Primes as sums of Fibonacci numbers, II

Lukas Spiegelhofer (MU Leoben)
Joint work with Michael Drmota and Clemens Müllner (TU Wien)

July 2, 2022
 ArithRand 2022, Graz

We want to sketch the proof of the following theorem.
Proposition 1 (Drmota, Müllner, S. 2022+)
There exist constants $c>0$ and C such that

$$
\sum_{p \leq x} \mathrm{e}(\vartheta \mathrm{z}(p)) \leq C(\log x)^{4} x^{1-c\|\vartheta\|^{2}}
$$

for all real ϑ and $x \geq 2$.

- p is a prime,
- $\mathrm{e}(x)=\exp (2 \pi i x)$,
- $\mathrm{z}(n)$ is the minimal number of Fibonacci numbers needed to write n as their sum,
- $\|\vartheta\|$ is the distance of ϑ to \mathbb{Z}.

The sum over primes can be rewritten, using summation by parts (e.g. Mauduit-Rivat 2010, Ann. of Math.):

$$
\sum_{p \leq N} \mathrm{e}(\vartheta \mathrm{z}(p)) \leq \frac{2}{\log N} \max _{t \leq N}\left|\sum_{n \leq t} \mathrm{e}(\vartheta \mathrm{z}(n)) \wedge(n)\right|+O(\sqrt{N})
$$

Von Mangoldt function:

$$
\Lambda(n)= \begin{cases}\log p, & n=p^{k} \text { for some } k \geq 1 \text { and some prime } p \\ 0, & \text { otherwise }\end{cases}
$$

Note. The prime number theorem asserts that $\sum_{n<x} \Lambda(n) \sim x$.

The sum over primes can be rewritten, using summation by parts (e.g. Mauduit-Rivat 2010, Ann. of Math.):

$$
\sum_{p \leq N} \mathrm{e}(\vartheta \mathrm{z}(p)) \leq \frac{2}{\log N} \max _{t \leq N}\left|\sum_{n \leq t} \mathrm{e}(\vartheta \mathrm{z}(n)) \Lambda(n)\right|+O(\sqrt{N})
$$

Von Mangoldt function:

$$
\Lambda(n)= \begin{cases}\log p, & n=p^{k} \text { for some } k \geq 1 \text { and some prime } p \\ 0, & \text { otherwise }\end{cases}
$$

Note. The prime number theorem asserts that $\sum_{n<x} \wedge(n) \sim x$.

The sum over primes can be rewritten, using summation by parts (e.g. Mauduit-Rivat 2010, Ann. of Math.):

$$
\sum_{p \leq N} \mathrm{e}(\vartheta \mathrm{z}(p)) \leq \frac{2}{\log N} \max _{t \leq N}\left|\sum_{n \leq t} \mathrm{e}(\vartheta \mathrm{z}(n)) \wedge(n)\right|+O(\sqrt{N})
$$

Von Mangoldt function:

$$
\Lambda(n)= \begin{cases}\log p, & n=p^{k} \text { for some } k \geq 1 \text { and some prime } p \\ 0, & \text { otherwise }\end{cases}
$$

Note. The prime number theorem asserts that $\sum_{n<x} \Lambda(n) \sim x$.

Vaughan's identity leads to the starting point of our method.
Lemma (cf. Davenport, Multiplicative number theory) Let $f: \mathbb{N} \rightarrow \mathbb{C}$ such that $|f(n)| \leq 1$ for all $n \geq 1$. For all $N, U, V \geq 2$ such that $U V \leq N$ we have

$$
\begin{aligned}
& \sum_{n \leq N} f(n) \Lambda(n) \ll U+(\log N) \sum_{t \leq U V} \max _{w}\left|\sum_{w \leq r \leq N / t} f(r t)\right| \\
& +\sqrt{N}(\log N)^{3} \max _{\substack{U \leq M \leq N / V \\
V \leq q \leq N / M}}\left(\sum_{V<p \leq N / M}\left|\sum_{\substack{M<m \leq 2 M \\
m \leq \min (N / p, N / q)}} f(m p) \overline{f(m q)}\right|\right)^{1 / 2}
\end{aligned}
$$

with an absolute implied constant.

Let us write

$$
\begin{aligned}
& S_{\mathrm{I}}(N, U, V):=\sum_{t \leq U V} \max _{w}\left|\sum_{w \leq r \leq N / t} f(r t)\right|, \\
& S_{\mathrm{II}}(N, U, V):=\max _{\substack{U \leq M \leq N / V \\
V \leq q \leq N / M}} \sum_{V<p \leq N / M}\left|\sum_{\substack{M<m \leq 2 M \\
m \leq \min (N / p, N / q)}} f(m p) \overline{f(m q)}\right| .
\end{aligned}
$$

$$
\text { Good control over } S_{I} \text { will simplify the treatment of } S_{I I} \text {. }
$$

Choose $U=N^{3 / 4}$ (and V small).

