The digits of n + t

Lukas Spiegelhofer¹

September 29, 2020, Séminaire Ernest

¹This talk is about joint work with Michael Wallner (TU Vienna)

Every nonnegative integer n admits a unique expansion as a finite sum of pairwise different powers of 2:

$$n = \varepsilon_0 2^0 + \varepsilon_1 2^1 + \varepsilon_2 2^2 + \cdots,$$

where $\varepsilon_i \in \{0,1\}$. The vector $(\varepsilon_j)_{j \geq 0}$ is the binary expansion of n.

What happens to the binary expansion of n when a constant t is added?

Let us begin with t=1. The (possibly empty) block of 1s on the right of the binary expansion of n is replaced by 0s, and the 0 to the left of the block is replaced by 1.

$$* 011 \cdots 1 \mapsto *100 \cdots 0 \tag{1}$$

Every nonnegative integer n admits a unique expansion as a finite sum of pairwise different powers of 2:

$$n = \varepsilon_0 2^0 + \varepsilon_1 2^1 + \varepsilon_2 2^2 + \cdots,$$

where $\varepsilon_i \in \{0,1\}$. The vector $(\varepsilon_j)_{j \geq 0}$ is the binary expansion of n.

What happens to the binary expansion of n when a constant t is added?

Let us begin with t=1. The (possibly empty) block of 1s on the right of the binary expansion of n is replaced by 0s, and the 0 to the left of the block is replaced by 1.

$$* 011 \cdots 1 \mapsto *100 \cdots 0 \tag{1}$$

Every nonnegative integer n admits a unique expansion as a finite sum of pairwise different powers of 2:

$$n = \varepsilon_0 2^0 + \varepsilon_1 2^1 + \varepsilon_2 2^2 + \cdots,$$

where $\varepsilon_i \in \{0,1\}$. The vector $(\varepsilon_j)_{j\geq 0}$ is the binary expansion of n.

What happens to the binary expansion of n when a constant t is added?

Let us begin with t=1. The (possibly empty) block of 1s on the right of the binary expansion of n is replaced by 0s, and the 0 to the left of the block is replaced by 1.

$$* 011 \cdots 1 \mapsto *100 \cdots 0 \tag{1}$$

Every nonnegative integer n admits a unique expansion as a finite sum of pairwise different powers of 2:

$$n = \varepsilon_0 2^0 + \varepsilon_1 2^1 + \varepsilon_2 2^2 + \cdots,$$

where $\varepsilon_i \in \{0,1\}$. The vector $(\varepsilon_j)_{j\geq 0}$ is the binary expansion of n.

What happens to the binary expansion of n when a constant t is added?

Let us begin with t = 1. The (possibly empty) block of 1s on the right of the binary expansion of n is replaced by 0s, and the 0 to the left of the block is replaced by 1.

$$* 011 \cdots 1 \mapsto *100 \cdots 0 \tag{1}$$

For t = 3 we have the following cases:

$$*00 \mapsto *11;$$
 $*01^k01 \mapsto *10^k00;$
 $*01^k10 \mapsto *10^k01;$ $*01^k11 \mapsto *10^k10.$

- ► In this manner, we can in principle describe the situation for any given *t* completely.
- ► However, we obtain long case distinctions for growing *t*, and a structural principle describing these cases is unavailable. Conclusion:

We do not fully understand addition in base 2.

For t = 3 we have the following cases:

$$*00 \mapsto *11;$$
 $*01^k01 \mapsto *10^k00;$
 $*01^k10 \mapsto *10^k01;$ $*01^k11 \mapsto *10^k10.$

- ► In this manner, we can in principle describe the situation for any given *t* completely.
- ► However, we obtain long case distinctions for growing *t*, and a structural principle describing these cases is unavailable. Conclusion:

We do not fully understand addition in base 2.

For t = 3 we have the following cases:

$$*00 \mapsto *11;$$
 $*01^{k}01 \mapsto *10^{k}00;$
 $*01^{k}10 \mapsto *10^{k}01;$ $*01^{k}11 \mapsto *10^{k}10.$

- ▶ In this manner, we can in principle describe the situation for any given t completely.
- ► However, we obtain long case distinctions for growing t, and a structural principle describing these cases is unavailable. Conclusion:

We do not fully understand addition in base 2.

For t = 3 we have the following cases:

$$*00 \mapsto *11;$$
 $*01^k01 \mapsto *10^k00;$
 $*01^k10 \mapsto *10^k01;$ $*01^k11 \mapsto *10^k10.$

- ▶ In this manner, we can in principle describe the situation for any given t completely.
- ► However, we obtain long case distinctions for growing t, and a structural principle describing these cases is unavailable. Conclusion:

We do not fully understand addition in base 2.

