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The basic question
We write n in base 2:

n = ε020 + ε121 + ε222 + · · ·+ εν2ν ,

where εj ∈ {0, 1}. The vector (εj)j≥0 is the binary expansion of n.

Base ten Base two
0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000

Central question:

What happens to the binary
expansion of n when a con-
stant t is added?

+t

+t
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There is no final answer yet

The (slightly provocative) answer is

“Addition in base 2 is not fully understood”.

The appearance of carries in the addition n + t causes many cases to be
distinguished, and a structural result describing these cases is not available.

11101001110110011

+ 10110001001101

Questions of this kind have strong connections to computer science and
are relevant in cryptography.
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Addition of 1

The (possibly empty) block of 1s on the right of the binary expansion of n
is replaced by 0s, and the 0 to the left of the block is replaced by 1.

∗ 011 · · · 1 7→ ∗100 · · · 0 (1)

Figure: The number of carries in the addition n + 1

This is the ruler sequence n 7→ ν2(n + 1), given by the exponent of two in
the prime factorization of n + 1.
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The ruler sequence

The following picture is well known in countries using imperial units.
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The case t ≥ 3

For t = 3 we have the following cases:

∗00 7→ ∗11; ∗01k01 7→ ∗10k00;

∗01k10 7→ ∗10k01; ∗01k11 7→ ∗10k10.

This situation does not get better with growing t. Carries can propagate
through many blocks of 1, and many cases occur.
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The binary sum-of-digits function

To simplify things, we consider the binary sum-of-digits function s. The
integer s(n) is the minimal number of powers of 2 needed to write n as
their sum.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s(n) 0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4

The POPCNT instruction on modern microprocessors returns the binary sum
of digits of an integer n ∈ {0, 264 − 1}.
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Cusick’s conjecture

Our first question is a special case of the main theme “What happens to
the binary expansion in the addition n + t?”.

Does the sum of digits usually increase when a constant is added?

T. W. Cusick conjectured that ct > 1/2, where ct is the asymptotic
density of natural numbers n such that s(n + t) ≥ s(n).

This conjecture is (surprisingly!) difficult and open since its introduction in
2011. It derives from the more general conjecture by Tu and Deng, which
has its origins in cryptography.
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Examples
Setting t = 1 we see that(

s(n + t)− s(n)
)
n

=
(
1, 0, 1,−1, 1, 0, 1,−2, 1, 0, 1,−1, 1, 0, 1,−3, . . .

)
,

which is nonnegative in 3 out of 4 cases. That is, c1 = 3/4.

More values:

c3 = 11/16, c999 = 37561/216,

min
t≤230

ct = 18169025645289/245 = 0.516 . . . .
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An “almost solution” to the conjecture

Theorem (S.–Wallner 2021+)

Assume that the positive integer t has at least M blocks of ones in its
binary expansion (where M is an absolute, effective constant). Then
ct > 1/2.

Cusick: “Your paper reduces my conjecture to what I will call the ‘hard

cases’ [. . . ]”. −→ more work to do!
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SW2021 in a nutshell

Apart from a small set of exceptions t ∈ N, the following is true.

The binary sum of digits, more often than not, (weakly) increases
when a constant t is added.

The difference s(n + t)− s(n) basically gives the number of carries
that appear in the addition n + t in binary. Moreover, we have

s(n + t)− s(n) = s(t)− ν2
((

n + t

t

))
,

where ν2(m) = max{k ≥ 0 : 2k | m}.

Lukas Spiegelhofer (MU Leoben) The base-2 expansion along arithmetic progressions March 24, 2021 11 / 25



SW2021 in a nutshell

Apart from a small set of exceptions t ∈ N, the following is true.

The binary sum of digits, more often than not, (weakly) increases
when a constant t is added.

The difference s(n + t)− s(n) basically gives the number of carries
that appear in the addition n + t in binary. Moreover, we have

s(n + t)− s(n) = s(t)− ν2
((

n + t

t

))
,

where ν2(m) = max{k ≥ 0 : 2k | m}.

Lukas Spiegelhofer (MU Leoben) The base-2 expansion along arithmetic progressions March 24, 2021 11 / 25



SW2021 in a nutshell

Apart from a small set of exceptions t ∈ N, the following is true.

The binary sum of digits, more often than not, (weakly) increases
when a constant t is added.

The difference s(n + t)− s(n) basically gives the number of carries
that appear in the addition n + t in binary. Moreover, we have

s(n + t)− s(n) = s(t)− ν2
((

n + t

t

))
,

where ν2(m) = max{k ≥ 0 : 2k | m}.

Lukas Spiegelhofer (MU Leoben) The base-2 expansion along arithmetic progressions March 24, 2021 11 / 25



The 2-valuation of binomial coefficients

Rule: “Put a discrete Sierpiński triangle of the next color and of maximal
size into each triangular hole.”
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A normal distribution

Theorem (S.–Wallner 2021+)

Let t ≥ 0. The probability mass function δt on Z defined by the
differences s(n + t)− s(n) uniformly approaches a Gaussian as the number
of blocks of ones in t grows.

In other words, a normal distribution can be found in the number of carries
appearing in binary addition.

t = 999 t = 1023 − 1

Lukas Spiegelhofer (MU Leoben) The base-2 expansion along arithmetic progressions March 24, 2021 13 / 25



A normal distribution

Theorem (S.–Wallner 2021+)

Let t ≥ 0. The probability mass function δt on Z defined by the
differences s(n + t)− s(n) uniformly approaches a Gaussian as the number
of blocks of ones in t grows.