- S_{I}, inner sum: the difference t is usually large ($\gg N^{3 / 4-\varepsilon}$) compared to the length of the sum $\left(\ll N^{1 / 4+\varepsilon}\right)$.
- $S_{\text {II }}$, inner sum: the differences p and q will be small $\left(\ll N^{1 / 4}\right)$ compared to the length of the sum $\left(\gg N^{3 / 4}\right)$.

Let us write

$$
\begin{aligned}
& S_{\mathrm{I}}(N, U, V):=\sum_{t \leq U V} \max _{w}\left|\sum_{w \leq r \leq N / t} f(r t)\right|, \\
& S_{\mathrm{II}}(N, U, V):=\max _{\substack{U \leq M \leq N / V \\
V \leq q \leq N / M}} \sum_{V<p \leq N / M}\left|\sum_{\substack{M<m \leq 2 M \\
m \leq \min (N / p, N / q)}} f(m p) \overline{f(m q)}\right| .
\end{aligned}
$$

Good control over $S_{\text {I }}$ will simplify the treatment of $S_{\text {II }}$.
Choose $U=N^{3 / 4}$ (and V small).
$-S_{\mathrm{I}}$, inner sum: the difference t is usually large $\left(\gg N^{3 / 4-\varepsilon}\right)$ compared to the length of the sum $\left(\ll N^{1 / 4+\varepsilon}\right)$.
$\checkmark S_{\text {II }}$, inner sum: the differences p and q will be small $\left(\ll N^{1 / 4}\right)$ compared to the length of the sum $\left(\gg N^{3 / 4}\right)$.

Let us write

$$
\begin{aligned}
& S_{\mathrm{I}}(N, U, V):=\sum_{t \leq U V} \max _{w}\left|\sum_{w \leq r \leq N / t} f(r t)\right|, \\
& S_{\mathrm{II}}(N, U, V):=\max _{\substack{U \leq M \leq N / V \\
V \leq q \leq N / M}} \sum_{V<p \leq N / M}\left|\sum_{\substack{M<m \leq 2 M \\
m \leq \min (N / p, N / q)}} f(m p) \overline{f(m q)}\right| .
\end{aligned}
$$

Good control over $S_{\text {I }}$ will simplify the treatment of $S_{\text {II }}$.
Choose $U=N^{3 / 4}$ (and V small).
$\Rightarrow S_{I}$, inner sum: the difference t is usually large ($\gg N^{3 / 4-\varepsilon}$) compared to the length of the sum $\left(\ll N^{1 / 4+\varepsilon}\right)$.

- $S_{\text {II }}$, inner sum: the differences p and q will be small $\left(\ll N^{1 / 4}\right)$ compared to the length of the sum $\left(\gg N^{3 / 4}\right)$.

Let us write

$$
\begin{aligned}
& S_{\mathrm{I}}(N, U, V):=\sum_{t \leq U V} \max _{w}\left|\sum_{w \leq r \leq N / t} f(r t)\right|, \\
& S_{\mathrm{II}}(N, U, V):=\max _{\substack{U \leq M \leq N / V \\
V \leq q \leq N / M}} \sum_{V<p \leq N / M}\left|\sum_{\substack{M<m \leq 2 M \\
m \leq \min (N / p, N / q)}} f(m p) \overline{f(m q)}\right| .
\end{aligned}
$$

Good control over $S_{\text {I }}$ will simplify the treatment of $S_{\text {II }}$.
Choose $U=N^{3 / 4}$ (and V small).
$-S_{\mathrm{I}}$, inner sum: the difference t is usually large ($\gg N^{3 / 4-\varepsilon}$) compared to the length of the sum $\left(\ll N^{1 / 4+\varepsilon}\right)$.
$>S_{\text {II }}$, inner sum: the differences p and q will be small $\left(\ll N^{1 / 4}\right)$ compared to the length of the sum ($\gg N^{3 / 4}$).

Let us write

$$
\begin{aligned}
& S_{\mathrm{I}}(N, U, V):=\sum_{t \leq U V} \max _{w}\left|\sum_{w \leq r \leq N / t} f(r t)\right|, \\
& S_{\mathrm{II}}(N, U, V):=\max _{\substack{U \leq M \leq N / V \\
V \leq q \leq N / M}} \sum_{V<p \leq N / M}\left|\sum_{\substack{M<m \leq 2 M \\
m \leq \min (N / p, N / q)}} f(m p) \overline{f(m q)}\right| .
\end{aligned}
$$

Good control over $S_{\text {I }}$ will simplify the treatment of $S_{\text {II }}$.

