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Digital expansions

In the simplest case, a digital expansion Φ assigns to each natural number
a finite string of digits. This usually happens in a monotone way —

if n ≤ m, then Φ(n) ≤lex Φ(m).

n Φ(n) n Φ(n)

0 0 10 1010

1 1 11 1011

2 10 12 1100

3 11 13 1101

4 100 14 1110

5 101 15 1111

6 110 16 10000

7 111 17 10001

8 1000 18 10010

9 1001 19 10011

This is the binary expansion [n]2 of a nonnegative integer n.
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Digital expansions

The sum-of-digits function

The sum-of-digits function sq in base q simply sums all the digits in base q.

n [n]2 s2(n) n [n]2 s2(n)

0 0 0 10 1010 2
1 1 1 11 1011 3
2 10 1 12 1100 2
3 11 2 13 1101 3
4 100 1 14 1110 3
5 101 2 15 1111 4
6 110 2 16 10000 1
7 111 3 17 10001 2
8 1000 1 18 10010 2
9 1001 2 19 10011 3
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Digital expansions

Legendre’s formula

The base-p sum-of-digits function, p prime, appears in the prime factor
decomposition of n! by Legendre’s formula:

(p − 1)νp(n!) = n − sp(n).

This links combinatorics to number theory. For me, this link is the
strongest motivation for studying sum-of-digits functions.
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Digital expansions

The Zeckendorf expansion

Every nonnegative integer n is the sum of different, non-consecutive
Fibonacci numbers Fi , i ≥ 2, and such a representation is unique ;

Zeckendorf expansion.

0 0

0

8 10000

1

16 100100

2

1 1

1

9 10001

2

17 100101

3

2 10

1

10 10010

2

18 101000

2

3 100

1

11 10100

2

19 101001

3

4 101

2

12 10101

3

20 101010

3

5 1000

1

13 100000

1

21 1000000

1

6 1001

2

14 100001

2

22 1000001

2

7 1010

2

15 100010

2

23 1000010

2

▶ The number of 1s needed is the Zeckendorf sum of digits z(n) of n.
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0 0 0 8 10000 1 16 100100 2
1 1 1 9 10001 2 17 100101 3
2 10 1 10 10010 2 18 101000 2
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5 1000 1 13 100000 1 21 1000000 1
6 1001 2 14 100001 2 22 1000001 2
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Sparse arithmetic subsequences of sum-of-digits functions

Section 1

Sparse arithmetic subsequences of sum-of-digits
functions
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Sparse arithmetic subsequences of sum-of-digits functions

The Thue–Morse sequence

The parity of the number of ones in the binary expansion yields the
Thue–Morse sequence

T = (s2(n) mod 2)n≥0 = 01101001100101101001011001101001 · · ·

The sequence T is an automatic sequence and as such can be defined via a
uniform morphism on a finite alphabet: Let us define

φ : 0 7→ 01, 1 7→ 10.

Starting with 0, we obtain

0 7→ 01 7→ 0110 7→ 01101001 · · ·
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Sparse arithmetic subsequences of sum-of-digits functions

In the Thue–Morse sequence, each symbol 0, 1 appears with asymptotic
frequency 1/2. It is built from the two blocks 01 and 10!
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Sparse arithmetic subsequences of sum-of-digits functions

The factor complexity of T

There are only very few words over {0, 1} appearing as factors (contiguous
finite subsequences) of T: the number of factors of length L appearing in T

is bounded by CL with an absolute constant C .
L p(L) 2L

0 1 1
1 2 2
2 4 4
3 6 8
4 10 16
5 12 32
6 16 64
7 20 128
8 22 256
9 24 512
10 28 1024
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Sparse arithmetic subsequences of sum-of-digits functions

Sparse arithmetic subsequences of T
This situation changes completely when we consider arithmetic
subsequences of T instead.

