The digits of $n+t$

Lukas Spiegelhofer ${ }^{1}$

December 15, 2020, One World Numeration Seminar

[^0]
The fundamental question

We write n in base 2 :

$$
n=\varepsilon_{0} 2^{0}+\varepsilon_{1} 2^{1}+\varepsilon_{2} 2^{2}+\cdots,
$$

where $\varepsilon_{j} \in\{0,1\}$. The vector $\left(\varepsilon_{j}\right)_{j \geq 0}$ is the binary expansion of n.

What happens to the binary expansion of n when a constant t is added?

Complementary to Sakarovitch's talk four weeks ago:

The fundamental question

We write n in base 2 :

$$
n=\varepsilon_{0} 2^{0}+\varepsilon_{1} 2^{1}+\varepsilon_{2} 2^{2}+\cdots,
$$

where $\varepsilon_{j} \in\{0,1\}$. The vector $\left(\varepsilon_{j}\right)_{j \geq 0}$ is the binary expansion of n.

What happens to the binary expansion of n when a constant t is added?

Complementary to Sakarovitch's talk four weeks ago:
Adding 1 in general numeration systems vs. Adding t in base 2

The fundamental question

We write n in base 2 :

$$
n=\varepsilon_{0} 2^{0}+\varepsilon_{1} 2^{1}+\varepsilon_{2} 2^{2}+\cdots,
$$

where $\varepsilon_{j} \in\{0,1\}$. The vector $\left(\varepsilon_{j}\right)_{j \geq 0}$ is the binary expansion of n.

What happens to the binary expansion of n when a constant t is added?

Complementary to Sakarovitch's talk four weeks ago:
Adding 1 in general numeration systems
vs. Adding t in base 2

Addition of 1

The (possibly empty) block of 1 s on the right of the binary expansion of n is replaced by 0 s , and the 0 to the left of the block is replaced by 1.

$$
\begin{equation*}
* 011 \cdots 1 \mapsto * 100 \cdots 0 \tag{1}
\end{equation*}
$$

Figure: The number of carries in the addition $n+1$

This is the ruler sequence $n \mapsto \nu_{2}(n+1)$, given by the exponent of two in the prime factorization of $n+1$.

The following picture is well known in countries using imperial units.

$t=2$ is similar: ε_{0} is unchanged and (1) is applied for the remaining digits.

The case $t \geq 3$

The fun begins. For $t=3$ we have the following cases:

$$
\begin{aligned}
* 00 & \mapsto * 11 ; & & * 01^{k} 01 \mapsto * 10^{k} 00 ; \\
* 01^{k} 10 & \mapsto * 10^{k} 01 ; & & * 01^{k} 11 \mapsto * 10^{k} 10 .
\end{aligned}
$$

- Of course, we can find such a case distinction for each t in a straightforward way. This describes the situation for any given t completely.
- However: for growing t, we obtain long case distinctions. A structural principle describing these cases is unavailable.
- This is of course due to carry propagation. Carries can propagate through many blocks of 1 , and many cases occur.

The case $t \geq 3$

The fun begins. For $t=3$ we have the following cases:

$$
\begin{aligned}
* 00 & \mapsto * 11 ; & & * 01^{k} 01 \mapsto * 10^{k} 00 ; \\
* 01^{k} 10 & \mapsto * 10^{k} 01 ; & & * 01^{k} 11 \mapsto * 10^{k} 10 .
\end{aligned}
$$

- Of course, we can find such a case distinction for each t in a straightforward way. This describes the situation for any given t completely.
- However: for growing t, we obtain long case distinctions. A structural principle describing these cases is unavailable.
- This is of course due to carry propagation. Carries can propagate through many blocks of 1 , and many cases occur.

The case $t \geq 3$

The fun begins. For $t=3$ we have the following cases:

$$
\begin{aligned}
* 00 & \mapsto * 11 ; & & * 01^{k} 01 \mapsto * 10^{k} 00 ; \\
* 01^{k} 10 & \mapsto * 10^{k} 01 ; & & * 01^{k} 11 \mapsto * 10^{k} 10 .
\end{aligned}
$$

- Of course, we can find such a case distinction for each t in a straightforward way. This describes the situation for any given t completely.
- However: for growing t, we obtain long case distinctions. A structural principle describing these cases is unavailable.
- This is of course due to carry propagation. Carries can propagate through many blocks of 1 , and many cases occur.

The case $t \geq 3$

The fun begins. For $t=3$ we have the following cases:

$$
\begin{aligned}
* 00 & \mapsto * 11 ; \\
* 01^{k} 10 & \mapsto * 10^{k} 01 ;
\end{aligned}
$$

$$
\begin{aligned}
& * 01^{k} 01 \mapsto * 10^{k} 00 ; \\
& * 01^{k} 11 \mapsto * 10^{k} 10 .
\end{aligned}
$$

- Of course, we can find such a case distinction for each t in a straightforward way. This describes the situation for any given t completely.
- However: for growing t, we obtain long case distinctions. A structural principle describing these cases is unavailable.
- This is of course due to carry propagation. Carries can propagate through many blocks of 1 , and many cases occur.

$$
\begin{array}{r}
11101001110110011 \\
+\quad 10110001001101
\end{array}
$$

An observation

We do not fully understand addition in base 2 .