Two examples

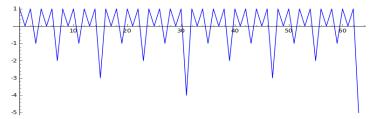


Figure: The ruler sequence $s_2(n+1) - s_2(n)$.

Figure: Some values of $s_2(n+21) - s_2(n)$.

What proportion of the graph is above the x-axis?

An apparently simple, unsolved conjecture is due to T. W. Cusick. Let $t \ge 0$ be an integer.

Is it true that, more often than not, we have $s_2(n+t) \geq s_2(n)$?

In symbols, we seek to prove $c_t > 1/2$, where

$$c_t = \lim_{N \to \infty} \frac{1}{N} |\{0 \le n < N : s_2(n+t) \ge s_2(n)\}|.$$

For example,

$$c_1 = 3/4$$
, $c_{21} = 5/8$, $c_{999} = 37561/2^{16}$,
 $\min_{t < 2^{30}} c_t = 18169025645289/2^{45} = 0.516...$

The latter minimum is attained at

$$t = (111101111011110111101111011111)_2$$
 and $t^R = (11111011110111110111110111101111)_2$.

What proportion of the graph is above the x-axis?

An apparently simple, unsolved conjecture is due to T. W. Cusick. Let $t \ge 0$ be an integer.

Is it true that, more often than not, we have $s_2(n+t) \geq s_2(n)$?

In symbols, we seek to prove $c_t > 1/2$, where

$$c_t = \lim_{N \to \infty} \frac{1}{N} |\{0 \le n < N : s_2(n+t) \ge s_2(n)\}|.$$

For example,

$$c_1 = 3/4, \quad c_{21} = 5/8, \quad c_{999} = 37561/2^{16},$$

$$\min_{t < 2^{30}} c_t = 18169025645289/2^{45} = 0.516....$$

The latter minimum is attained at

$$t = (111101111011110111101111011111)_2$$
 and $t^R = (111110111110111110111110111101111)_2$.

Densities for Cusick's conjecture

More generally, for integers $t \ge 0$ and j we define

$$\delta(j,t) = \lim_{N \to \infty} \frac{1}{N} |\{0 \le n < N : s_2(n+t) - s_2(n) = j\}|.$$

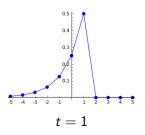
▶ The densities $\delta(j, t)$ give us a probability distribution on \mathbb{Z} for each t.

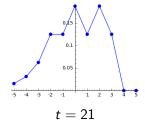
Densities for Cusick's conjecture

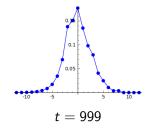
More generally, for integers $t \ge 0$ and j we define

$$\delta(j,t) = \lim_{N \to \infty} \frac{1}{N} |\{0 \le n < N : s_2(n+t) - s_2(n) = j\}|.$$

▶ The densities $\delta(j, t)$ give us a probability distribution on \mathbb{Z} for each t.







A two-dimensional recurrence

The array δ satisfies the recurrence

$$\delta(k,1) = \begin{cases} 0 & \text{for } k \ge 2; \\ 2^{k-2} & \text{for } k \le 1; \end{cases}$$
 $\delta(j,2t) = \delta(j,t);$ $\delta(j,2t+1) = \frac{1}{2}\delta(j-1,t) + \frac{1}{2}\delta(j+1,t+1).$

This permits to compute $\delta(j,t)$ efficiently. In particular, $c_t > 1/2$ for $t \leq 2^{30}$. (≈ 2 CPU hours, using a C program)

An almost-all result

With this recurrence, it is not hard to compute the mean values

$$m_{\lambda,j} = rac{1}{2^{\lambda}} \sum_{2^{\lambda} \leq t < 2^{\lambda+1}} \delta(j,t).$$

It takes more effort to handle the second moment

$$m_{\lambda,j}^{(2)} = \frac{1}{2^{\lambda}} \sum_{2^{\lambda} \leq t \leq 2^{\lambda+1}} \delta(j,t)^2.$$

Together with Drmota and Kauers, we studied $m^{(2)}$ by analyzing a diagonal of a trivariate generating function asymptotically. Using Chebychev's inequality, we obtained concentration strictly above 1/2.

Theorem (Drmota-Kauers-S. 2016)

For all $\varepsilon > 0$, we have

$$|\{0 \le t < T : 1/2 < c_t < 1/2 + \varepsilon\}| = T - \mathcal{O}(T/\log T).$$

An almost-all result

With this recurrence, it is not hard to compute the mean values

$$m_{\lambda,j} = rac{1}{2^{\lambda}} \sum_{2^{\lambda} \leq t < 2^{\lambda+1}} \delta(j,t).$$

It takes more effort to handle the second moment

$$m_{\lambda,j}^{(2)} = \frac{1}{2^{\lambda}} \sum_{2^{\lambda} \leq t < 2^{\lambda+1}} \delta(j,t)^2.$$

Together with Drmota and Kauers, we studied $m^{(2)}$ by analyzing a diagonal of a trivariate generating function asymptotically. Using Chebychev's inequality, we obtained concentration strictly above 1/2.

