The level of distribution of the Thue-Morse sequence

Lukas Spiegelhofer

March 21, 2022, Rencontres de théorie analytique et élémentaire des nombres

Lukas Spiegelhofer (MU Leoben) The level of distribution of the Thue–Morse sequence March 21, 2022 1/29

The basic question

Let $q \ge 2$ be an integer. We know the base-q expansion of $n \in \mathbb{N}$:

$$n = \delta_0 q^0 + \delta_1 q^1 + \delta_2 q^2 + \cdots + \delta_{L-1} q^{L-1},$$

where $(\delta_j)_{0 \le j < L} \in \{0, \ldots, q-1\}^L$ and $(L = 0 \text{ or } \delta_{L-1} \ne 0)$, and we write

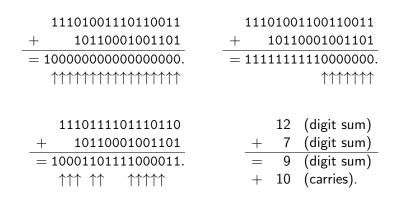
$$[n]_q := (\delta_{L-1}, \delta_{\nu-1}, \ldots, \delta_0).$$

The level of distribution is concerned with arithmetic progressions, which in turn are given by repeated addition of a constant.

> What happens to the base-q expansion of $n \in \mathbb{N}$ when a constant $d \in \mathbb{N}$ is added?

Carry propagation

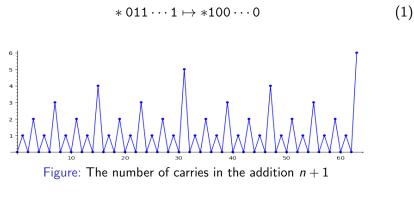
Consider, for example, the following additions in base 2.



The appearance of *carries* in the addition n + t causes many cases to be distinguished.

Addition of 1

The (possibly empty) block of 1s on the right of the binary expansion of n is replaced by 0s, and the 0 to the left of the block is replaced by 1.



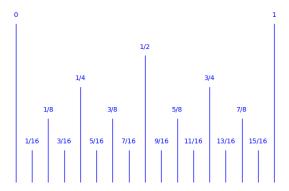
This is the *ruler sequence* $n \mapsto \nu_2(n+1)$, given by the 2-valuation $\nu_2(n+1)$.

Lukas Spiegelhofer (MU Leoben)

The level of distribution of the Thue–Morse sequence Mar

The ruler sequence

The following picture is well known in countries using imperial units.



The case $t \ge 3$

For d = 3 we have the following cases:

*00 \mapsto *11; *01^k01 \mapsto *10^k00; *01^k10 \mapsto *10^k01; *01^k11 \mapsto *10^k10.

This situation does not get better with growing d. Carries can propagate through many blocks of 1, and many cases occur.

The binary sum-of-digits function

As first step (in the quest of better understanding the base-q expansion) we consider the *base-q sum-of-digits function* s_q . The integer $s_q(n)$ is the minimal number of powers of q needed to write n as their sum.

n																
$s_2(n)$	0	1	1	2	1	2	2	3	1	2	2	3	2	3	3	4

The POPCNT instruction on modern microprocessors returns the binary sum of digits of an integer $n \in \{0, 2^{64} - 1\}$ within ~ 1 ns.

The sum-of-digits function under addition

We have the important identity (Legendre)

$$s_2(n) + s_2(d) = s_2(n+d) + \nu_2\left(\binom{n+d}{d}\right)\nu_2\left(\binom{n+d}{d}\right),$$

where the 2-valuation $\nu_2\binom{n+d}{d}$ equals the number of *carries carries* that appear in the addition n + d in binary. Let us define

$$\delta(j,d) \coloneqq \lim_{N \to \infty} \frac{1}{N} \# \big\{ 0 \le n < N : s_2(n+d) - s_2(n) = j \big\}.$$

T. W. Cusick conjectured that

$$c_d \coloneqq \delta(0,d) + \delta(1,d) + \cdots > 1/2$$

Lukas Spiegelhofer (MU Leoben) The level of distribution of the Thue–Morse sequence March 21, 2022 8/29

SW2021

In other words,

When a constant d is added, does the binary sum of digits of n weakly increase, more often than not?

Theorem (S.–Wallner 2021, Ann. Scuola Norm. Sup. Pisa Cl. Sci.) Assume that the positive integer d has at least M blocks of ones in its binary expansion (where M is an absolute constant). Then $c_d > 1/2$. The remaining cases — few blocks of 1s — are the 'hard cases' according to Cusick, and the interesting ones for applications

 \longrightarrow more work to do!