In other words, a normal distribution can be found in the number of carries
appearing in binary addition.

t = 999 t = 1023 − 1

Lukas Spiegelhofer (MU Leoben) The base-2 expansion along arithmetic progressions March 24, 2021 13 / 25



The Thue–Morse sequence

The parity of the number of ones in the binary expansion yields the
Thue–Morse sequence

tm = 01101001100101101001011001101001 . . .

In many CPUs, the parity flag gives the first 28 terms of this sequence.
The sequence tm is an automatic sequence and as such can be defined via
a uniform morphism on a finite alphabet: Let us define

ϕ : 0 7→ 01, 1 7→ 10.

Starting with 0, we obtain

0 7→ 01 7→ 0110 7→ 01101001 · · ·
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The factor complexity of tm

There are only very few words over {0, 1} appearing as factors (contiguous
finite subsequences) of tm: the number of factors of length L appearing in
tm is bounded by CL with an absolute constant C .

p(L) 2L

1 1
2 2
4 4
6 8

10 16
12 32
16 64
20 128
22 256
24 512
28 1024
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The arithmetic complexity of tm

This situation changes completely when we consider subsequences of tm.
First, arithmetic subsequences, corresponding to repeated addition of t.

Avgustinovich, Fon-Der-Flaass, and Frid (2003) proved that every finite
sequence A ∈ {0, 1}L appears as an arithmetic subsequence of tm!

“The Thue–Morse sequence has

{
low factor complexity

full arithmetic complexity

}
”
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Construction of a normal number

Together with Müllner we generalized this result in a quantitative way.
Very roughly speaking, every sequence A ∈ {0, 1}L is found with (almost)
the same frequency 2−L as a factor of most arithmetic subsequences of tm.
This allowed us to prove the following result.

Theorem (Müllner–S. 2017)

Let 1 < c < 3/2. Then the sequence B defined by

n 7→ tm
(
bncc

)
is normal, meaning that every finite sequence A ∈ {0, 1}L appears in B
with asymptotic density 2−L.
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Very sparse arithmetic subsequences of tm

We know that arbitrarily long sequences of 0s appear as arithmetic
subsequences of tm. However, for “most” arithmetic subsequences A, the
number of 0s and 1s will be balanced.

Theorem (S. 2020 )

The Thue–Morse sequence has level of distribution 1.

Without taking care of the details, this theorem states the following.

For all ρ > 0, most arithmetic subsequences A of tm having N ele-
ments and common difference � Nρ have about the same number
of 0s and 1s.
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Possible extensions and open problems

Prove that tm(bncc) defines a normal sequence for all c ∈ (1, 2).

Study the sum of digits in different bases: For α, β ∈ R \ Z, the
function n 7→ αs2(n) + βs3(n) should have level of distribution 1. Such a
result can be used for obtaining theorems on prime numbers in different
bases.

Prove that there are infinitely many integers n such that
s2(n) = s3(n).

Prove that the Thue–Morse sequence along n3 attains 0
and 1 with frequency 1/2 each (n2: Mauduit–Rivat, Acta Math. 2009)
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Arithmetic subsequences of s
Another generalization of the statement “every finite sequence in {0, 1}
appears as an arithmetic subsequence of tm” is the following.

Theorem (S.–Stoll 2020)

Let k1, . . . , kL be integers. There exists an arithmetic progression
(a0, . . . , aL) in N such that for all 1 ≤ ` ≤ L,

s(a`)− s(a0) = k`.

For example,
s(n + t)− s(n) = 1,

s(n + 2t)− s(n) = 2,
s(n + 3t)− s(n) = 3,
s(n + 4t)− s(n) = 4,
s(n + 5t)− s(n) = −2,

for n = 242 and t = 387.
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Possible extensions

Study the asymptotic density of integers n such that

s(n + t)− s(n) = k1

s(n + 2t)− s(n) = k2

. . .

s(n + Lt)− s(n) = kL

and prove multidimensional generalizations of Cusick’s conjecture and the
limit law.

Possible conjectures involve multidimensional Gaussians and tuples
(s(n + `t))0≤`≤L in certain quadrants, octants,. . . .
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Other digital expansions

Mauduit and Rivat proved (in particular) that there exist infinitely many
prime numbers p such that tm(p) = 0. (Ann. of Math. 2010)
It has been a long standing question to prove such a result for the
Zeckendorf sum-of-digits function. More precisely: every nonnegative
integer n can be written as a sum of Fibonacci numbers; the minimal
number of summands needed is the Zeckendorf sum-of-digits Z (n).

83 = 55 + 21 + 5 + 2

In a forthcoming paper with Drmota and Müllner we prove the following
results.

Theorem (Drmota–Müllner–S. 2021+)

The function Z evaluated on prime numbers is uniformly distributed in
residue classes.
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Work in preparation, continued

Theorem (DMS 2021+)

If k is greater than some absolute bound (which can be stated explicitly),
then there is a prime number p that is the sum of k different Fibonacci
numbers.

Generalizations of the method of proof are possible for other numeration
systems, e.g. β-expansions, rational base number systems,. . . .
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Thank you!
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