Theorem (Drmota-Kauers-S. 2016)

For all $\varepsilon > 0$, we have

$$|\{0 \le t < T : 1/2 < c_t < 1/2 + \varepsilon\}| = T - \mathcal{O}(T/\log T).$$

The first main theorem

Let M = M(t) be the number of blocks of 1s in the binary expansion of t.

Theorem (S.-Wallner 2020+)

Set $A_2(1)=1$, and for $t\geq 1$ let $A_2(2t)=A_2(t)$, and

$$A_2(2t+1)=\frac{A_2(t)+A_2(t+1)+1}{2}.$$

If M is larger than some absolute, effective constant M_0 , we have

$$\delta(j,t) = \frac{1}{\sqrt{4\pi A_2(t)}} \exp\left(-\frac{j^2}{4A_2(t)}\right) + \mathcal{O}\left(\frac{(\log M)^4}{M}\right)$$

for all integers j. The implied constant is absolute.

This improves on a theorem by Emme and Hubert (2018).

The second main theorem

Again, let M = M(t) be the number of blocks of 1s in t.

Theorem (S.-Wallner 2020+)

Let $t \ge 1$. If M(t) is larger than some absolute, effective constant M_1 , then $c_t > 1/2$.

Cusick: "Your paper reduces my conjecture to what I will call the 'hard cases' $[\dots]$ ". \longrightarrow more work to do!

The second main theorem

Again, let M = M(t) be the number of blocks of 1s in t.

Theorem (S.-Wallner 2020+)

Let $t \ge 1$. If M(t) is larger than some absolute, effective constant M_1 , then $c_t > 1/2$.

Cusick: "Your paper reduces my conjecture to what I will call the 'hard cases' $[\dots]$ ". \longrightarrow more work to do!

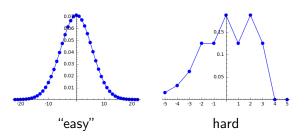
The second main theorem

Again, let M = M(t) be the number of blocks of 1s in t.

Theorem (S.-Wallner 2020+)

Let $t \ge 1$. If M(t) is larger than some absolute, effective constant M_1 , then $c_t > 1/2$.

Cusick: "Your paper reduces my conjecture to what I will call the 'hard cases' $[\dots]$ ". \longrightarrow more work to do!



Consider the characteristic function (writing $e(x) = \exp(2\pi ix)$)

$$\gamma_t(\vartheta) = \lim_{N \to \infty} \frac{1}{N} \sum_{0 \le n \le N} e(\vartheta s_2(n+t) - \vartheta s_2(n)) = \sum_{j \in \mathbb{Z}} \delta(j,t) e(j\vartheta).$$

For each ϑ , we have the *one-dimensional* recurrence

$$\begin{split} \gamma_1(\vartheta) &= \frac{\mathsf{e}(\vartheta)}{2 - \mathsf{e}(-\vartheta)}; \\ \gamma_{2t}(\vartheta) &= \gamma_t(\vartheta); \\ \gamma_{2t+1}(\vartheta) &= \frac{\mathsf{e}(\vartheta)}{2} \gamma_t(\vartheta) + \frac{\mathsf{e}(-\vartheta)}{2} \gamma_{t+1}(\vartheta). \end{split}$$

Note that $\gamma_t(0) = 1$; it follows that $\operatorname{Re} \gamma_t(x) > 0$ in a disk $D_t(0)$, and we can consider $\log \gamma_t(x)$ on D_t (\longrightarrow "cumulant generating function".)

Consider the characteristic function (writing $e(x) = exp(2\pi ix)$)

$$\gamma_t(\vartheta) = \lim_{N \to \infty} \frac{1}{N} \sum_{0 \le n < N} e(\vartheta s_2(n+t) - \vartheta s_2(n)) = \sum_{j \in \mathbb{Z}} \delta(j,t) e(j\vartheta).$$

For each ϑ , we have the *one-dimensional* recurrence

$$\begin{split} \gamma_{1}(\vartheta) &= \frac{\mathsf{e}(\vartheta)}{2 - \mathsf{e}(-\vartheta)}; \\ \gamma_{2t}(\vartheta) &= \gamma_{t}(\vartheta); \\ \gamma_{2t+1}(\vartheta) &= \frac{\mathsf{e}(\vartheta)}{2} \gamma_{t}(\vartheta) + \frac{\mathsf{e}(-\vartheta)}{2} \gamma_{t+1}(\vartheta). \end{split}$$

Note that $\gamma_t(0) = 1$; it follows that $\operatorname{Re} \gamma_t(x) > 0$ in a disk $D_t(0)$, and we can consider $\log \gamma_t(x)$ on D_t (\longrightarrow "cumulant generating function".)