The Thue–Morse sequence

The parity of the number of ones in the binary expansion yields the *Thue–Morse sequence*

 $T = (s_2(n) \mod 2)_{n \ge 0} = 0110100110010110100101100101100101 \cdots$

The sequence T is an *automatic sequence* and as such can be defined via a *uniform morphism on a finite alphabet*: Let us define

 $\varphi: \mathbf{0} \mapsto \mathbf{01}, \quad \mathbf{1} \mapsto \mathbf{10}.$

Starting with 0, we obtain

 $0\mapsto 01\mapsto 0110\mapsto 01101001\cdots$

Lukas Spiegelhofer (MU Leoben) The level of distribution of the Thue–Morse sequence March 21, 2022 10/29

The behaviour of the Thue-Morse sequence under addition

Let us define

$$\tau(n) \coloneqq (-1)^{s_2(n)} = 1 - 2T(n) = (1, -1, -1, 1, -1, 1, 1, -1, \ldots)$$

and the correlation

$$\gamma_d \coloneqq \lim_{N \to \infty} \frac{1}{N} \sum_{0 \le n < N} \tau(n) \overline{\tau(n+d)}.$$

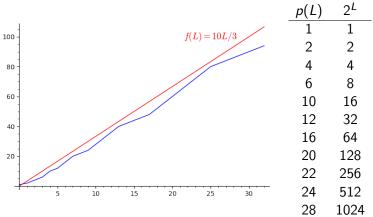
We have

$$\gamma_1 = -\frac{1}{3}, \quad \gamma_{2d} = \gamma_d, \quad \gamma_{2d+1} = \frac{-\gamma_d - \gamma_{d+1}}{2}.$$

We have $s_2(n+1) - s_2(n) = m$ for $m \le 1$ and $n \in 2^{1-m} - 1 + 2^{2-m}\mathbb{Z}$. Therefore $\gamma_1 = -1/2 + 1/4 - 1/8 + \cdots = -1/3$.

The factor complexity of T

There are only very few words over $\{0, 1\}$ appearing as *factors* (contiguous finite subsequences) of T: the number of factors of length *L* appearing in T is bounded by *CL* with an absolute constant *C*.



The level of distribution of the Thue–Morse sequence

The sum-of-digits function along arithmetic progressions

Repeated addition of *d* leads to arithmetic progressions. How do the binary digits behave along $a + d\mathbb{N}$? Avgustinovich, Fon-Der-Flaass, and Frid (2003) proved that *every* finite sequence $A \in \{0, 1\}^L$ appears as an arithmetic subsequence of T.

"The Thue–Morse sequence has { low factor complexity full arithmetical complexity } "

This situation is very different from the Fibonacci word $F = 0100101001001001001 \cdots$ defined by

 $0\mapsto 01,\quad 1\mapsto 0,$

which only has cubic arithmetical complexity (Cassaigne-Frid 2007).

Arithmetic subsequences of T

Theorem (Gel'fond)

Let q, m, d, b, a be integers and $q, m, d \ge 2$. Suppose that gcd(m, q - 1) = 1. Then

$$|\{1 \le n \le x : n \equiv a \mod d, s_q(n) \equiv b \mod m\}| = \frac{x}{dm} + \mathcal{O}(x^{\lambda})$$

for some $\lambda < 1$ independent of x, d, a, and b.

We know that arbitrarily long sequences of 0s appear as arithmetic subsequences of T, therefore the \mathcal{O} -constant cannot be uniform in d! This theorem does therefore not tell us much about *short* APs.

Very sparse arithmetic subsequences of T

However, for most d the number of 0s and 1s will be balanced along short arithmetic sequences $(nd + a)_{0 \le n < N}$.

Theorem (S. 2020)

The Thue–Morse sequence has level of distribution 1. More precisely, for all $\varepsilon > 0$ we have

$$\sum_{1 \le d \le D} \max_{\substack{y,z \ge 0\\ z-y \le x}} \max_{\substack{0 \le a < d\\ n \equiv a \bmod d}} \left| \sum_{\substack{y \le n < z\\ n \equiv a \bmod d}} (-1)^{s_2(n)} \right| \le C x^{1-\eta}$$

for some C and $\eta > 0$ depending on ε , where $D = x^{1-\varepsilon}$.

For all $\rho > 0$, most arithmetic subsequences A of T having N elements and common difference $\asymp N^{\rho}$ have about the same number of 0s and 1s.