It is difficult enough to consider the sum-of-digits function $s_{2}(n)$. We have the formula (Legendre)

$$
s_{2}(n+t)=s_{2}(n)+s_{2}(t)-\nu_{2}\left(\binom{n+t}{t}\right)
$$

The function s_{2} can be used to count the number of carries in $n+t$: a well-known relation due to Kummer is

$$
\nu_{2}\left(\binom{n+t}{t}\right)=\# \operatorname{carries}(n, t) .
$$

We forget the carry structure and only keep the number of carries.

An observation

We do not fully understand addition in base 2 .

It is difficult enough to consider the sum-of-digits function $s_{2}(n)$. We have the formula (Legendre)

$$
s_{2}(n+t)=s_{2}(n)+s_{2}(t)-\nu_{2}\left(\binom{n+t}{t}\right) .
$$

The function s_{2} can be used to count the number of carries in $n+t$: a well-known relation due to Kummer is

$$
\nu_{2}\left(\binom{n+t}{t}\right)=\# \operatorname{carries}(n, t)
$$

We forget the carry structure and only keep the number of carries.

An observation

We do not fully understand addition in base 2 .

It is difficult enough to consider the sum-of-digits function $s_{2}(n)$. We have the formula (Legendre)

$$
s_{2}(n+t)=s_{2}(n)+s_{2}(t)-\nu_{2}\left(\binom{n+t}{t}\right) .
$$

The function s_{2} can be used to count the number of carries in $n+t$: a well-known relation due to Kummer is

$$
\nu_{2}\left(\binom{n+t}{t}\right)=\# \operatorname{carries}(n, t)
$$

We forget the carry structure and only keep the number of carries.

The 2-valuation of binomial coefficients

Two examples

We have $s_{2}(n+1)-s_{2}(n)=1-\nu_{2}(n+1)$:

Summing three consecutive values, we obtain the case $t=3$.

What proportion of the graph is above the x-axis?
An apparently simple, unsolved conjecture is due to T. W. Cusick. Let $t \geq 0$ be an integer.

Is it true that, more often than not, we have $s_{2}(n+t) \geq s_{2}(n)$?
In symbols, we seek to prove $c_{t}>1 / 2$, where

$$
c_{t}=\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{0 \leq n<N: s_{2}(n+t) \geq s_{2}(n)\right\}\right|
$$

For example,

$$
\begin{aligned}
c_{1} & =3 / 4, \quad c_{21}=5 / 8, \quad c_{999}=37561 / 2^{16} \\
\min _{t \leq 2^{30}} c_{t} & =18169025645289 / 2^{45}=0.516 \ldots
\end{aligned}
$$

The latter minimum is attained at

$$
\begin{aligned}
t & =(111101111011110111101111011111)_{2} \text { and } \\
t^{R} & =(111110111101111011110111101111)_{2}
\end{aligned}
$$

What proportion of the graph is above the x-axis?
An apparently simple, unsolved conjecture is due to T. W. Cusick. Let $t \geq 0$ be an integer.

Is it true that, more often than not, we have $s_{2}(n+t) \geq s_{2}(n)$?
In symbols, we seek to prove $c_{t}>1 / 2$, where

$$
c_{t}=\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{0 \leq n<N: s_{2}(n+t) \geq s_{2}(n)\right\}\right|
$$

For example,

$$
\begin{aligned}
c_{1} & =3 / 4, \quad c_{21}=5 / 8, \quad c_{999}=37561 / 2^{16} \\
\min _{t \leq 2^{30}} c_{t} & =18169025645289 / 2^{45}=0.516 \ldots
\end{aligned}
$$

The latter minimum is attained at

$$
\begin{aligned}
t & =(111101111011110111101111011111)_{2} \text { and } \\
t^{R} & =(111110111101111011110111101111)_{2} .
\end{aligned}
$$

Densities for Cusick's conjecture

More generally, for integers $t \geq 0$ and j we define

$$
\delta(j, t)=\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{0 \leq n<N: s_{2}(n+t)-s_{2}(n)=j\right\}\right| .
$$

- The densities $\delta(j, t)$ give us a probability distribution on \mathbb{Z} for each t.

Densities for Cusick's conjecture

More generally, for integers $t \geq 0$ and j we define

$$
\delta(j, t)=\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{0 \leq n<N: s_{2}(n+t)-s_{2}(n)=j\right\}\right| .
$$

- The densities $\delta(j, t)$ give us a probability distribution on \mathbb{Z} for each t.