We have $\gamma_t(\vartheta) = 1 + \mathcal{O}(\vartheta^2)$, therefore

$$\gamma_t(\vartheta) = \exp\left(-\sum_{j\geq 2} A_j(t) (2\pi\vartheta)^j\right)$$

for $\vartheta \in D_t$.

- ▶ Up to multiplication by i^j , the values $A_j(t)$ are the *cumulants* of $\delta(\cdot, t)$.
- We abbreviate $a_j = A_j(t)$, $b_j = A_j(t+1)$, $c_j = A_j(2t+1)$. The recurrence for γ_t gives

$$\exp(-c_2\vartheta^2 - c_3\vartheta^3 - \cdots) = \frac{1}{2}\exp(-i\vartheta - a_2\vartheta^2 - a_3\vartheta^3 - \cdots) + \frac{1}{2}\exp(-i\vartheta - b_2\vartheta^2 - b_3\vartheta^3 - \cdots),$$

valid for ϑ in a certain disk.

We have $\gamma_t(\vartheta) = 1 + \mathcal{O}(\vartheta^2)$, therefore

$$\gamma_t(\vartheta) = \exp\left(-\sum_{j\geq 2} A_j(t) (2\pi\vartheta)^j\right)$$

for $\vartheta \in D_t$.

- ▶ Up to multiplication by i^j , the values $A_j(t)$ are the *cumulants* of $\delta(\cdot, t)$.
- ▶ We abbreviate $a_j = A_j(t)$, $b_j = A_j(t+1)$, $c_j = A_j(2t+1)$. The recurrence for γ_t gives

$$\exp(-c_2\vartheta^2 - c_3\vartheta^3 - \cdots) = \frac{1}{2}\exp(-i\vartheta - a_2\vartheta^2 - a_3\vartheta^3 - \cdots) + \frac{1}{2}\exp(-i\vartheta - b_2\vartheta^2 - b_3\vartheta^3 - \cdots),$$

valid for ϑ in a certain disk.

Comparing coefficients

We obtain a recurrence for the cumulants:

$$c_{2} = \frac{a_{2} + b_{2}}{2} + \frac{1}{2};$$

$$c_{3} = \frac{a_{3} + b_{3}}{2} + i \frac{a_{2} - b_{2}}{2};$$

$$c_{4} = \frac{a_{4} + b_{4}}{2} + i \frac{a_{3} - b_{3}}{2} - \frac{(a_{2} - b_{2})^{2}}{8} + \frac{1}{12};$$

$$c_{5} = \frac{a_{5} + b_{5}}{2} + i \frac{a_{4} - b_{4}}{2} - \frac{(a_{2} - b_{2})(a_{3} - b_{3})}{4} + i \frac{a_{2} - b_{2}}{6}.$$

For the normal distribution result, we only have to consider A_2 ; for Cusick's conjecture, we also have to take A_3 , A_4 , A_5 into account.

Comparing coefficients

We obtain a recurrence for the cumulants:

$$c_{2} = \frac{a_{2} + b_{2}}{2} + \frac{1}{2};$$

$$c_{3} = \frac{a_{3} + b_{3}}{2} + i \frac{a_{2} - b_{2}}{2};$$

$$c_{4} = \frac{a_{4} + b_{4}}{2} + i \frac{a_{3} - b_{3}}{2} - \frac{(a_{2} - b_{2})^{2}}{8} + \frac{1}{12};$$

$$c_{5} = \frac{a_{5} + b_{5}}{2} + i \frac{a_{4} - b_{4}}{2} - \frac{(a_{2} - b_{2})(a_{3} - b_{3})}{4} + i \frac{a_{2} - b_{2}}{6}.$$

For the normal distribution result, we only have to consider A_2 ; for Cusick's conjecture, we also have to take A_3 , A_4 , A_5 into account.

