The level of distribution of the Thue-Morse sequence

Lukas Spiegelhofer

\int MONTAN

March 21, 2022, Rencontres de théorie analytique et élémentaire des nombres

The basic question

Let $q \geq 2$ be an integer. We know the base- q expansion of $n \in \mathbb{N}$:

$$
n=\delta_{0} q^{0}+\delta_{1} q^{1}+\delta_{2} q^{2}+\cdots+\delta_{L-1} q^{L-1}
$$

where $\left(\delta_{j}\right)_{0 \leq j<L} \in\{0, \ldots, q-1\}^{L}$ and $\left(L=0\right.$ or $\left.\delta_{L-1} \neq 0\right)$, and we write

$$
[n]_{q}:=\left(\delta_{L-1}, \delta_{\nu-1}, \ldots, \delta_{0}\right)
$$

The level of distribution is concerned with arithmetic progressions, which in turn are given by repeated addition of a constant.

> What happens to the base-q expansion of $n \in \mathbb{N}$ when a constant $d \in \mathbb{N}$ is added?

Carry propagation

Consider, for example, the following additions in base 2.

11101001110110011
$+\quad 10110001001101$
$=100000000000000000$.

11101001100110011
$+\quad 10110001001101$
$=11111111110000000$.

$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

$$
\begin{array}{r}
1110111101110110 \\
+\quad 10110001001101 \\
\hline=10001101111000011 . \\
\uparrow \uparrow \uparrow \uparrow \uparrow \quad \uparrow \uparrow \uparrow \uparrow \uparrow
\end{array}
$$

	12
(digit sum)	
+	7

The appearance of carries in the addition $n+t$ causes many cases to be distinguished.

Addition of 1

The (possibly empty) block of 1 s on the right of the binary expansion of n is replaced by 0 s , and the 0 to the left of the block is replaced by 1.

$$
\begin{equation*}
* 011 \cdots 1 \mapsto * 100 \cdots 0 \tag{1}
\end{equation*}
$$

Figure: The number of carries in the addition $n+1$

This is the ruler sequence $n \mapsto \nu_{2}(n+1)$, given by the 2 -valuation $\nu_{2}(n+1)$.

The ruler sequence

The following picture is well known in countries using imperial units.

The case $t \geq 3$

For $d=3$ we have the following cases:

$$
\begin{aligned}
* 00 & \mapsto * 11 ; \\
* 01^{k} 10 & \mapsto * 10^{k} 01 ;
\end{aligned}
$$

$$
\begin{aligned}
& * 01^{k} 01 \mapsto * 10^{k} 00 ; \\
& * 01^{k} 11 \mapsto * 10^{k} 10 .
\end{aligned}
$$

This situation does not get better with growing d. Carries can propagate through many blocks of 1 , and many cases occur.

The binary sum-of-digits function

As first step (in the quest of better understanding the base- q expansion) we consider the base- q sum-of-digits function s_{q}. The integer $s_{q}(n)$ is the minimal number of powers of q needed to write n as their sum.

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\mathrm{~s}_{2}(n)$	0	1	1	2	1	2	2	3	1	2	2	3	2	3	3	4

The POPCNT instruction on modern microprocessors returns the binary sum of digits of an integer $n \in\left\{0,2^{64}-1\right\}$ within ~ 1 ns.

The sum-of-digits function under addition

We have the important identity (Legendre)

$$
\mathrm{s}_{2}(n)+\mathrm{s}_{2}(d)=\mathrm{s}_{2}(n+d)+\nu_{2}\left(\binom{n+d}{d}\right) \nu_{2}\left(\binom{n+d}{d}\right)
$$

where the 2 -valuation $\nu_{2}\left(\binom{n+d}{d}\right)$ equals the number of carries carries that appear in the addition $n+d$ in binary.
Let us define

$$
\delta(j, d):=\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{0 \leq n<N: s_{2}(n+d)-s_{2}(n)=j\right\}
$$

T. W. Cusick conjectured that

$$
c_{d}:=\delta(0, d)+\delta(1, d)+\cdots>1 / 2
$$

SW2021

In other words,
When a constant d is added, does the binary sum of digits of n weakly increase, more often than not?