$t=1$

$t=21$

$$
t=999
$$

A two-dimensional recurrence

The array δ satisfies the recurrence

$$
\begin{aligned}
\delta(k, 1) & = \begin{cases}0 & \text { for } k \geq 2 \\
2^{k-2} & \text { for } k \leq 1\end{cases} \\
\delta(j, 2 t) & =\delta(j, t) ; \\
\delta(j, 2 t+1) & =\frac{1}{2} \delta(j-1, t)+\frac{1}{2} \delta(j+1, t+1)
\end{aligned}
$$

This permits to compute $\delta(j, t)$ efficiently. In particular, $c_{t}>1 / 2$ for $t \leq 2^{30}$. (≈ 2 CPU hours, using a C program)

The first theorem

Let $M=M(t)$ be the number of blocks of 1 s in the binary expansion of t.
Theorem (S.-Wallner 2020+)
Set $A_{2}(1)=1$, and for $t \geq 1$ let $A_{2}(2 t)=A_{2}(t)$, and

$$
A_{2}(2 t+1)=\frac{A_{2}(t)+A_{2}(t+1)+1}{2}
$$

If M is larger than some absolute, effective constant M_{0}, we have

$$
\delta(j, t)=\frac{1}{\sqrt{4 \pi A_{2}(t)}} \exp \left(-\frac{j^{2}}{4 A_{2}(t)}\right)+\mathcal{O}\left(\frac{(\log M)^{4}}{M}\right)
$$

for all integers j. The implied constant is absolute.

This improves on a theorem by Emme and Hubert (2018).

A corollary

The number M of blocks of 1 s in t satisfies $M \asymp A_{2}(t)$, the width of the normal distribution is therefore $\asymp \sqrt{M}$. We obtain the following result.

Corollary

There exists an absolute constant $C>0$ with the following property. For all $t \geq 1$ we have

$$
c_{t} \geq 1 / 2-C(\log M)^{5} M^{-1 / 2}
$$

where M is the number of blocks of 1 s in t.

The second theorem

Again, let $M=M(t)$ be the number of blocks of 1 s in t.
Theorem (S.-Wallner 2020+)
Let $t \geq 1$. If $M(t)$ is larger than some absolute, effective constant M_{1}, then $c_{t}>1 / 2$.

Cusick: "Your paper reduces my conjecture to what I will call the 'hard cases' [...]" \longrightarrow more work to do! \square

The second theorem

Again, let $M=M(t)$ be the number of blocks of 1 s in t.
Theorem (S.-Wallner 2020+)
Let $t \geq 1$. If $M(t)$ is larger than some absolute, effective constant M_{1}, then $c_{t}>1 / 2$.

Cusick: "Your paper reduces my conjecture to what I will call the 'hard cases' $[\ldots]$]. \longrightarrow more work to do! ${ }^{〔!\{ }$

The second theorem

Again, let $M=M(t)$ be the number of blocks of 1 s in t.
Theorem (S.-Wallner 2020+)
Let $t \geq 1$. If $M(t)$ is larger than some absolute, effective constant M_{1}, then $c_{t}>1 / 2$.

Cusick: "Your paper reduces my conjecture to what I will call the 'hard cases' $[\ldots]$]. \longrightarrow more work to do! $\xrightarrow{\text { ! }\}}$

easier

Method of proof of the theorems

Consider the characteristic function (writing $\mathrm{e}(x)=\exp (2 \pi i x)$)

$$
\gamma_{t}(\vartheta)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{0 \leq n<N} \mathrm{e}\left(\vartheta s_{2}(n+t)-\vartheta s_{2}(n)\right)=\sum_{j \in \mathbb{Z}} \delta(j, t) \mathrm{e}(j \vartheta)
$$

For each ϑ, we have the one-dimensional recurrence

$$
\begin{aligned}
\gamma_{1}(\vartheta) & =\frac{\mathrm{e}(\vartheta)}{2-\mathrm{e}(-\vartheta)} \\
\gamma_{2 t}(\vartheta) & =\gamma_{t}(\vartheta) ; \\
\gamma_{2 t+1}(\vartheta) & =\frac{\mathrm{e}(\vartheta)}{2} \gamma_{t}(\vartheta)+\frac{\mathrm{e}(-\vartheta)}{2} \gamma_{t+1}(\vartheta) .
\end{aligned}
$$

Note that $\gamma_{t}(0)=1$; it follows that $\operatorname{Re} \gamma_{t}(x)>0$ in a disk $D_{t}(0)$, and we can consider $\log \gamma_{t}(x)$ on $D_{t}(\longrightarrow$ "cumulant generating function".)

Method of proof of the theorems

Consider the characteristic function (writing $\mathrm{e}(x)=\exp (2 \pi i x)$)

$$
\gamma_{t}(\vartheta)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{0 \leq n<N} \mathrm{e}\left(\vartheta s_{2}(n+t)-\vartheta s_{2}(n)\right)=\sum_{j \in \mathbb{Z}} \delta(j, t) \mathrm{e}(j \vartheta)
$$

For each ϑ, we have the one-dimensional recurrence

$$
\begin{aligned}
\gamma_{1}(\vartheta) & =\frac{\mathrm{e}(\vartheta)}{2-\mathrm{e}(-\vartheta)} \\
\gamma_{2 t}(\vartheta) & =\gamma_{t}(\vartheta) \\
\gamma_{2 t+1}(\vartheta) & =\frac{\mathrm{e}(\vartheta)}{2} \gamma_{t}(\vartheta)+\frac{\mathrm{e}(-\vartheta)}{2} \gamma_{t+1}(\vartheta)
\end{aligned}
$$

Note that $\gamma_{t}(0)=1$; it follows that $\operatorname{Re} \gamma_{t}(x)>0$ in a disk $D_{t}(0)$, and we can consider $\log \gamma_{t}(x)$ on $D_{t}(\longrightarrow$ "cumulant generating function".)