Proof of the first main theorem, I

We define the approximation

$$\gamma_t'(\vartheta) = \exp(-A_2(t)(2\pi\vartheta)^2)$$

as well as the error

$$\widetilde{\gamma}_t(\vartheta) = \gamma_t(\vartheta) - \gamma_t'(\vartheta).$$

Proposition

There exists an absolute constant C such that for all t having M blocks of 1s and $|\vartheta| \leq \min(M^{-1/3}, 1/(4\pi))$ we have

$$|\widetilde{\gamma}_t(\vartheta)| \leq CM\vartheta^3.$$

Proposition

Assume that $t \geq 1$ has at least M blocks of 1s. Then for $|\vartheta| \leq 1/2$,

$$\left|\gamma_t(\vartheta)\right| \ll \exp\left(-\frac{M\vartheta^2}{4}\right).$$

Proof of the first main theorem, I

We define the approximation

$$\gamma_t'(\vartheta) = \exp(-A_2(t)(2\pi\vartheta)^2)$$

as well as the error

$$\widetilde{\gamma}_t(\vartheta) = \gamma_t(\vartheta) - \gamma_t'(\vartheta).$$

Proposition

There exists an absolute constant C such that for all t having M blocks of 1s and $|\vartheta| \leq \min(M^{-1/3}, 1/(4\pi))$ we have

$$|\widetilde{\gamma}_t(\vartheta)| \leq CM\vartheta^3.$$

Proposition

Assume that $t \geq 1$ has at least M blocks of 1s. Then for $|\vartheta| \leq 1/2$,

$$\left|\gamma_t(\vartheta)\right| \ll \exp\left(-\frac{M\vartheta^2}{4}\right).$$

Proof of the first main theorem, I

We define the approximation

$$\gamma_t'(\vartheta) = \exp(-A_2(t)(2\pi\vartheta)^2)$$

as well as the error

$$\widetilde{\gamma}_t(\vartheta) = \gamma_t(\vartheta) - \gamma_t'(\vartheta).$$

Proposition

There exists an absolute constant C such that for all t having M blocks of 1s and $|\vartheta| \le \min(M^{-1/3}, 1/(4\pi))$ we have

$$|\widetilde{\gamma}_t(\vartheta)| \leq CM\vartheta^3.$$

Proposition

Assume that $t \ge 1$ has at least M blocks of 1s. Then for $|\vartheta| \le 1/2$,

$$\left|\gamma_t(\vartheta)\right| \ll \exp\left(-\frac{M\vartheta^2}{4}\right).$$

Proof of the first main theorem, II

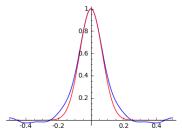


Figure: Illustrating the propositions for t = 123.

We combine these facts with the formula

$$\delta(j,t) = \int_{-1/2}^{1/2} \gamma_t(\vartheta) \, \mathrm{e}(-j\vartheta) \, \mathrm{d}\vartheta.$$

After extending to a complete Gauss integral we obtain the statement of the theorem (with $\sqrt{\pi}$ and everything).

Recapturing the first theorem

Theorem (S.-Wallner 2020+)

Set $A_2(1) = 1$, and for $t \ge 1$ let $A_2(2t) = A_2(t)$, and

$$A_2(2t+1)=\frac{A_2(t)+A_2(t+1)+1}{2}.$$

If M is larger than some absolute, effective constant M_0 , we have

$$\delta(j,t) = \frac{1}{\sqrt{4\pi A_2(t)}} \exp\left(-\frac{j^2}{4A_2(t)}\right) + \mathcal{O}\left(\frac{(\log M)^4}{M}\right)$$

for all integers j. The implied constant is absolute.

Proof of the second theorem

As we noted, we need a more precise asymptotic expansion, involving the cumulants $A_2(t)$, $A_3(t)$, $A_4(t)$, and $A_5(t)$ — we study a *distorted* normal distribution.

We use the approximation

$$\gamma_t'(\vartheta) = \exp\left(-\sum_{2 \leq j \leq 5} A_j(t) (2\pi\vartheta)^j\right)$$

and the error

$$\widetilde{\gamma}_t(\vartheta) = \gamma_t(\vartheta) - \gamma_t'(\vartheta).$$

As above, we have $|\widetilde{\gamma}_t(\vartheta)| \leq CM\vartheta^6$ for $|\vartheta| \leq \min(M^{-1/6}, 1/(4\pi))$ with an absolute constant C.

Reconstructing ct

▶ The values $c_t = \delta(0,t) + \delta(1,t) + \cdots$ are related to the CF $\gamma_t(\vartheta)$ by the formula

$$c_t = \frac{1}{2} + \frac{\delta(0,t)}{2} + \frac{1}{2} \int_{-1/2}^{1/2} \operatorname{Im} \gamma_t(\vartheta) \cot(\pi\vartheta) d\vartheta.$$

- Note that the third summand is zero if $\delta(-j, t) = \delta(j, t)$ for all j, and $c_t > 1/2$ follows in this case.
- ▶ In this identity, we will replace γ_t by γ_t' . We expand the exponential:

$$\begin{split} \gamma_t'(\vartheta) &= \exp\left(-A_2(t)(\tau\vartheta)^2\right) \times \left(1 - A_3(t)(\tau\vartheta)^3 - A_4(t)(\tau\vartheta)^4 - A_5(\tau\vartheta)^5 \right. \\ &+ \left. \frac{1}{2}A_3(t)^2(\tau\vartheta)^6 + A_3(t)A_4(t)(\tau\vartheta)^7 - \frac{1}{6}A_3(t)^3(\tau\vartheta)^9\right) + \mathcal{O}(E), \end{split}$$

where $\tau = 2\pi$ and E is a certain error.

