∈ {0, 1}.
I The Zeckendorf expansion: every nonnegative integer n admits a

unique expansion as a sum of pairwise different, non-adjacent
Fibonacci numbers defined by F0 = 0, F1 = 1, Fi+2 = Fi + Fi+1:

n = ε2F2 + ε3F3 + · · · ,

where εi ∈ {0, 1} and εi+1 = 1⇒ εi = 0.
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The basic question

What happens to the digital (binary or Zeckendorf) expansion of
n when we add a constant t?

I Let us begin with the binary case and t = 1. The (possibly empty)
block of 1s on the right of the binary expansion of n is replaced by 0s,
and the 0 to the left of the block is replaced by 1.

∗ 011 · · · 1 7→ ∗100 · · · 0 (1)

I A similar thing happens for t = 2: the rightmost digit of n stays the
same and (1) is applied for the remaining digits.

I For t = 3 we have the following cases:

∗00 7→ ∗11; ∗01k01 7→ ∗10k00;

∗01k10 7→ ∗10k01; ∗01k11 7→ ∗10k10.

Lukas Spiegelhofer (TU Vienna) Digital expansions along arithmetic progressions March 6, 2020 3 / 33



The end?
I In this way, we can in principle describe the situation for any given t

completely; anagously, this is the case for Zeckendorf.
I However, we obtain long case distinctions for growing t, and a

structural principle describing these cases is unavailable. We do not
fully understand digital expansions under addition, in particular,
repeated addition—that is, along arithmetic progressions.

I An apparently simple, unsolved conjecture in this context is Cusick’s
conjecture on the binary sum-of-digits function: let s(n) be the
number of 1s in the binary expansion of n and let t ≥ 0 be an integer.
Is it true that, more often than not, we have s(n + t) ≥ s(n)?
In symbols, do we have ct > 1/2, where

ct = lim
N→∞

1

N

∣∣{0 ≤ n < N : s(n + t) ≥ s(n)}
∣∣?

I A related line of research concerns short arithmetic progressions. This
will lead us to the notion level of distribution, which has a strong link
to digital expansions of prime numbers.
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Long arithmetic progressions

Section 1

Long arithmetic progressions
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Long arithmetic progressions

Densities for Cusick’s conjecture

Let s be the binary sum-of-digits function.
For integers t ≥ 0 and j we define the asymptotic densities

δ(j , t) = lim
N→∞

1

N

∣∣{0 ≤ n < N : s(n + t)− s(n) = j}
∣∣.

The condition s(n + t)− s(n) = j is periodic with period 2κ(j ,t); therefore

δ(j , t) = lim
N→∞

1

N

∣∣{0 ≤ ` < N : s((`+ 1)t)− s(`t) = j}
∣∣

for odd t (this holds for all t ≥ 0, but 2 - t is the interesting case).
Cusick’s conjecture is therefore about long arithmetic progressions.

I The densities δ(j , t) give us a probability distribution on Z for each t.

I Clearly, ct = δ(0, t) + δ(1, t) + δ(2, t) + · · · .
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Long arithmetic progressions

A two-dimensional recurrence

For t = 1, we have the rule ∗01k 7→ ∗10k valid for k ≥ 0,
therefore we have the geometric distribution

δ(k , 1) =

{
0 for k ≥ 2;

2k−2 for k ≤ 1.

It follows that c1 = 3/4 > 1/2.



· · ·
0
0

1/2

1/4

1/8
1/16
1/32
· · ·


I We have the recurrence

δ(j , 2t) = δ(j , t);

δ(j , 2t + 1) =
1

2
δ(j − 1, t) +

1

2
δ(j + 1, t + 1),

which permits to compute the values δ(j , t) efficiently. In particular,
ct > 1/2 for t ≤ 230. (≈ 2 CPU hours)
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Long arithmetic progressions

An almost-all result
With this recurrence, it is not hard to compute the mean values

mλ,j =
1

2λ

∑
2λ≤t<2λ+1

δ(j , t).

It takes more effort to handle the second moment

m
(2)
λ,j =

1

2λ

∑
2λ≤t<2λ+1

δ(j , t)2.

Together with Drmota and Kauers, we studied m(2) by analyzing a
diagonal of a trivariate generating function asymptotically. Using
Chebychev’s inequality, we obtained concentration strictly above 1/2!