Method of proof of the theorems

We have $\gamma_{t}(\vartheta)=1+\mathcal{O}\left(\vartheta^{2}\right)$, therefore

$$
\gamma_{t}(\vartheta)=\exp \left(-\sum_{j \geq 2} A_{j}(t)(2 \pi \vartheta)^{j}\right)
$$

for some $A_{j}(t) \in \mathbb{C}$ and all $\vartheta \in D_{t}$.

- Up to multiplication by i^{j}, the values $A_{j}(t)$ are the cumulants of $\delta(\cdot, t)$.
\Rightarrow We abbreviate $a_{j}=A_{j}(t), b_{j}=A_{j}(t+1), c_{j}=A_{j}(2 t+1)$. The recurrence for γ_{t} gives
$\exp \left(-c_{2} \vartheta^{2}-c_{3} \vartheta^{3}-\cdots\right)=\frac{1}{2} \exp \left(i \vartheta-a_{2} \vartheta^{2}-a_{3} \vartheta^{3}-\cdots\right)$ $+\frac{1}{2} \exp \left(-i \vartheta-b_{2} \vartheta^{2}-b_{3} \vartheta^{3}-\cdots\right)$,

valid for ϑ in a certain disk.

Method of proof of the theorems

We have $\gamma_{t}(\vartheta)=1+\mathcal{O}\left(\vartheta^{2}\right)$, therefore

$$
\gamma_{t}(\vartheta)=\exp \left(-\sum_{j \geq 2} A_{j}(t)(2 \pi \vartheta)^{j}\right)
$$

for some $A_{j}(t) \in \mathbb{C}$ and all $\vartheta \in D_{t}$.

- Up to multiplication by i^{j}, the values $A_{j}(t)$ are the cumulants of $\delta(\cdot, t)$.
- We abbreviate $a_{j}=A_{j}(t), b_{j}=A_{j}(t+1), c_{j}=A_{j}(2 t+1)$. The recurrence for γ_{t} gives

$$
\begin{aligned}
\exp \left(-c_{2} \vartheta^{2}-c_{3} \vartheta^{3}-\cdots\right) & =\frac{1}{2} \exp \left(i \vartheta-a_{2} \vartheta^{2}-a_{3} \vartheta^{3}-\cdots\right) \\
& +\frac{1}{2} \exp \left(-i \vartheta-b_{2} \vartheta^{2}-b_{3} \vartheta^{3}-\cdots\right),
\end{aligned}
$$

valid for ϑ in a certain disk.

Comparing coefficients

We obtain a recurrence for the cumulants:

$$
\begin{aligned}
& c_{2}=\frac{a_{2}+b_{2}}{2}+\frac{1}{2} ; \\
& c_{3}=\frac{a_{3}+b_{3}}{2}+i \frac{a_{2}-b_{2}}{2} ; \\
& c_{4}=\frac{a_{4}+b_{4}}{2}+i \frac{a_{3}-b_{3}}{2}-\frac{\left(a_{2}-b_{2}\right)^{2}}{8}+\frac{1}{12} ; \\
& c_{5}=\frac{a_{5}+b_{5}}{2}+i \frac{a_{4}-b_{4}}{2}-\frac{\left(a_{2}-b_{2}\right)\left(a_{3}-b_{3}\right)}{4}+i \frac{a_{2}-b_{2}}{6} .
\end{aligned}
$$

For the normal distribution result, we only have to consider A_{2}; for Cusick's conjecture, we also have to take A_{3}, A_{4}, A_{5} into account. This precision is necessary since the case $c_{t} \leq 1 / 2+M^{-3 / 2}$ can occur!

Comparing coefficients

We obtain a recurrence for the cumulants:

$$
\begin{aligned}
& c_{2}=\frac{a_{2}+b_{2}}{2}+\frac{1}{2} ; \\
& c_{3}=\frac{a_{3}+b_{3}}{2}+i \frac{a_{2}-b_{2}}{2} ; \\
& c_{4}=\frac{a_{4}+b_{4}}{2}+i \frac{a_{3}-b_{3}}{2}-\frac{\left(a_{2}-b_{2}\right)^{2}}{8}+\frac{1}{12} ; \\
& c_{5}=\frac{a_{5}+b_{5}}{2}+i \frac{a_{4}-b_{4}}{2}-\frac{\left(a_{2}-b_{2}\right)\left(a_{3}-b_{3}\right)}{4}+i \frac{a_{2}-b_{2}}{6} .
\end{aligned}
$$

For the normal distribution result, we only have to consider A_{2}; for Cusick's conjecture, we also have to take A_{3}, A_{4}, A_{5} into account. This precision is necessary since the case $c_{t} \leq 1 / 2+M^{-3 / 2}$ can occur!