Reconstructing ct

▶ The values $c_t = \delta(0,t) + \delta(1,t) + \cdots$ are related to the CF $\gamma_t(\vartheta)$ by the formula

$$c_t = \frac{1}{2} + \frac{\delta(0,t)}{2} + \frac{1}{2} \int_{-1/2}^{1/2} \operatorname{Im} \gamma_t(\vartheta) \cot(\pi\vartheta) d\vartheta.$$

- Note that the third summand is zero if $\delta(-j, t) = \delta(j, t)$ for all j, and $c_t > 1/2$ follows in this case.
- ▶ In this identity, we will replace γ_t by γ_t' . We expand the exponential:

$$\begin{aligned} \gamma_t'(\vartheta) &= \exp\left(-A_2(t)(\tau\vartheta)^2\right) \times \left(1 - A_3(t)(\tau\vartheta)^3 - A_4(t)(\tau\vartheta)^4 - A_5(\tau\vartheta)^5 \right. \\ &+ \frac{1}{2}A_3(t)^2(\tau\vartheta)^6 + A_3(t)A_4(t)(\tau\vartheta)^7 - \frac{1}{6}A_3(t)^3(\tau\vartheta)^9\right) + \mathcal{O}(E), \end{aligned}$$

where $\tau = 2\pi$ and E is a certain error.

Reconstructing ct

▶ The values $c_t = \delta(0,t) + \delta(1,t) + \cdots$ are related to the CF $\gamma_t(\vartheta)$ by the formula

$$c_t = \frac{1}{2} + \frac{\delta(0,t)}{2} + \frac{1}{2} \int_{-1/2}^{1/2} \operatorname{Im} \gamma_t(\vartheta) \cot(\pi\vartheta) d\vartheta.$$

- Note that the third summand is zero if $\delta(-j, t) = \delta(j, t)$ for all j, and $c_t > 1/2$ follows in this case.
- ▶ In this identity, we will replace γ_t by γ_t' . We expand the exponential:

$$\begin{split} \gamma_t'(\vartheta) &= \exp\left(-A_2(t)(\tau\vartheta)^2\right) \times \left(1 - A_3(t)(\tau\vartheta)^3 - A_4(t)(\tau\vartheta)^4 - A_5(\tau\vartheta)^5 \right. \\ &+ \frac{1}{2}A_3(t)^2(\tau\vartheta)^6 + A_3(t)A_4(t)(\tau\vartheta)^7 - \frac{1}{6}A_3(t)^3(\tau\vartheta)^9\right) + \mathcal{O}(E), \end{split}$$

where $\tau = 2\pi$ and E is a certain error.

Reconstructing ct

Introducing complete Gauss integrals, this leads to an approximation of c_t :

$$\begin{split} c_t &= \frac{1}{2} + \frac{1}{4\sqrt{\pi}} \left(A_2^{-1/2} + i A_2^{-3/2} A_3 + \frac{3}{4} A_2^{-5/2} \left(2i \, A_5 - A_4 - \frac{i \, A_3}{6} \right) \right. \\ &\left. + \frac{15}{8} A_2^{-7/2} \left(\frac{A_3}{2} - 2i \, A_4 \right) A_3 + \frac{35}{16} i \, A_2^{-9/2} A_3^3 \right) + \mathcal{O}\left(E \right). \end{split}$$

- In order to compute c_t , we have to keep track of the entire vector $\delta(\cdot, t)$; for the above approximation, we only need the four cumulants A_2, \ldots, A_5 (which are given by a recurrence).
- A closer look at the sequences A_j finishes the proof: for $c_t > 1/2$ it is sufficient to have many blocks of 1s in the binary expansion of t.

Reconstructing ct

Introducing complete Gauss integrals, this leads to an approximation of c_t:

$$\begin{split} c_t &= \frac{1}{2} + \frac{1}{4\sqrt{\pi}} \left(A_2^{-1/2} + i A_2^{-3/2} A_3 + \frac{3}{4} A_2^{-5/2} \left(2i \, A_5 - A_4 - \frac{i \, A_3}{6} \right) \right. \\ &\left. + \frac{15}{8} A_2^{-7/2} \left(\frac{A_3}{2} - 2i \, A_4 \right) A_3 + \frac{35}{16} i \, A_2^{-9/2} A_3^3 \right) + \mathcal{O}\left(E \right). \end{split}$$

- In order to compute c_t , we have to keep track of the entire vector $\delta(\cdot, t)$; for the above approximation, we only need the four cumulants A_2, \ldots, A_5 (which are given by a recurrence).
- A closer look at the sequences A_j finishes the proof: for $c_t > 1/2$ it is sufficient to have many blocks of 1s in the binary expansion of t.