Theorem (Drmota–Kauers–S. 2016)

For all ε > 0, we have∣∣{0 ≤ t < T : 1/2 < ct < 1/2 + ε}
∣∣ = T −O (T/ logT ) .
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Long arithmetic progressions

The Tu–Deng conjecture

Using similar methods, we (S.–Wallner 2019) proved an analogous
almost-all result on the Tu–Deng conjecture coming from cryptography:
for a positive integer k and 1 ≤ t < 2k − 1, this conjecture states that
|St,k | ≤ 2k−1, where

St,k =
{

0 ≤ a, b < 2k − 1 : a + b ≡ t mod 2k − 1, s(a) + s(b) < k
}
.

I This has been verified computationally for k ∈ {1, . . . , 29, 39, 40} by
Tu and Deng, and Flori respectively.

I This conjecture, if true, allows for constructing Boolean functions
{0, 1}k → {0, 1} with desirable cryptographic properties.
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Long arithmetic progressions

Current work

A promising different approach (started by Emme and Hubert) is to study
moments of δ(·, t) for fixed t. In this vein, we proved the following
weakened form of the conjecture.

Theorem (S., submitted 2019)

Let ε > 0. If t contains at least B(ε) blocks of 1s, then ct > 1/2− ε.

With Wallner, we are currently proving a stronger theorem:

Theorem (S., Wallner, in preparation)

Assume that K is the number of blocks of 1s in t. There
exist (explicit) σ � K and α > 0 such that for all j ∈ Z,

δ(j , t) = α exp

(
− j2

2σ

)
+O

(
K−1

)
.

In particular, ct > 1/2−O(K−1/2).
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Long arithmetic progressions

Current work, continued

This is proved by a detailed analysis of the characteristic function of
δ(·, t), viz.

γt(ϑ) =
∑
n≥0

e2πiϑ(s(n+t)−s(n)) =
∑
j∈Z

δ(j , t)e2πijϑ.

For each ϑ, we have the one-dimensional recurrence

γ1(ϑ) =
e(ϑ)

2− e(−ϑ)
;

γ2t(ϑ) = γt(ϑ);

γ2t+1(ϑ) =
e(ϑ)

2
γt(ϑ) +

e(−ϑ)

2
γt+1(ϑ).

Probability theoretic tools are also powerful in this context!
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Long arithmetic progressions

Medium-term goals, part I

I Prove analogous results for the Tu–Deng conjecture.

I Prove the full sum-of-digits conjecture of Cusick.

I Consider base-q analogues, and the Zeckendorf sum-of-digits of n + t!

I Consider multidimensional generalizations: prove that the densities

δ(j1, . . . , jm, t) = lim
N→∞

1

N

∣∣{0 ≤ n < N : s(n + `t)− s(n) = j`

for 1 ≤ ` ≤ m}
∣∣

define a probability distribution close to an m-variate Gaussian, and
prove statements analogous to Cusick’s conjecture.
Note that these are questions on consecutive elements of long
arithmetic progressions.
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Short arithmetic progressions

Section 2

Short arithmetic progressions
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Short arithmetic progressions

An exponential sum

I We are interested in the exponential sum∑
0≤n<N

e(ϑs(nt + a)),

where e(x) = exp(2πix) and ϑ ∈ R, and we wish to obtain upper
bounds.

I This allows us to prove statements on the distribution of s(n) mod m
along arithmetic progressions.

I Most prominently, we are concerned with the Thue–Morse sequence t,
which can be defined by t(n) = s(n) mod 2, or by the morphism
0 7→ 01, 1 7→ 10. This corresponds to ϑ = 1/2.

t = (01101001100101101001011001101001 . . .)

This sequence describes whether an even or an odd number of powers
of two is needed to represent n (in the minimal representation).
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Short arithmetic progressions

Gelfond’s theorem

Theorem (Gelfond 1968)

Let d ≥ 1 and a ∈ Z. Then∣∣{1 ≤ n ≤ x : t(n) = 0, n ≡ a mod d}
∣∣ =

x

2d
+O(xλ)

for some absolute λ.

I That is, for all d ≥ 1 and a < d we have∑
1≤m≤M

(−1)s(md+a) � Mλ.

The implied constant depends on d (there are arbitrarily long APs on
which t is constant!).

I Therefore we look at a certain average over d .
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Short arithmetic progressions

The level of distribution

Theorem (Fouvry–Mauduit 1996)

∑
1≤d≤D

max
1≤y≤x

max
0≤a<d

∣∣∣∣∣ ∑
0≤n<y

n≡a mod d

(−1)s(n)

∣∣∣∣∣ ≤ Cx1−η

for some η > 0 and D = x0.5924.

selects the “worst” AP

observed − expected

average

I The number 0.5924 is a level of distribution of the Thue–Morse
sequence.

I Note that we have “trivial” summands (of size � x/d) for
d = 2λ + 1, where x ≤ 22λ. These don’t matter in the sum.