N = 128× 128 terms, common difference NR = 321

does every pattern occur?
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Sparse arithmetic subsequences of sum-of-digits functions

Does every pattern occur?

Avgustinovich, Fon-Der-Flaass, and Frid (2003): every finite word
ω ∈ {0, 1}L appears as an arithmetic subsequence of T.

Müllner–Spiegelhofer (Israel J. Math. 2017):
Let ω ∈ {0, 1}L and 0 < ε < 2. As N → ∞, the following holds.

For most d ∈ [N2−ε, 2N2−ε), the number of times that ω appears as a
subword of (T(nd + a))n<N is close to the expected value N/2L.

We used this in order to construct certain normal sequences: For
1 < c < 3/2, the sequence n 7→ T

(
⌊nc⌋

)
is normal. Every block

ω ∈ {0, 1}L appears with asymptotic frequency 2−L in this sequence.

Before that, Drmota, Mauduit, and Rivat (JEMS) proved that n 7→ T(n2)
is a normal sequence.
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Müllner–Spiegelhofer (Israel J. Math. 2017):
Let ω ∈ {0, 1}L and 0 < ε < 2. As N → ∞, the following holds.

For most d ∈ [N2−ε, 2N2−ε), the number of times that ω appears as a
subword of (T(nd + a))n<N is close to the expected value N/2L.

We used this in order to construct certain normal sequences: For
1 < c < 3/2, the sequence n 7→ T

(
⌊nc⌋

)
is normal. Every block

ω ∈ {0, 1}L appears with asymptotic frequency 2−L in this sequence.

Before that, Drmota, Mauduit, and Rivat (JEMS) proved that n 7→ T(n2)
is a normal sequence.

Lukas Spiegelhofer (TU Wien/MU Leoben) Subsequences of digitally defined functions March 25, 2022 13 / 1



Sparse arithmetic subsequences of sum-of-digits functions

Does every pattern occur?

Avgustinovich, Fon-Der-Flaass, and Frid (2003): every finite word
ω ∈ {0, 1}L appears as an arithmetic subsequence of T.
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Sparse arithmetic subsequences of sum-of-digits functions

Very sparse arithmetic subsequences of T

Theorem (S. 2020, Compos. Math.)

The Thue–Morse sequence has level of distribution 1. More precisely, for
all ε > 0 we have

∑
1≤d≤D

max
y ,z≥0
z−y≤x

max
0≤a<d

∣∣∣∣∣ ∑
y≤n<z

n≡a mod d

(−1)s2(n)

∣∣∣∣∣ ≤ Cx1−η

for some C and η > 0 depending on ε, where D = x1−ε.

In more relaxed language: let ρ > 0. As N → ∞, the following holds.

For most d ∈ [Nρ, 2Nρ), the number of times that 0 appears in(
T(nd + a)

)
0≤n<N

is close to N/2.
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Sparse arithmetic subsequences of sum-of-digits functions

Primes in arithmetic progressions

Remark. The level of distribution is an important concept in analytic
number theory. The Bombieri–Vinogradov theorem states that the prime
numbers have level of distribution (at least) 1/2. This corresponds to
progressions (nd + a)0≤n<N , where d ≤ N1−ε.
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Digital expansions of prime numbers, Sarnak’s conjecture

Section 2

Digital expansions of prime numbers, Sarnak’s
conjecture
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Digital expansions of prime numbers, Sarnak’s conjecture

Mauduit and Rivat (2010, Ann. of Math.) proved the following.
Let q ≥ 2, m ≥ 1, and a be integers such that gcd(m, q − 1) = 1.
As p runs through the set of prime numbers, the expression sq(p) hits each
residue class modulo m with asymptotic frequency 1/m.

The level of distribution-paper opens up a new path towards problems of
this kind.

Theorem (Drmota–Müllner–S., submitted)

▶ The sequence n 7→ exp(2πiϑz(n)) has level of distribution 1.