Reconstructing ct

Introducing complete Gauss integrals, this leads to an approximation of c_t:

$$\begin{split} c_t &= \frac{1}{2} + \frac{1}{4\sqrt{\pi}} \left(A_2^{-1/2} + i A_2^{-3/2} A_3 + \frac{3}{4} A_2^{-5/2} \left(2i \, A_5 - A_4 - \frac{i \, A_3}{6} \right) \right. \\ &\left. + \frac{15}{8} A_2^{-7/2} \left(\frac{A_3}{2} - 2i \, A_4 \right) A_3 + \frac{35}{16} i \, A_2^{-9/2} A_3^3 \right) + \mathcal{O}\left(E \right). \end{split}$$

- In order to compute c_t , we have to keep track of the entire vector $\delta(\cdot, t)$; for the above approximation, we only need the four cumulants A_2, \ldots, A_5 (which are given by a recurrence).
- ▶ A closer look at the sequences A_j finishes the proof: for $c_t > 1/2$ it is sufficient to have many blocks of 1s in the binary expansion of t.

The message

Adding a constant usually changes the binary sum of digits according to a normal law; moreover, the sum of digits (weakly) increases more often than not.

Pascal's triangle modulo powers of two

The easy case t = 1 yields

$$s_2(n+1) - s_2(n) = 1 - \nu_2(n+1),$$

and by summation we obtain

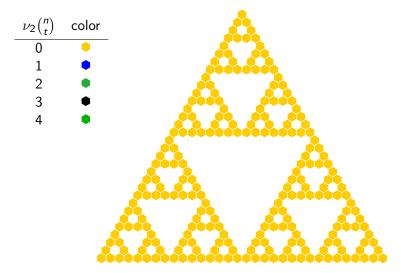
$$\nu_2(n!)=n-s_2(n).$$

Therefore

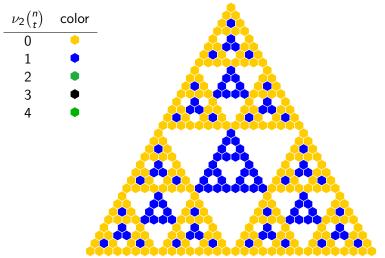
$$s_2(n+t)-s_2(n)=s_2(t)-\nu_2\left(\binom{n+t}{t}\right).$$

 \longrightarrow we are concerned with divisibility properties of binomial coefficients. (This is one of my motivations for studying the function s_2 .)

Divisibility of binomial coefficients by powers of two

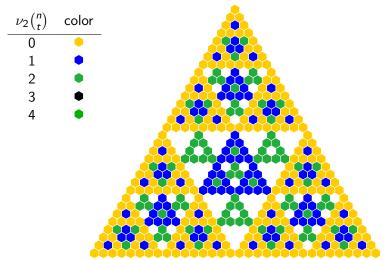


Divisibility of binomial coefficients by powers of two



Rule: "Put a discrete Sierpiński triangle of the next color and of maximal size into each triangular hole."

Divisibility of binomial coefficients by powers of two



Rule: "Put a discrete Sierpiński triangle of the next color and of maximal size into each triangular hole."

Rows in Pascal's triangle

The densities $\delta(j,t)$ are concerned with *columns* in Pascal's triangle. The *rows* behave similar with respect to *p*-valuation (the picture is invariant under rotation by $2\pi/3$), but they are finite.

Let j and t be nonnegative integers and set

$$\Theta(j,t) = \left| \left\{ \ell \in \{0,\ldots,t\} : 2^{j+1} \nmid {t \choose \ell} \right\} \right|.$$

For brevity, we extend $\Theta(\cdot,t)$ to $\mathbb R$ by setting $\Theta(j,t)=0$ for j<0 and $\Theta(x,t)=\Theta(\lfloor x\rfloor,t)$.

Theorem (S.-Wallner 2018)

Assume that $\varepsilon > 0$ and $\lambda > 0$ is an integer. We set $I_{\lambda} = [2^{\lambda}, 2^{\lambda+1})$. Then

$$\left|\left\{t \in I_{\lambda} : \sup_{u \in \mathbb{R}} \left| \frac{\Theta_2(\lambda - s_2(t) + u, t)}{t + 1} - \Phi\left(\frac{u}{\sqrt{\lambda}}\right) \right| \ge \varepsilon\right\}\right| = \mathcal{O}\left(\frac{2^{\lambda}}{\sqrt{\lambda}}\right),$$

where the implied constant may depend on ε .