Theorem (S.-Wallner 2021, Ann. Scuola Norm. Sup. Pisa CI. Sci.) Assume that the positive integer d has at least M blocks of ones in its binary expansion (where M is an absolute constant). Then $c_{d}>1 / 2$.
The remaining cases - few blocks of 1s — are the 'hard cases' according to Cusick, and the interesting ones for applications
\longrightarrow more work to do!

The Thue-Morse sequence

The parity of the number of ones in the binary expansion yields the Thue-Morse sequence

$$
\mathrm{T}=\left(\mathrm{s}_{2}(n) \bmod 2\right)_{n \geq 0}=01101001100101101001011001101001 \cdots
$$

The sequence T is an automatic sequence and as such can be defined via a uniform morphism on a finite alphabet: Let us define

$$
\varphi: 0 \mapsto 01, \quad 1 \mapsto 10
$$

Starting with 0 , we obtain

$$
0 \mapsto 01 \mapsto 0110 \mapsto 01101001 \ldots
$$

The behaviour of the Thue-Morse sequence under addition

Let us define

$$
\tau(n):=(-1)^{\mathrm{s}_{2}(n)}=1-2 \mathrm{~T}(n)=(1,-1,-1,1,-1,1,1,-1, \ldots)
$$

and the correlation

$$
\gamma_{d}:=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{0 \leq n<N} \tau(n) \overline{\tau(n+d)} .
$$

We have

$$
\gamma_{1}=-\frac{1}{3}, \quad \gamma_{2 d}=\gamma_{d}, \quad \gamma_{2 d+1}=\frac{-\gamma_{d}-\gamma_{d+1}}{2}
$$

We have $s_{2}(n+1)-s_{2}(n)=m$ for $m \leq 1$ and $n \in 2^{1-m}-1+2^{2-m} \mathbb{Z}$.
Therefore $\gamma_{1}=-1 / 2+1 / 4-1 / 8+\cdots=-1 / 3$.

The factor complexity of T

There are only very few words over $\{0,1\}$ appearing as factors (contiguous finite subsequences) of T : the number of factors of length L appearing in T is bounded by $C L$ with an absolute constant C.

The sum-of-digits function along arithmetic progressions

Repeated addition of d leads to arithmetic progressions. How do the binary digits behave along $a+d \mathbb{N}$?
Avgustinovich, Fon-Der-Flaass, and Frid (2003) proved that every finite sequence $A \in\{0,1\}^{L}$ appears as an arithmetic subsequence of T.

$$
\text { "The Thue-Morse sequence has }\left\{\begin{array}{c}
\text { low factor complexity } \\
\text { full arithmetical complexity }
\end{array}\right\} \text { " }
$$

This situation is very different from the Fibonacci word $F=010010100100101001 \cdots$ defined by

$$
0 \mapsto 01, \quad 1 \mapsto 0,
$$

which only has cubic arithmetical complexity (Cassaigne-Frid 2007).

Arithmetic subsequences of T

Theorem (Gel'fond)

Let q, m, d, b, a be integers and $q, m, d \geq 2$. Suppose that $\operatorname{gcd}(m, q-1)=1$. Then

$$
\left|\left\{1 \leq n \leq x: n \equiv a \bmod d, s_{q}(n) \equiv b \bmod m\right\}\right|=\frac{x}{d m}+\mathcal{O}\left(x^{\lambda}\right)
$$

for some $\lambda<1$ independent of x, d, a, and b.
We know that arbitrarily long sequences of Os appear as arithmetic subsequences of T , therefore the \mathcal{O}-constant cannot be uniform in d ! This theorem does therefore not tell us much about short APs.