Choose $U=N^{3 / 4}$ (and V small).
$-S_{\mathrm{I}}$, inner sum: the difference t is usually large ($\gg N^{3 / 4-\varepsilon}$) compared to the length of the sum $\left(\ll N^{1 / 4+\varepsilon}\right)$.

- $S_{\text {II }}$, inner sum: the differences p and q will be small $\left(\ll N^{1 / 4}\right)$ compared to the length of the sum ($\gg N^{3 / 4}$).

We establish a strong estimate for type-I sums -

"the Zeckendorf sum-of-digits function has level of distribution 1".

Theorem (DMS 2022+)
Let $\varepsilon>0$. There exist $c_{1}=c_{1}(\varepsilon)>0$ and $C=C(\varepsilon)>0$ such that for all $\vartheta \in \mathbb{R}$ and all real $x \geq 2$,

$$
\sum_{1 \leq d \leq D} \max _{\substack{y, z \geq 0 \\ z-y \leq x}} \max _{0 \leq a<d}\left|\sum_{\substack{y \leq n<z \\ n \equiv a \bmod d}} \mathrm{e}(\vartheta \mathrm{z}(n))\right| \leq C(\log x)^{11 / 4} x^{1-c_{1}\|\vartheta\|^{2}}
$$

where $D=x^{1-\varepsilon}$.
This is a statement on z along very sparse finite arithmetic progressions

$$
A+\left(0, d^{\prime}, 2 d^{\prime}, 3 d^{\prime}, \ldots,(N-1) d^{\prime}\right)
$$

We establish a strong estimate for type-I sums -

"the Zeckendorf sum-of-digits function has level of distribution 1".

Theorem (DMS 2022+)
Let $\varepsilon>0$. There exist $c_{1}=c_{1}(\varepsilon)>0$ and $C=C(\varepsilon)>0$ such that for all $\vartheta \in \mathbb{R}$ and all real $x \geq 2$,

$$
\sum_{1 \leq d \leq D} \max _{\substack{y, z \geq 0 \\ z-y \leq x}} \max _{0 \leq a<d}\left|\sum_{\substack{y \leq n<z \\ n \equiv a \bmod d}} \mathrm{e}(\vartheta \mathrm{z}(n))\right| \leq C(\log x)^{11 / 4} x^{1-c_{1}\|\vartheta\|^{2}}
$$

where $D=x^{1-\varepsilon}$.

This is a statement on z along very sparse finite arithmetic progressions

$$
A+(0, d, 2 d, 3 d, \ldots,(N-1) d)
$$

for average moduli d.

- The proof of this statement is based on the corresponding paper for the Thue-Morse sequence $\mathrm{t}(n)=(-1)^{\mathrm{s}_{2}(n)}$ (S., Compos. Math 2020):

Sketch of proof of S2020.

- Apply the van der Corput inequality repeatedly in order to obtain higher order correlations.
- Estimate

nontrivially, where $\mathrm{s}_{2}^{(\rho)}(n)=s_{2}\left(n \bmod 2^{\rho}\right)$.
- Such an estimate of a Gowers norm of t was basically given by Konieczny (2019).
- The proof of this statement is based on the corresponding paper for the Thue-Morse sequence $\mathrm{t}(n)=(-1)^{\mathrm{s}_{2}(n)}$ (S., Compos. Math 2020):

Sketch of proof of S2020.

- Apply the van der Corput inequality repeatedly in order to obtain higher order correlations.
- Estimate

nontrivially, where $\mathrm{s}_{2}^{(\rho)}(n)=s_{2}\left(n \bmod 2^{\rho}\right)$.
- Such an estimate of a Gowers norm of t was basically given by Konieczny (2019).
- The proof of this statement is based on the corresponding paper for the Thue-Morse sequence $\mathrm{t}(n)=(-1)^{\mathrm{s}_{2}(n)}$ (S., Compos. Math 2020):

Sketch of proof of S2020.

- Apply the van der Corput inequality repeatedly in order to obtain higher order correlations.
- Estimate

$$
\sum_{\substack{0 \leq n<2^{\rho} \\ 0 \leq r_{1}, \ldots, r_{m}<2^{\rho}}} \mathrm{e}\left(\frac{1}{2} \sum_{\varepsilon \in\{0,1\}^{m}} \mathrm{~s}_{2}^{(\rho)}(n+\varepsilon \cdot r)\right),
$$

nontrivially, where $\mathrm{s}_{2}^{(\rho)}(n)=s_{2}\left(n \bmod 2^{\rho}\right)$.