Proof of the first theorem, I

We define the approximation

$$
\gamma_{t}^{\prime}(\vartheta)=\exp \left(-A_{2}(t)(2 \pi \vartheta)^{2}\right)
$$

as well as the error

$$
\widetilde{\gamma}_{t}(\vartheta)=\gamma_{t}(\vartheta)-\gamma_{t}^{\prime}(\vartheta) .
$$

Proposition

There exists an absolute constant C such that for all t having M blocks of 1 s and $|\vartheta| \leq \min \left(M^{-1 / 3}, 1 /(4 \pi)\right)$ we have

$$
\left|\widetilde{\gamma}_{t}(\vartheta)\right| \leq C M \vartheta^{3}
$$

Proposition

Assume that $t \geq 1$ has at least M blocks of $1 s$. Then for $|\vartheta| \leq 1 / 2$,

$$
\left|\gamma_{t}(\vartheta)\right| \ll \exp \left(-\frac{M \vartheta^{2}}{4}\right) .
$$

Proof of the first theorem, I

We define the approximation

$$
\gamma_{t}^{\prime}(\vartheta)=\exp \left(-A_{2}(t)(2 \pi \vartheta)^{2}\right)
$$

as well as the error

$$
\widetilde{\gamma}_{t}(\vartheta)=\gamma_{t}(\vartheta)-\gamma_{t}^{\prime}(\vartheta) .
$$

Proposition

There exists an absolute constant C such that for all t having M blocks of 1 s and $|\vartheta| \leq \min \left(M^{-1 / 3}, 1 /(4 \pi)\right)$ we have

$$
\left|\widetilde{\gamma}_{t}(\vartheta)\right| \leq C M \vartheta^{3}
$$

Proposition
Assume that $t \geq 1$ has at least M blocks of 1 s. Then for $|\vartheta| \leq 1 / 2$,

Proof of the first theorem, I

We define the approximation

$$
\gamma_{t}^{\prime}(\vartheta)=\exp \left(-A_{2}(t)(2 \pi \vartheta)^{2}\right)
$$

as well as the error

$$
\widetilde{\gamma}_{t}(\vartheta)=\gamma_{t}(\vartheta)-\gamma_{t}^{\prime}(\vartheta) .
$$

Proposition

There exists an absolute constant C such that for all t having M blocks of 1 s and $|\vartheta| \leq \min \left(M^{-1 / 3}, 1 /(4 \pi)\right)$ we have

$$
\left|\widetilde{\gamma}_{t}(\vartheta)\right| \leq C M \vartheta^{3}
$$

Proposition

Assume that $t \geq 1$ has at least M blocks of 1 s . Then for $|\vartheta| \leq 1 / 2$,

$$
\left|\gamma_{t}(\vartheta)\right| \ll \exp \left(-\frac{M \vartheta^{2}}{4}\right)
$$

Proof of the first theorem, II

Figure: Illustrating the propositions for $t=123$.

We combine these facts with the formula

$$
\delta(j, t)=\int_{-1 / 2}^{1 / 2} \gamma_{t}(\vartheta) \mathrm{e}(-j \vartheta) \mathrm{d} \vartheta
$$

After extending to a complete Gauss integral we obtain the statement of the theorem (with $\sqrt{\pi}$ and everything).

Recapturing the first theorem

Theorem (S.-Wallner 2020+)
Set $A_{2}(1)=1$, and for $t \geq 1$ let $A_{2}(2 t)=A_{2}(t)$, and

$$
A_{2}(2 t+1)=\frac{A_{2}(t)+A_{2}(t+1)+1}{2} .
$$

If M is larger than some absolute, effective constant M_{0}, we have

$$
\delta(j, t)=\frac{1}{\sqrt{4 \pi A_{2}(t)}} \exp \left(-\frac{j^{2}}{4 A_{2}(t)}\right)+\mathcal{O}\left(\frac{(\log M)^{4}}{M}\right)
$$

for all integers j. The implied constant is absolute.

Proof of the second theorem

For c_{t} we need a more precise asymptotic expansion, involving the cumulants $A_{2}(t), A_{3}(t), A_{4}(t)$, and $A_{5}(t)$ - we study a distorted normal distribution.
We use the approximation

$$
\gamma_{t}^{\prime}(\vartheta)=\exp \left(-\sum_{2 \leq j \leq 5} A_{j}(t)(2 \pi \vartheta)^{j}\right)
$$

and the error

$$
\widetilde{\gamma}_{t}(\vartheta)=\gamma_{t}(\vartheta)-\gamma_{t}^{\prime}(\vartheta) .
$$

As above, we have

$$
\left|\widetilde{\gamma}_{t}(\vartheta)\right| \leq C M \vartheta^{6} \text { for }|\vartheta| \leq \min \left(M^{-1 / 6}, 1 /(4 \pi)\right)
$$

with an absolute constant C.