Rows in Pascal's triangle

The densities $\delta(j,t)$ are concerned with *columns* in Pascal's triangle. The *rows* behave similar with respect to *p*-valuation (the picture is invariant under rotation by $2\pi/3$), but they are finite.

Let j and t be nonnegative integers and set

$$\Theta(j,t) = \left| \left\{ \ell \in \{0,\ldots,t\} : 2^{j+1} \nmid {t \choose \ell} \right\} \right|.$$

For brevity, we extend $\Theta(\cdot,t)$ to $\mathbb R$ by setting $\Theta(j,t)=0$ for j<0 and $\Theta(x,t)=\Theta(\lfloor x\rfloor,t)$.

Theorem (S.-Wallner 2018)

Assume that $\varepsilon > 0$ and $\lambda > 0$ is an integer. We set $I_{\lambda} = [2^{\lambda}, 2^{\lambda+1})$. Then

$$\left|\left\{t \in I_{\lambda} : \sup_{u \in \mathbb{R}} \left| \frac{\Theta_2(\lambda - s_2(t) + u, t)}{t + 1} - \Phi\left(\frac{u}{\sqrt{\lambda}}\right) \right| \ge \varepsilon\right\}\right| = \mathcal{O}\left(\frac{2^{\lambda}}{\sqrt{\lambda}}\right),$$

where the implied constant may depend on ε .

SW2018 in a nutshell

The normal distribution appears in Pascal's triangle — not only in the size of the coefficients, but also in their 2-valuation.

Possible extensions

- We hope to prove a sharpening of this theorem by means of cumulants too.
- Cusick proposed his conjecture when he was working on the related Tu-Deng conjecture relevant in cryptography. Let k be a positive integer and $1 \le t < 2^k 1$. Then the conjecture states that

$$\left| \left\{ (a,b) \in \{0,\dots,2^k - 2\}^2 : a + b \equiv t \mod 2^k - 1, \right. \right.$$
$$\left. s_2(a) + s_2(b) < k \right\} \right| \le 2^{k-1}$$

and is open. Together with Wallner we proved that this conjecture is true in an asymptotic sense (again by analyzing a trivariate generating function), and that it implies Cusick's conjecture.

 \longrightarrow Can we prove more?

Possible extensions

- We hope to prove a sharpening of this theorem by means of cumulants too.
- Cusick proposed his conjecture when he was working on the related Tu-Deng conjecture relevant in cryptography. Let k be a positive integer and $1 \le t < 2^k 1$. Then the conjecture states that

$$\left| \left\{ (a,b) \in \{0,\dots,2^k - 2\}^2 : a + b \equiv t \mod 2^k - 1, \\ s_2(a) + s_2(b) < k \right\} \right| \le 2^{k-1}$$

and is open. Together with Wallner we proved that this conjecture is true in an asymptotic sense (again by analyzing a trivariate generating function), and that it implies Cusick's conjecture.

 \longrightarrow Can we prove more?

Possible extensions, II

Together with T. Stoll we proved the following theorem.

Theorem (S.-Stoll)

Assume that $k_1,\ldots,k_m\in\mathbb{Z}.$ There exist n and t such that for $1\leq\ell\leq m$,

$$k_{\ell}=s_2(n+\ell t)-s_2(n).$$

 \longrightarrow Every finite sequence of integers, modulo a shift $\sigma \in \mathbb{Z}$, appears as an arithmetic subsequence of the function s_2 .

TODO: Study the asymptotic densities

$$\delta(\mathsf{k},t) = \lim_{N \to \infty} \frac{1}{N} \left| \left\{ n < N : s_2(n+\ell t) - s_2(n) = k_\ell \text{ for } 1 \le \ell \le m \right\} \right|$$

and prove multidimensional generalizations of Cusick's conjecture and the limit law.

Possible extensions, II

Together with T. Stoll we proved the following theorem.

Theorem (S.-Stoll)

Assume that $k_1,\ldots,k_m\in\mathbb{Z}.$ There exist n and t such that for $1\leq\ell\leq m$,

$$k_{\ell}=s_2(n+\ell t)-s_2(n).$$

 \longrightarrow Every finite sequence of integers, modulo a shift $\sigma \in \mathbb{Z}$, appears as an arithmetic subsequence of the function s_2 .

TODO: Study the asymptotic densities

$$\delta(\mathsf{k},t) = \lim_{N \to \infty} \frac{1}{N} \big| \big\{ n < N : s_2(n+\ell t) - s_2(n) = k_\ell \text{ for } 1 \le \ell \le m \big\} \big|$$

and prove multidimensional generalizations of Cusick's conjecture and the limit law.

Thank you! 2

²Supported by the Austrian Science Fund (FWF), Project F55.