Reduction of the theorem

Let $e(x) = exp(2\pi i x)$. The theorem follows from the following statement. Proposition

For real numbers $N, D \ge 1$ and ξ set

$$S_0(N, D, \xi) = \sum_{D \le d < 2D} \max_{a \ge 0} \left| \sum_{0 \le n < N} e\left(\frac{1}{2} s_2(nd + a) + n\xi \right) \right|.$$
(2)

For all $\rho_2 \ge \rho_1 > 0$ there exist $\eta > 0$ and C such that the following holds. For all real numbers $N, D \ge 1$ such that $N^{\rho_1} \le D \le N^{\rho_2}$, and all ξ , we have

$$\frac{S_0(N,D,\xi)}{ND} \le CN^{-\eta}.$$
(3)

Lukas Spiegelhofer (MU Leoben) The level of distribution of the Thue–Morse sequence March 21, 2022 16/29

The inequality of van der Corput

Lemma

Let I be a finite interval in \mathbb{Z} containing N integers and let z_n be a complex number for $n \in I$. For all integers $K \ge 1$ and $R \ge 1$ we have

$$\left|\sum_{n\in I} z_n\right|^2 \leq \frac{N+K(R-1)}{R} \sum_{0\leq |r|< R} \left(1-\frac{|r|}{R}\right) \sum_{\substack{n\in I\\ n+Kr\in I}} z_{n+Kr}\overline{z_n}.$$

The important thing is that we only need to estimate certain correlations $\sum z_{n+r}\overline{z_n}$ with "small r" instead of the original sum $\sum z_n$, and we can profit from *cancellation effects*.

Lukas Spiegelhofer (MU Leoben) The level of distribution of the Thue–Morse sequence March 21, 2022 17/29

Cancellation effects, part I: Mauduit-Rivat

"Adding a small integer mostly changes only digits at low positions." More precisely, assume that $r \in \{0, ..., 2^{\mu} - 1\}$, and that the positive integer *n* has at least one 0 in its binary expansion in the window $[\mu, \mu + \ell)$,

$$n = (\delta_{\nu}, \delta_{\nu-1}, \dots, \delta_{\mu+\ell}, \underbrace{\delta_{\mu+\ell-1}, \dots, \delta_{\mu}}_{\text{at least one 0}}, \delta_{\mu-1}, \dots, \delta_{0})_{2}$$

In the addition n + r, there is no carry propagation into the digits with indices $\ge \mu + \ell!$ Writing

$$\mathsf{s}_2^{\mathcal{A}}(n) \coloneqq \sum_{j \in \mathcal{A}} \delta_j(n)$$

for a set $A \subset \mathbb{N}$, we have

$$s_2(n+r) - s_2(n) = s_2^A(n+r) - s_2^A(n),$$

where $A = [0, \mu + \ell)$.

Lukas Spiegelhofer (MU Leoben)

The level of distribution of the Thue–Morse sequence March

Cancellation effects, part II

Extending the Mauduit–Rivat idea, we may "cut out" an arbitrary interval [a, b) of digits: Assume that

$$\left\|\frac{K}{2^b}\right\| < 2^{b-a+\ell}.$$

In other words, we have

$$\left(\delta_{\boldsymbol{a}-\ell}(\boldsymbol{K}),\ldots,\delta_{\boldsymbol{b}-1}(\boldsymbol{K})
ight)\in\{(0,\ldots,0),(1,\ldots,1)\}.$$

Assume that the binary expansion of n has at least one digit 0 and one digit 1 at indices $\in \{a - \ell, \dots, a - 1\}$,

$$n = (\delta_{\nu}, \delta_{\nu-1}, \dots, \delta_{b}, \delta_{b-1}, \dots, \delta_{a}, \underbrace{\delta_{a-1}, \dots, \delta_{a-\ell}}_{\text{both digits appear}}, \delta_{a-\ell-1}, \dots, \delta_{0})_{2}.$$

Then

$$s_2(n+K)-s_2(n)=s_2^A(n+K)-s_2^A(n),$$

where $A = \mathbb{N} \setminus [a, b)$.

Lukas Spiegelhofer (MU Leoben)

The level of distribution of the Thue-Morse sequence

The core of the method: van der Corput, iterated

- ► The common difference *d* may be large compared to *N*. Addition of *d* changes up to ρ₂ log₂ *N* binary digits in each step. Applying van der Corput the first time, we cut away all digits above *M* = ρ₂ log₂ *N* + *l*.
- ► The digits of nd + a below M cannot attain all combinations, as n runs through {0,..., N − 1} too many digits are left!
- We apply van der Corput's inequality repeatedly on the sum

$$\sum \exp(\frac{1}{2}\mathsf{s}_2^M((n+r)d+a)-\mathsf{s}_2^M(nd+a)),$$

cutting out a different interval of digits in each step.

For this, we have to choose multiples K_j in such a way that the binary digits of K_jd in a certain interval are all equal to 0 or all equal to 1
 — a Diophantine approximation problem.

Gowers norms

- The remaining interval of digits is *short*, while the summation over *n* is *long*. For most *d*, we obtain uniform distribution of the binary digits of *nd* + *a* in this interval. This enables us to replace the sum along the arithmetic progression *nd* + *a* by a full sum!
- We now have to deal with higher order correlations each application of van der Corput's inequality increases the order by 1. This leads us to a *Gowers norm* of the Thue–Morse sequence, for which an upper bound is available (Konieczny 2019).