▶ For m ≥ 1 and a ∈ Z, we have

{p < x : p prime, z(p) ≡ a mod m} ∼ π(x)

m

as x → ∞.

▶ For k large enough, there exists a prime number p that is the sum of
exactly k different, non-consecutive Fibonacci numbers.
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Digital expansions of prime numbers, Sarnak’s conjecture

Sarnak’s conjecture

The Möbius function µ is defined by

µ(n) :=

{
0, if n is divisible by a square;

(−1)m, if n has m prime factors.

µ = (1,−1,−1, 0,−1, 1,−1, 0, 0, 1,−1, . . .)

Sarnak’s conjecture intuitively states that µ behaves randomly. Sarnak
formulated this in a precise sense using the language of dynamical systems.
At the core of this conjecture we find the condition∑

0≤n<N

f (n)µ(n) = o(N),

in which case the function f is said to satisfy a Möbius randomness
principle (MRP).
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Digital expansions of prime numbers, Sarnak’s conjecture

Automatic and morphic sequences

Sequences for which an MRP is expected to hold include automatic and
morphic sequences.
The sequence T can be defined by

0 7→ 01, 1 7→ 10.

It is an automatic sequence.

The sequence z(n) mod 2 is given by the following substitution σ together
with the coding π:

σ : a 7→ ab, b 7→ c, c 7→ cd, d 7→ a

π : a 7→ 0, b 7→ 1, c 7→ 1, d 7→ 0

and we consider the fixed point starting with a. The sequence
(z(n) mod 2)n≥0 = π

(
σ∞(a)

)
is a morphic sequence.
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Digital expansions of prime numbers, Sarnak’s conjecture

More cases of Sarnak’s conjecture

Müllner proved that all automatic sequences satisfy an MRP.

The major new goal is to “prove an MRP for all morphic sequences”.

We plan to use the “level of distribution”-method, as applied in
[S2020,DMS2022+], to other morphic sequences defined by numeration
systems as well, and thus prove more cases of Sarnak’s conjecture.

Also, it would be interesting to prove that (certain) automatic sequences
have level of distribution equal to 1.

Lukas Spiegelhofer (TU Wien/MU Leoben) Subsequences of digitally defined functions March 25, 2022 20 / 1



Digital expansions of prime numbers, Sarnak’s conjecture

More cases of Sarnak’s conjecture
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Digital expansions in different bases

Section 3

Digital expansions in different bases
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Digital expansions in different bases

“Collisions” of digit sums in different bases

A folklore conjecture states that the equation

s2(n) = s3(n)

admits infinitely many solutions n in the positive integers.
We proved this conjecture (positive referee report, Israel J. Math.).

Theorem (S. 2022+)

For all δ > 0 we have

#
{
n < N : s2(n) = s3(n)

}
≫ N

log 3
log 4

−δ
, (1)

where the implied constant may depend on δ.
Note that log 3/ log 4 = 0.792 . . ..
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Digital expansions in different bases

blue: number of collisions; red: powers of 2; black: powers of 3
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Digital expansions in different bases

Even the arrangement of powers of 2 and 3 is somewhat cryptic.

(an)n≥0 = (1, 2, 3, 4, 8, 9, 16, 27, 32, 64, 81, 128, 243, 256, 512, 729, 1024, . . .)

This amounts to understanding the continued fraction expansion

log 3

log 2
= [1; 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1, 55, 1, 4, 3, 1, 1, . . .],

which is unknown!

This topic has connections to dynamical systems (Furstenberg’s
conjectures on joint digital expansions in different bases), Diophantine
approximation (estimates for the irrationality exponent of log2 3), and
Mahler’s 3/2-problem (can we have {x(3/2)n} < 1/2 for all n ≥ 0?).
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Digital expansions in different bases

A remark on the separation of sum-of-digits functions

The values of s2(n) and s3(n), as n < N concentrate around log4(N) and
log3(N) respectively. The standard deviations are small compared to the
difference of expected values!