I For d close to D, the APs have x0.4076+O(η) many terms and common
difference ∼ x0.5924. Note that 0.5924/0.4076 ≈ 1.453 → short
arithmetic progressions!
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Short arithmetic progressions

The level of distribution

Theorem (Fouvry–Mauduit 1996)

∑
1≤d≤D

max
1≤y≤x

max
0≤a<d

∣∣∣∣∣ ∑
0≤n<y

n≡a mod d

(−1)s(n)

∣∣∣∣∣ ≤ Cx1−η

for some η > 0 and D = x0.5924.

selects the “worst” AP

observed − expected

average

I The number 0.5924 is a level of distribution of the Thue–Morse
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Short arithmetic progressions

The level of distribution

Theorem (S., submitted 2018)

The Thue–Morse sequence has level of distribution 1. More precisely, let
0 < ε < 1. There exist η > 0 and C such that

∑
1≤d≤D

max
y ,z≥0
z−y≤x

max
0≤a<d

∣∣∣∣∣ ∑
y≤n<z

n≡a mod d

(−1)s(n)

∣∣∣∣∣ ≤ Cx1−η

for D = x1−ε.

I This is a statement on very short arithmetic progressions: the
Thue–Morse sequence usually shows cancellation along N-term
arithmetic progressions having common difference ∼ NR , where
R > 0 is arbitrary (R ≤ 1.454 for Fouvry–Mauduit).
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Short arithmetic progressions

Patterns in t
t along short arithmetic subsequences even seems to behave randomly.

N = 128× 128 terms, common difference NR = 321

We know that every finite sequence on {0, 1} appears as an arithmetic

subsequence of t. But how often?

does every pattern occur?
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Short arithmetic progressions

Sparse infinite subsequences

We are interested in Piatetski-Shapiro subsequences of t: for c > 1 not an
integer we consider t(bncc).
For 1 < c < 2 we can approximate bncc by Beatty sequences bnα + βc,
and by the same method as for APs we can also prove a Beatty sequence
variant of the level of distribution.

Corollary (S.)

Assume that 1 < c < 2. Then the sequence t along bncc attains both
values 0 and 1 with asymptotic frequency 1/2.

This improves Mauduit–Rivat 1995, 2005; S. 2014; Müllner–S. 2015.

I We also wish to obtain normality of Piatetski-Shapiro subsequences of
t! Every finite sequence in {0, 1}L should appear with asymptotic
frequency 2−L in the sequence n 7→ t(bncc) for 1 < c < 2, improving

the range 1 < c < 3/2 by Müllner and S. (2015).
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Short arithmetic progressions

Idea of proof of the level of distribution-result, I
In order to handle

∑
0≤n<x e(ϑs(nd + a)), we successively reduce the

digits to be taken into account by s. For an integer µ ≥ 0 we define the
truncation

sµ(n) = s(n mod 2µ),

which is 2µ-periodic.
The essential tool is Van der Corput’s inequality.

Lemma
Let J be a finite interval containing N integers and let an be a complex
number for n ∈ J. For all integers R ≥ 1 we have∣∣∣∣∣∑

n∈J
an

∣∣∣∣∣
2

≤ N + R − 1

R

∑
|r |<R

(
1− |r |

R

) ∑
n∈J

n+r∈J

an+ran.

We only need to estimate correlations, where r is much smaller than n.
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Short arithmetic progressions

Idea of proof of the level of distribution-result, II

I Therefore the expression e(ϑs(nd + rd + a)− ϑs(nd + a)) arises.

I The summand rd usually does not change the digits at indices
significantly larger than log2(rd), therefore we may replace s by the
truncated version sλ.

I This is Mauduit–Rivat 2009, 2010. The new thing is that we can
apply this iteratively by using a variant of Van der Corput. In each
step, we eliminate the digits between λ− (j + 1)µ and λ− jµ, until
only the 2τ -periodic function sτ is left, where τ = λ−mµ.

I Since 2τ is now much smaller than x , we have in fact reduced the
problem to long arithmetic progressions: as n runs through [0, x), the
value nd is uniformly distributed in Z/2τZ.

I Finally, we need an estimate of a so-called Gowers uniformity norm of
the Thue–Morse sequence. This was found by Konieczny.
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Short arithmetic progressions

The level of distribution of Zeckendorf

Let Z (n) be the Zeckendorf sum of digits of n, that is, the minimal
number of Fibonacci numbers needed to write n as their sum. The

following result will be ready soon.