Very sparse arithmetic subsequences of T

However, for most d the number of 0 s and 1 s will be balanced along short arithmetic sequences $(n d+a)_{0 \leq n<N}$.

Theorem (S. 2020

The Thue-Morse sequence has level of distribution 1. More precisely, for all $\varepsilon>0$ we have

$$
\sum_{1 \leq d \leq D} \max _{\substack{y, z \geq 0 \\ z-y \leq x}} \max _{0 \leq a<d}\left|\sum_{\substack{y \leq n<z \\ n \equiv a \bmod d}}(-1)^{s_{2}(n)}\right| \leq C x^{1-\eta}
$$

for some C and $\eta>0$ depending on ε, where $D=x^{1-\varepsilon}$.
For all $\rho>0$, most arithmetic subsequences A of T having N elements and common difference $\asymp N^{\rho}$ have about the same number of $0 s$ and 1 s .

Reduction of the theorem

Let $\mathrm{e}(x)=\exp (2 \pi i x)$. The theorem follows from the following statement.
Proposition
For real numbers $N, D \geq 1$ and ξ set

$$
\begin{equation*}
S_{0}(N, D, \xi)=\sum_{D \leq d<2 D} \max _{a \geq 0}\left|\sum_{0 \leq n<N} \mathrm{e}\left(\frac{1}{2} s_{2}(n d+a)+n \xi\right)\right| . \tag{2}
\end{equation*}
$$

For all $\rho_{2} \geq \rho_{1}>0$ there exist $\eta>0$ and C such that the following holds. For all real numbers $N, D \geq 1$ such that $N^{\rho_{1}} \leq D \leq N^{\rho_{2}}$, and all ξ, we have

$$
\begin{equation*}
\frac{S_{0}(N, D, \xi)}{N D} \leq C N^{-\eta} \tag{3}
\end{equation*}
$$

The inequality of van der Corput

Lemma

Let I be a finite interval in \mathbb{Z} containing N integers and let z_{n} be a complex number for $n \in I$. For all integers $K \geq 1$ and $R \geq 1$ we have

$$
\left|\sum_{n \in I} z_{n}\right|^{2} \leq \frac{N+K(R-1)}{R} \sum_{0 \leq|r|<R}\left(1-\frac{|r|}{R}\right) \sum_{\substack{n \in I \\ n+K r \in I}} z_{n+K r} \overline{z_{n}} .
$$

The important thing is that we only need to estimate certain correlations $\sum z_{n+r} \overline{z_{n}}$ with "small r " instead of the original sum $\sum z_{n}$, and we can profit from cancellation effects.

Cancellation effects, part I: Mauduit-Rivat

"Adding a small integer mostly changes only digits at low positions." More precisely, assume that $r \in\left\{0, \ldots, 2^{\mu}-1\right\}$, and that the positive integer n has at least one 0 in its binary expansion in the window $[\mu, \mu+\ell)$,

$$
n=(\delta_{\nu}, \delta_{\nu-1}, \ldots, \delta_{\mu+\ell}, \underbrace{\delta_{\mu+\ell-1}, \ldots, \delta_{\mu}}_{\text {at least one } 0}, \delta_{\mu-1}, \ldots, \delta_{0})_{2} .
$$

In the addition $n+r$, there is no carry propagation into the digits with indices $\geq \mu+\ell$!
Writing

$$
\mathrm{s}_{2}^{A}(n):=\sum_{j \in A} \delta_{j}(n)
$$

for a set $A \subset \mathbb{N}$, we have

$$
\mathrm{s}_{2}(n+r)-\mathrm{s}_{2}(n)=\mathrm{s}_{2}^{A}(n+r)-\mathrm{s}_{2}^{A}(n),
$$

where $A=[0, \mu+\ell)$.