By Hoeffding’s inequality on i.i.d. random variables there is only a number
≪ Nα of collisions n < N, where α < 1. Our result therefore cannot be
too far from the actual number of collisions.

Conjecture

There exist constants c and η such that

#
{
n < N : s2(n) = s3(n)

}
∼ cNη.
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Digital expansions in different bases

Connection to the main topic of the talk

The central idea of the proof is a simple heuristic. We have

s3
(
3ζn

)
= s3(n),

while the binary digits of 3ζn should be “random”. We therefore expect

s2
(
3ζn

)
≈ log4

(
3ζn

)
= ζ

log 3

log 4
+

log(n)

log 4
.

Let us choose

ζ ≈ log(n)

log 3

(
log 4

log 3
− 1

)
.

Then s2(3
ζn) and s3(3

ζn) should concentrate around the same expected
value. We will look for collisions along 3ζN!
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Digital expansions in different bases

→

all n only n in a residue class
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Long arithmetic subsequences — correlations

Section 4

Long arithmetic subsequences — correlations
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Long arithmetic subsequences — correlations

In the following, let us assume that d ≥ 1 and a ≥ 0. We are concerned
with the behaviour of s2 along the arithmetic progression (nd + a)n≥0.
In other words,

how does the sum of digits of an integer change when a constant
d is added repeatedly?

Let us define

δ(j , d , a) := lim
N→∞

1

N
#
{
n < N : s2((n + 1)d + a)− s2(nd + a) = j

}
.

This value is in fact identical to

δ(j , d) := lim
N→∞

1

N
#
{
n < N : s2(n + d)− s2(n) = j

}
,

for all a.
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Long arithmetic subsequences — correlations

Remark. The (auto)correlation

γd := lim
N→∞

1

N

∑
n<N

(−1)s2(n+d)−s2(n)

can be computed by a recurrence, starting from γ1 = −1/3, and has
connections to harmonic analysis (Mahler) and symbolic dynamical
systems.

“Fourier coefficients of the spectral measure associated to the
Thue–Morse dynamical system”.
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Long arithmetic subsequences — correlations

Cusick’s conjecture

When traversing an infinite arithmetic subsequence of s2, how often does
the value stay constant or increase? This is the subject of Cusick’s
conjecture.

Conjecture (Cusick)

For all d ≥ 0, we have

cd := δ(0, d)︸ ︷︷ ︸
“stays constant”

+ δ(1, d) + δ(2, d) + · · ·︸ ︷︷ ︸
“increases”

> 1/2,

where

δ(j , d) = lim
N→∞

1

N
#
{
n < N : s2(n + d)− s2(n) = j

}
.
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Long arithmetic subsequences — correlations

SW2021

Let M = M(d) be the number of blocks of 1s in the binary expansion of d .

Theorem (S.–Wallner 2021, Annali SNS)

Set κ2(1) = 1, and for d ≥ 1 let κ2(2d) = κ2(d), and

κ2(2d + 1) =
κ2(d) + κ2(d + 1)

2
+ 1.

If M is larger than some absolute, effective constant M0, we have

δ(j , d) =
1√

2πκ2(d)
exp

(
− j2

2κ2(d)

)
+O

(
(logM)4

M

)
for all integers j . The implied constant is absolute.

“The sum of digits along arithmetic progressions changes according to a
normal distribution.”
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Long arithmetic subsequences — correlations

SW2020, part II
Again, let M = M(d) be the number of blocks of 1s in d .

Theorem (S.–Wallner 2021, Annali SNS)

Let d ≥ 1. If M(d) is larger than some absolute, effective constant M1,
then cd > 1/2.

Cusick: “Your paper reduces my conjecture to what I will call the ‘hard

cases’ [. . . ]”. −→ more work to do!

hard (“+21”) easier
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Long arithmetic subsequences — correlations

Thank you!

0
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