Theorem (Drmota, Müllner, S., in preparation)

The Zeckendorf sum-of-digits function modulo 2 has level of distribution
1. More precisely, for all ε > 0 we have

∑
1≤d≤D

max
y ,z≥0
z−y≤x

max
0≤a<d

∣∣∣∣∣ ∑
y≤n<z

n≡a mod d

(−1)Z(n)

∣∣∣∣∣ = O(x1−η)

for some η > 0 depending on ε, where D = x1−ε.

Lukas Spiegelhofer (TU Vienna) Digital expansions along arithmetic progressions March 6, 2020 22 / 33



Short arithmetic progressions

Cutting away Zeckendorf digits

I To handle the sum
∑

0≤n<N e(ϑZ (nd + a)), we proceed as in the
Thue–Morse case.

I We first cut away the digits at indices ≥ λ: for λ ≥ 2 define the
truncation vk (which is not periodic!) by

vk(ε2F2 + ε3F3 + · · · ) = ε2F2 + · · ·+ ελ−1Fλ−1,

and set Zλ(n) = Z (vλ(n)).

I Next, we cut away digits with indices in
[
λ− (j + 1)µ, λ− jµ

)
. This

can be accomplished (again) by a variant of Van der Corput’s
inequality.

I We are left with the function Zτ , where τ = λ−mµ; the digits below
τ of nd + a assume every combination the expected number of times.
Therefore we can replace the sum over nd + a by a full sum over n!

I We also need to detect the Zeckendorf digits with indices in
J = [a, b) in an analytical way.
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Short arithmetic progressions

Two-dimensional detection
We introduce the function p : N→ R2 by pk(n) =

(
n
ϕk ,

n
ϕk+1

)
. The

closure of the set of points pk(n) mod (1, 1) is a finite set of lines with
slope −Fk+1/Fk . Example for k = 3: slope −3/2.
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1000
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Short arithmetic progressions

Two-dimensional detection of digits

We define parallelograms Ak and Bk :

Ak Bk

−1
2 ≤ Fk+1x + Fky <

1
2 −1

2 ≤ Fk+1x + Fky <
1
2

−ϕ ≤ − 1
ϕx + y < 1 − 1

ϕ ≤ −
1
ϕx + y < 1.

With their help we define shifted parallelograms Ru:

Rk(u) = pk(u) +

{
Ak , 0 ≤ u < Fk−1

Bk , Fk−1 ≤ u < Fk .

The sets Rk(u) + Z2 form a partition of R2 and we have vk(n) = u if and
only if pk(n) ∈ Rk(u) + Z2.
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Short arithmetic progressions

The regions Ru: 1 significant digit

0, 1
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Short arithmetic progressions

The regions Ru: 2 significant digits

00, 01, 10
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Short arithmetic progressions

The regions Ru: 3 significant digits

000, 001, 010, 100, 101
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Short arithmetic progressions

The limiting fundamental domain
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Short arithmetic progressions

Finishing the proof idea

I Applying Fourier approximation of suitable regions, we obtain an
analytic expression that is close to 1 if the Zeckendorf digits in
J = [a, b) are equal to prescribed values, and close to 0 otherwise.

I Finally, we need a Gowers uniformity norm of the Zeckendorf
sum-of-digits function. These norms are certain iterated correlations
and arise from the repeated application of Van der Corput-type
inequalities: we need to estimate∑

0≤n,h1,...,hr<Fλ

∏
ε1,...,εr∈{0,1}

e
(
ϑ(−1)ε1+···+εrZλ(n + ε1h1 + · · ·+ εrhr )

)
.

This was contributed by Müllner.
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Short arithmetic progressions

Current work: prime numbers

I We want to prove a prime number theorem for the Zeckendorf
sum-of-digits function: asymptotically one half of the prime numbers
should have an even Zeckendorf sum of digits.

I This extends a theorem by Mauduit and Rivat on the base-q sum of
digits of prime numbers.

I It is sufficient to treat sums of type I and II:

SI =
∑
m

max
I

∣∣∣∣∣∑
n∈I

(−1)Z(mn)

∣∣∣∣∣ ;

SII =
∑
m

∑
n

ambn(−1)Z(mn).

I Our level of distribution-result allows us to choose m very large and n
very small in SI; this reduces the amount of work necessary for SII!
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Short arithmetic progressions

Medium-term goals, part II

I Prove a prime number theorem for the Zeckendorf sum-of-digits
function.

I Prove the following: for all k large enough there exists a prime
number that is the sum of k different Fibonacci numbers (→ jointly
with Drmota and Müllner).

I Normality of t and Z (n) mod 2 along bncc for 1 < c < 2.
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Short arithmetic progressions

Thank you! 1

1Supported by the ANR-FWF project MuDeRa, and by the FWF, Project F55.
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