Cancellation effects, part II

Extending the Mauduit-Rivat idea, we may "cut out" an arbitrary interval $[a, b)$ of digits: Assume that

$$
\left\|\frac{K}{2^{b}}\right\|<2^{b-a+\ell}
$$

In other words, we have

$$
\left(\delta_{a-\ell}(K), \ldots, \delta_{b-1}(K)\right) \in\{(0, \ldots, 0),(1, \ldots, 1)\}
$$

Assume that the binary expansion of n has at least one digit 0 and one digit 1 at indices $\in\{a-\ell, \ldots, a-1\}$,

$$
n=(\delta_{\nu}, \delta_{\nu-1}, \ldots, \delta_{b}, \delta_{b-1}, \ldots, \delta_{a}, \underbrace{\delta_{a-1}, \ldots, \delta_{a-\ell}}_{\text {both digits appear }}, \delta_{a-\ell-1}, \ldots, \delta_{0})_{2}
$$

Then

$$
\mathrm{s}_{2}(n+K)-\mathrm{s}_{2}(n)=\mathrm{s}_{2}^{A}(n+K)-\mathrm{s}_{2}^{A}(n),
$$

where $A=\mathbb{N} \backslash[a, b)$.

The core of the method: van der Corput, iterated

- The common difference d may be large compared to N. Addition of d changes up to $\rho_{2} \log _{2} N$ binary digits in each step. Applying van der Corput the first time, we cut away all digits above $M=\rho_{2} \log _{2} N+\ell$.
- The digits of $n d+a$ below M cannot attain all combinations, as n runs through $\{0, \ldots, N-1\}$ - too many digits are left!
- We apply van der Corput's inequality repeatedly on the sum

$$
\sum \exp \left(\frac{1}{2} s_{2}^{M}((n+r) d+a)-s_{2}^{M}(n d+a)\right)
$$

cutting out a different interval of digits in each step.

- For this, we have to choose multiples K_{j} in such a way that the binary digits of $K_{j} d$ in a certain interval are all equal to 0 or all equal to 1 - a Diophantine approximation problem.

Gowers norms

- The remaining interval of digits is short, while the summation over n is long. For most d, we obtain uniform distribution of the binary digits of $n d+a$ in this interval. This enables us to replace the sum along the arithmetic progression $n d+a$ by a full sum!
- We now have to deal with higher order correlations - each application of van der Corput's inequality increases the order by 1. This leads us to a Gowers norm of the Thue-Morse sequence, for which an upper bound is available (Konieczny 2019).

We have to estimate

$$
\begin{aligned}
&\left|\sum_{n<N} \mathrm{e}\left(\frac{1}{2} \mathrm{~s}_{2}^{M}((n+r) d+a)-\frac{1}{2} \mathrm{~s}_{2}^{M}(n d+a)\right)\right|^{2} \\
&=\left|\sum_{n<N} \prod_{\varepsilon \in\{0,1\}} \mathrm{e}\left(\frac{1}{2} \mathrm{~s}_{2}^{M}((n+\varepsilon r) d+a)\right)\right|^{2}
\end{aligned}
$$

By iterating van der Corput, we are left with the expression

$$
\left\lvert\, \sum_{n<N \varepsilon, \varepsilon_{1}, \ldots, \varepsilon_{m} \in\{0,1\}} \prod^{\left.e\left(\frac{1}{2} s_{2}^{M}\left(\left(n+\varepsilon r+\varepsilon_{1} K_{1} r_{1}+\cdots+\varepsilon_{m} K_{m} r_{m}\right) d+a\right)\right)\right|^{2} . . . ~ . ~ . ~}\right.
$$

Each multiple K_{j} is responsible for eliminating an interval of μ digits, which is achieved by the condition

$$
\left\|\frac{K_{j} d}{2^{b}}\right\| \leq 2^{-\mu-\ell}
$$

Eliminating the very sparse arithmetic progression

This successive reduction of digits leaves us with only a short interval $[0, \sigma)$ of significant digits. Assuming for simplicity that d is odd, the expression $n d+a \bmod 2^{\sigma}$ traverses $\left[0,2^{\sigma}\right)$ in a uniform manner.

$$
\text { Now } n d+a \text { may be replaced by } n \text {. }
$$

The very sparse arithmetic progression has been replaced by a full sum. In particular, the shift a has disappeared.
After some technicalities, we arrive at a Gowers norm, which we have to bound nontrivially.