Reconstructing c_{t}

- The values $c_{t}=\delta(0, t)+\delta(1, t)+\cdots$ are related to the CF $\gamma_{t}(\vartheta)$ by the formula

$$
c_{t}=\frac{1}{2}+\frac{\delta(0, t)}{2}+\frac{1}{2} \int_{-1 / 2}^{1 / 2} \operatorname{Im} \gamma_{t}(\vartheta) \cot (\pi \vartheta) \mathrm{d} \vartheta
$$

- Note that the third summand is zero if $\delta(-j, t)=\delta(j, t)$ for all j, and $c_{t}>1 / 2$ follows in this case.

Reconstructing c_{t}

- The values $c_{t}=\delta(0, t)+\delta(1, t)+\cdots$ are related to the CF $\gamma_{t}(\vartheta)$ by the formula

$$
c_{t}=\frac{1}{2}+\frac{\delta(0, t)}{2}+\frac{1}{2} \int_{-1 / 2}^{1 / 2} \operatorname{Im} \gamma_{t}(\vartheta) \cot (\pi \vartheta) \mathrm{d} \vartheta
$$

- Note that the third summand is zero if $\delta(-j, t)=\delta(j, t)$ for all j, and $c_{t}>1 / 2$ follows in this case.

Reconstructing c_{t}

- In this identity, we will replace γ_{t} by γ_{t}^{\prime}. We expand the exponential:

$$
\begin{aligned}
& \gamma_{t}^{\prime}(\vartheta)=\exp \left(-A_{2}(t)(\tau \vartheta)^{2}\right) \times\left(1-A_{3}(t)(\tau \vartheta)^{3}-A_{4}(t)(\tau \vartheta)^{4}-A_{5}(\tau \vartheta)^{5}\right. \\
& \left.\quad+\frac{1}{2} A_{3}(t)^{2}(\tau \vartheta)^{6}+A_{3}(t) A_{4}(t)(\tau \vartheta)^{7}-\frac{1}{6} A_{3}(t)^{3}(\tau \vartheta)^{9}\right)+\mathcal{O}(E)
\end{aligned}
$$

where $\tau=2 \pi$ and E is a certain error.

Reconstructing c_{t}

- Introducing complete Gauss integrals, this leads to an approximation of c_{t} :

$$
\begin{aligned}
c_{t}=\frac{1}{2}+ & \frac{1}{4 \sqrt{\pi}}\left(A_{2}^{-1 / 2}+i A_{2}^{-3 / 2} A_{3}+\frac{3}{4} A_{2}^{-5 / 2}\left(2 i A_{5}-A_{4}-\frac{i A_{3}}{6}\right)\right. \\
& \left.+\frac{15}{8} A_{2}^{-7 / 2}\left(\frac{A_{3}}{2}-2 i A_{4}\right) A_{3}+\frac{35}{16} i A_{2}^{-9 / 2} A_{3}^{3}\right)+\mathcal{O}(E) .
\end{aligned}
$$

- The red terms sometimes almost cancel. Therefore we need more cumulants!
- A closer look at the recurrences for A_{j} finishes the proof: for $c_{t}>1 / 2$ it is sufficient to have many blocks of 1 s in the binary expansion of t.

Reconstructing c_{t}

- Introducing complete Gauss integrals, this leads to an approximation of c_{t} :

$$
\begin{aligned}
c_{t}=\frac{1}{2}+ & \frac{1}{4 \sqrt{\pi}}\left(A_{2}^{-1 / 2}+i A_{2}^{-3 / 2} A_{3}+\frac{3}{4} A_{2}^{-5 / 2}\left(2 i A_{5}-A_{4}-\frac{i A_{3}}{6}\right)\right. \\
& \left.+\frac{15}{8} A_{2}^{-7 / 2}\left(\frac{A_{3}}{2}-2 i A_{4}\right) A_{3}+\frac{35}{16} i A_{2}^{-9 / 2} A_{3}^{3}\right)+\mathcal{O}(E) .
\end{aligned}
$$

- The red terms sometimes almost cancel. Therefore we need more cumulants!
- A closer look at the recurrences for A_{j} finishes the proof: for $c_{t}>1 / 2$ it is sufficient to have many blocks of 1 s in the binary expansion of t.

Reconstructing c_{t}

- Introducing complete Gauss integrals, this leads to an approximation of c_{t} :

$$
\begin{aligned}
c_{t}=\frac{1}{2}+ & \frac{1}{4 \sqrt{\pi}}\left(A_{2}^{-1 / 2}+i A_{2}^{-3 / 2} A_{3}+\frac{3}{4} A_{2}^{-5 / 2}\left(2 i A_{5}-A_{4}-\frac{i A_{3}}{6}\right)\right. \\
& \left.+\frac{15}{8} A_{2}^{-7 / 2}\left(\frac{A_{3}}{2}-2 i A_{4}\right) A_{3}+\frac{35}{16} i A_{2}^{-9 / 2} A_{3}^{3}\right)+\mathcal{O}(E) .
\end{aligned}
$$

- The red terms sometimes almost cancel. Therefore we need more cumulants!
- A closer look at the recurrences for A_{j} finishes the proof: for $c_{t}>1 / 2$ it is sufficient to have many blocks of 1 s in the binary expansion of t.