We have to estimate

$$\left|\sum_{n
$$= \left|\sum_{n$$$$

By iterating van der Corput, we are left with the expression

$$\left|\sum_{n$$

Each multiple K_j is responsible for eliminating an interval of μ digits, which is achieved by the condition

$$\left|\frac{K_j d}{2^b}\right\| \leq 2^{-\mu-\ell}.$$

Lukas Spiegelhofer (MU Leoben)

The level of distribution of the Thue-Morse sequence

Eliminating the very sparse arithmetic progression

This successive reduction of digits leaves us with only a short interval $[0, \sigma)$ of significant digits. Assuming for simplicity that *d* is odd, the expression $nd + a \mod 2^{\sigma}$ traverses $[0, 2^{\sigma})$ in a uniform manner.

Now nd + a may be replaced by n.

The very sparse arithmetic progression has been replaced by a full sum. In particular, the shift a has disappeared.

After some technicalities, we arrive at a *Gowers norm*, which we have to bound nontrivially.

A Gowers norm estimate

Proposition (Essentially Konieczny 2019)

Let $m \ge 2$ be an integer. There exist $\eta > 0$ and C such that

$$\frac{1}{2^{(m+1)\sigma}}\sum_{\substack{0\leq n<2^{\sigma}\\0\leq r_{1},\ldots,r_{m}<2^{\sigma}}} \mathsf{e}\left(\frac{1}{2}\sum_{\varepsilon\in\{0,1\}^{m}}\mathsf{s}_{2}^{[0,\sigma)}(n+\varepsilon\cdot r)\right)\leq C2^{-\sigma\eta}$$

for all $\sigma \geq 0$, where $\varepsilon \cdot r = \sum_{1 \leq i \leq m} \varepsilon_i r_i$.

Lukas Spiegelhofer (MU Leoben) The level of distribution of the Thue–Morse sequence March 21, 2022 24/29

Restating the main theorem

Theorem (S. 2020)

The Thue–Morse sequence has level of distribution 1. More precisely, for all $\varepsilon > 0$ we have

$$\sum_{\substack{y,z \ge 0 \\ z-y \le x}} \max_{\substack{y,z \ge 0 \\ n \equiv a \bmod d}} \left| \sum_{\substack{y \le n < z \\ n \equiv a \bmod d}} (-1)^{\mathbf{s}_2(n)} \right| \le C x^{1-\eta}$$

for some C and $\eta > 0$ depending on ε , where $D = x^{1-\varepsilon}$. Fouvry and Mauduit (1996) obtained a level of distribution 0.5924 for the Thue–Morse sequence.

The Zeckendorf expansion

Every nonnegative integer n is the sum of different, non-consecutive Fibonacci numbers F_i and such a representation is unique \rightsquigarrow Zeckendorf expansion.

0	0	0	8	10000	1	16	100100	2
1	1	1	9	10001	2	17	100101	3
2	10	1	10	10010	2	18	101000	2
3	100	1	11	10100	2	19	101001	3
4	101	2	12	10101	3	20	101010	3
5	1000	1	13	100000	1	21	1000000	1
6	1001	2	14	100001	2	22	1000001	2
7	1010	2	15	100010	2	23	1000010	2

- The number of 1s needed is the *Zeckendorf sum of digits* z(n) of *n*.
- The Zeckendorf expansion is a generalization of the Fibonacci word, which is given by the lowest digit.

Lukas Spiegelhofer (MU Leoben) The lev

The level of distribution of the Thue-Morse sequence

Theorem (Drmota, Müllner, S. 2021+)

- 1. Let $\vartheta \in \mathbb{R} \setminus \mathbb{Z}$. The function $n \mapsto e(\vartheta z(n))$ has level of distribution 1.
- 2. Let k be a sufficiently large integer. There exists a prime number p with

$$z(p) = k.$$

In particular, p can be represented as the sum of k pairwise different and non-consecutive Fibonacci numbers.

Possible extensions and open problems

Consider other numeration systems, such as the Tribonacci expansion. Prove a level of distribution 1 and a prime number theorem for associated sum-of-digits functions.

Prove that for all $\varepsilon > 0$, most $D \le d < 2D$, all intervals I of length $\sim D^{\varepsilon}$, and all a,

$$m \mapsto \# \{n \in I : s_q(n) = m, n \equiv a \mod d\}$$

closely follows a Gaussian.

Prove that $T(\lfloor n^c \rfloor)$ defines a normal sequence for all $c \in (1,2)$ (*Simple normality* follows from the Compositio-paper).

Lukas Spiegelhofer (MU Leoben) The level of distribution of the Thue–Morse sequence March 21, 2022 28 / 29

Thank you!

⁰ Supported by the Austrian Science Fund (FWF), Projects F55 and MuDeRa (jointly with ANR).