A Gowers norm estimate

Proposition (Essentially Konieczny 2019)
Let $m \geq 2$ be an integer. There exist $\eta>0$ and C such that

$$
\frac{1}{2^{(m+1) \sigma}} \sum_{\substack{0 \leq n<2^{\sigma} \\ 0 \leq r_{1}, \ldots, r_{m}<2^{\sigma}}} \mathrm{e}\left(\frac{1}{2} \sum_{\varepsilon \in\{0,1\}^{m}} s_{2}^{[0, \sigma)}(n+\varepsilon \cdot r)\right) \leq C 2^{-\sigma \eta}
$$

for all $\sigma \geq 0$, where $\varepsilon \cdot r=\sum_{1 \leq i \leq m} \varepsilon_{i} r_{i}$.

Restating the main theorem

Theorem (S. 2020
The Thue-Morse sequence has level of distribution 1. More precisely, for all $\varepsilon>0$ we have

$$
\sum_{1 \leq d \leq D} \max _{\substack{y, z \geq 0 \\ z-y \leq x}} \max _{0 \leq a<d}\left|\sum_{\substack{y \leq n<z \\ n \equiv a \bmod d}}(-1)^{s_{2}(n)}\right| \leq C x^{1-\eta}
$$

for some C and $\eta>0$ depending on ε, where $D=x^{1-\varepsilon}$.
Fouvry and Mauduit (1996) obtained a level of distribution 0.5924 for the Thue-Morse sequence.

The Zeckendorf expansion

Every nonnegative integer n is the sum of different, non-consecutive Fibonacci numbers F_{i} and such a representation is unique \leadsto Zeckendorf expansion.

0	0	0	8	10000	1	16	100100	2
1	1	1	9	10001	2	17	100101	3
2	10	1	10	10010	2	18	101000	2
3	100	1	11	10100	2	19	101001	3
4	101	2	12	10101	3	20	101010	3
5	1000	1	13	100000	1	21	1000000	1
6	1001	2	14	100001	2	22	1000001	2
7	1010	2	15	100010	2	23	1000010	2

- The number of 1 s needed is the Zeckendorf sum of digits $\mathrm{z}(n)$ of n.
- The Zeckendorf expansion is a generalization of the Fibonacci word, which is given by the lowest digit.

Theorem (Drmota, Müllner, S. 2021+)

1. Let $\vartheta \in \mathbb{R} \backslash \mathbb{Z}$. The function $n \mapsto \mathrm{e}(\vartheta \mathrm{z}(n))$ has level of distribution 1 .
2. Let k be a sufficiently large integer. There exists a prime number p with

$$
z(p)=k
$$

In particular, p can be represented as the sum of k pairwise different and non-consecutive Fibonacci numbers.

Possible extensions and open problems

${ }_{3} 18$
Consider other numeration systems, such as the Tribonacci expansion. Prove a level of distribution 1 and a prime number theorem for associated sum-of-digits functions.

Prove that for all $\varepsilon>0$, most $D \leq d<2 D$, all intervals / of length $\sim D^{\varepsilon}$, and all a,

$$
m \mapsto \#\left\{n \in I: \mathrm{s}_{q}(n)=m, n \equiv a \bmod d\right\}
$$

closely follows a Gaussian.

Prove that $\mathrm{T}\left(\left\lfloor n^{c}\right\rfloor\right)$ defines a normal sequence for all $c \in(1,2)$ (Simple normality follows from the Compositio-paper).

Thank you!

${ }^{0}$ Supported by the Austrian Science Fund (FWF), Projects F55 and MuDeRa (jointly with ANR).
Lukas Spiegelhofer (MU Leoben) The level of distribution of the Thue-Morse sequence