The message

1. Adding a constant usually changes the binary sum of digits according to a normal law.
2. The sum of digits (weakly) increases more often than not under addition of a constant.

Moments and cumulants

- In a recently accepted paper I proved the following result.

Theorem (S. 2020+)
Let $\varepsilon>0$. There exists an $M_{0}=M_{0}(\varepsilon)$ such that for $t \geq 0$ having at least M_{0} blocks of 1 s, we have $c_{t}>1 / 2-\varepsilon$.

- This is weaker than the corollary to our normal distribution-result!
- The proof uses estimates for the moments of $\delta(j, t)$,

$$
m_{k}(t)=\sum_{j \in \mathbb{Z}} \delta(j, t) j^{k}
$$

Depending on ε, an increasing number of moments is used.

- Introducing the logarithm of the CF, we only need the variance for proving the above theorem, and only four cumulants for the new result.

Moments and cumulants

- In a recently accepted paper I proved the following result.

Theorem (S. 2020+)
Let $\varepsilon>0$. There exists an $M_{0}=M_{0}(\varepsilon)$ such that for $t \geq 0$ having at least M_{0} blocks of 1 s, we have $c_{t}>1 / 2-\varepsilon$.

- This is weaker than the corollary to our normal distribution-result!
- The proof uses estimates for the moments of $\delta(j, t)$,

$$
m_{k}(t)=\sum_{j \in \mathbb{Z}} \delta(j, t) j^{k}
$$

Depending on ε, an increasing number of moments is used.

- Introducing the logarithm of the CF, we only need the variance for proving the above theorem, and only four cumulants for the new result.

Moments and cumulants

- In a recently accepted paper I proved the following result.

Theorem (S. 2020+)
Let $\varepsilon>0$. There exists an $M_{0}=M_{0}(\varepsilon)$ such that for $t \geq 0$ having at least M_{0} blocks of 1 s , we have $c_{t}>1 / 2-\varepsilon$.

- This is weaker than the corollary to our normal distribution-result!
- The proof uses estimates for the moments of $\delta(j, t)$,

$$
m_{k}(t)=\sum_{j \in \mathbb{Z}} \delta(j, t) j^{k}
$$

Depending on ε, an increasing number of moments is used.

- Introducing the logarithm of the CF, we only need the variance for proving the above theorem, and only four cumulants for the new result.

Moments and cumulants

- In a recently accepted paper I proved the following result.

Theorem (S. 2020+)
Let $\varepsilon>0$. There exists an $M_{0}=M_{0}(\varepsilon)$ such that for $t \geq 0$ having at least M_{0} blocks of 1 s, we have $c_{t}>1 / 2-\varepsilon$.

- This is weaker than the corollary to our normal distribution-result!
- The proof uses estimates for the moments of $\delta(j, t)$,

$$
m_{k}(t)=\sum_{j \in \mathbb{Z}} \delta(j, t) j^{k}
$$

Depending on ε, an increasing number of moments is used.

- Introducing the logarithm of the CF, we only need the variance for proving the above theorem, and only four cumulants for the new result.

Rows in Pascal's triangle

The densities $\delta(j, t)$ are concerned with columns in Pascal's triangle. The rows behave similar with respect to p-valuation (the picture is invariant under rotation by $2 \pi / 3$), but they are finite.
Let j and t be nonnegative integers and set

$$
\Theta(j, t)=\left|\left\{\ell \in\{0, \ldots, t\}: 2^{j+1} \nmid\binom{t}{\ell}\right\}\right| .
$$

For brevity, we extend $\Theta(\cdot, t)$ to \mathbb{R} by setting $\Theta(j, t)=0$ for $j<0$ and $\Theta(x, t)=\Theta(\lfloor x\rfloor, t)$.
Theorem (S.-Wallner 2018)
Assume that $\varepsilon>0$ and $\lambda>0$ is an integer. We set $I_{\lambda}=\left[2^{\lambda}, 2^{\lambda+1}\right)$. Then

where the implied constant may depend on ε.

Rows in Pascal's triangle

The densities $\delta(j, t)$ are concerned with columns in Pascal's triangle. The rows behave similar with respect to p-valuation (the picture is invariant under rotation by $2 \pi / 3$), but they are finite.
Let j and t be nonnegative integers and set

$$
\Theta(j, t)=\left|\left\{\ell \in\{0, \ldots, t\}: 2^{j+1} \nmid\binom{t}{\ell}\right\}\right| .
$$

For brevity, we extend $\Theta(\cdot, t)$ to \mathbb{R} by setting $\Theta(j, t)=0$ for $j<0$ and $\Theta(x, t)=\Theta(\lfloor x\rfloor, t)$.
Theorem (S.-Wallner 2018)
Assume that $\varepsilon>0$ and $\lambda>0$ is an integer. We set $I_{\lambda}=\left[2^{\lambda}, 2^{\lambda+1}\right)$. Then

$$
\left|\left\{t \in I_{\lambda}: \sup _{u \in \mathbb{R}}\left|\frac{\Theta_{2}\left(\lambda-s_{2}(t)+u, t\right)}{t+1}-\Phi\left(\frac{u}{\sqrt{\lambda}}\right)\right| \geq \varepsilon\right\}\right|=\mathcal{O}\left(\frac{2^{\lambda}}{\sqrt{\lambda}}\right),
$$

where the implied constant may depend on ε.

SW2018 in a nutshell

The normal distribution appears in Pascal's triangle - not only in the size of the coefficients, but also in their 2valuation.

Possible extensions

- We hope to prove a sharpening of this theorem by means of cumulants too.
- Cusick proposed his conjecture when he was working on the related Tu-Deng conjecture relevant in cryptography. Let k be a positive integer and $1 \leq t<2^{k}-1$. Then the conjecture states that

$$
\begin{aligned}
\mid\left\{(a, b) \in\left\{0, \ldots, 2^{k}-2\right\}^{2}:\right. & a+b \equiv t \bmod 2^{k}-1 \\
& \left.s_{2}(a)+s_{2}(b)<k\right\} \mid \leq 2^{k-1}
\end{aligned}
$$

and is open. Together with Wallner we proved that this conjecture is true in an asymptotic sense, and that it implies Cusick's conjecture.
\longrightarrow We want to transfer our method to this situation. \qquad

Possible extensions

- We hope to prove a sharpening of this theorem by means of cumulants too. $\underbrace{〔 \mid \xi}$
- Cusick proposed his conjecture when he was working on the related Tu-Deng conjecture relevant in cryptography. Let k be a positive integer and $1 \leq t<2^{k}-1$. Then the conjecture states that

$$
\begin{aligned}
& \mid\left\{(a, b) \in\left\{0, \ldots, 2^{k}-2\right\}^{2}: a+b \equiv t \bmod 2^{k}-1\right. \\
&\left.s_{2}(a)+s_{2}(b)<k\right\} \mid \leq 2^{k-1}
\end{aligned}
$$

and is open. Together with Wallner we proved that this conjecture is true in an asymptotic sense, and that it implies Cusick's conjecture.
\longrightarrow We want to transfer our method to this situation. $\underbrace{4\}}$

Possible extensions

What about adding t repeatedly? Together with T. Stoll we proved the following theorem.

Theorem (S.-Stoll 2020)
Assume that $k_{1}, \ldots, k_{m} \in \mathbb{Z}$. There exist n and t such that for $1 \leq \ell \leq m$,

$$
k_{\ell}=s_{2}(n+\ell t)-s_{2}(n)
$$

\longrightarrow Every finite sequence of integers, modulo a shift $\sigma \in \mathbb{Z}$, appears as an arithmetic subsequence of s_{2}.

This generalizes the theorem "The Thue-Morse sequence has full arithmetic complexity": any finite sequence of 0 s and 1 s appears as an arithmetic subsequence of the Thue-Morse sequence (proved by Avgustinovich, Fon-Der-Flaass, and Frid (2000)).

Possible extensions

What about adding t repeatedly? Together with T. Stoll we proved the following theorem.

Theorem (S.-Stoll 2020)
Assume that $k_{1}, \ldots, k_{m} \in \mathbb{Z}$. There exist n and t such that for $1 \leq \ell \leq m$,

$$
k_{\ell}=s_{2}(n+\ell t)-s_{2}(n)
$$

\longrightarrow Every finite sequence of integers, modulo a shift $\sigma \in \mathbb{Z}$, appears as an arithmetic subsequence of s_{2}.

This generalizes the theorem "The Thue-Morse sequence has full arithmetic complexity": any finite sequence of 0 s and 1 s appears as an arithmetic subsequence of the Thue-Morse sequence (proved by Avgustinovich, Fon-Der-Flaass, and Frid (2000)).

Possible extensions

$\xrightarrow{43}$ Study the asymptotic densities

$$
\delta\left(k_{1}, \ldots, k_{m}, t\right)=\operatorname{dens} \mid\left\{n: s_{2}(n+\ell t)-s_{2}(n)=k_{\ell} \text { for } 1 \leq \ell \leq m\right\} \mid
$$

and prove multidimensional generalizations of Cusick's conjecture and the limit law.

Possible conjectures involve multidimensional Gaussians and tuples $\left(s_{2}(n+\ell t)\right)_{0 \leq \ell \leq m}$ in certain quadrants, octants,... (see [S.-Stoll 2020]).

Thank you!

${ }^{1}$ Supported by the Austrian Science Fund (FWF), Projects F55 and MuDeRa (jointly with ANR).
Lukas Spiegelhofer (TU Wien/MU Leoben)
The digits of $n+t$
December 15, 2020

[^0]: ${ }^{1}$ This talk is about joint work with Michael Wallner (TU Wien)