- Such an estimate of a Gowers norm of t was basically given by Konieczny (2019).
- The proof of this statement is based on the corresponding paper for the Thue-Morse sequence $\mathrm{t}(n)=(-1)^{\mathrm{s}_{2}(n)}$ (S., Compos. Math 2020):

Sketch of proof of S2020.

- Apply the van der Corput inequality repeatedly in order to obtain higher order correlations.
- Estimate

$$
\sum_{\substack{0 \leq n<2^{\rho} \\ 0 \leq r_{1}, \ldots, r_{m}<2^{\rho}}} \mathrm{e}\left(\frac{1}{2} \sum_{\varepsilon \in\{0,1\}^{m}} \mathrm{~s}_{2}^{(\rho)}(n+\varepsilon \cdot r)\right),
$$

nontrivially, where $\mathrm{s}_{2}^{(\rho)}(n)=s_{2}\left(n \bmod 2^{\rho}\right)$.

- Such an estimate of a Gowers norm of t was basically given by Konieczny (2019).

Eliminating digits

Consider a digital expansion along a sparse arithmetic progression: in each step, many digits change!

Each application of van der Corput's inequality "eliminates" digits with indices in a certain interval $[A, B)$.

It is easy to detect base- q digits $\delta_{j}(n)$ with indices in $[A, B)$: we have

$$
\left(\delta_{A}(n), \ldots, \delta_{B-1}(n)\right)=\left(\nu_{A}, \ldots, \nu_{B-1}\right) \quad \text { if and only if } \quad\left\{\frac{n}{q^{B}}\right\} \in J,
$$

where

$$
J=\left[\frac{m}{q^{B-A}}, \frac{m+1}{q^{B-A}}\right) \quad \text { and } \quad m=\sum_{A \leq j<B} \nu_{j} q^{j-A} .
$$

The indicator function $1 J$ can be approximated by trigonometric polynomials.

Eliminating digits

Consider a digital expansion along a sparse arithmetic progression:

```
in each step, many digits change!
```

Each application of van der Corput's inequality "eliminates" digits with indices in a certain interval $[A, B)$.

It is easy to detect base- q digits $\delta_{j}(n)$ with indices in $[A, B)$: we have

$$
\left(\delta_{A}(n), \ldots, \delta_{B-1}(n)\right)=\left(\nu_{A}, \ldots, \nu_{B-1}\right) \quad \text { if and only if } \quad\left\{\frac{n}{q^{B}}\right\} \in J
$$

where

$$
J=\left[\frac{m}{q^{B-A}}, \frac{m+1}{q^{B-A}}\right) \quad \text { and } \quad m=\sum_{A \leq j<B} \nu_{j} q^{j-A} .
$$

The indicator function $1 J$ can be approximated by trigonometric polynomials.

Eliminating digits

Consider a digital expansion along a sparse arithmetic progression:

in each step, many digits change!

Each application of van der Corput's inequality "eliminates" digits with indices in a certain interval $[A, B)$.

It is easy to detect base- q digits $\delta_{j}(n)$ with indices in $[A, B)$: we have

$$
\left(\delta_{A}(n), \ldots, \delta_{B-1}(n)\right)=\left(\nu_{A}, \ldots, \nu_{B-1}\right) \quad \text { if and only if } \quad\left\{\frac{n}{q^{B}}\right\} \in J
$$

where

$$
J=\left[\frac{m}{q^{B-A}}, \frac{m+1}{q^{B-A}}\right) \quad \text { and } \quad m=\sum_{A \leq j<B} \nu_{j} q^{j-A} .
$$

The indicator function 1 J can be approximated by trigonometric polynomials.

Eliminating digits

Consider a digital expansion along a sparse arithmetic progression:

in each step, many digits change!

Each application of van der Corput's inequality "eliminates" digits with indices in a certain interval $[A, B)$.

It is easy to detect base- q digits $\delta_{j}(n)$ with indices in $[A, B)$: we have

$$
\left(\delta_{A}(n), \ldots, \delta_{B-1}(n)\right)=\left(\nu_{A}, \ldots, \nu_{B-1}\right) \quad \text { if and only if } \quad\left\{\frac{n}{q^{B}}\right\} \in J
$$

where

$$
J=\left[\frac{m}{q^{B-A}}, \frac{m+1}{q^{B-A}}\right) \quad \text { and } \quad m=\sum_{A \leq j<B} \nu_{j} q^{j-A} .
$$

The indicator function $1 J$ can be approximated by trigonometric polynomials.

The Zeckendorf case: digit detection

Ostrowski expansion, $\varphi=\frac{\sqrt{5}+1}{2}$: The Zeckendorf digits of n with indices below B are equal to prescribed values if and only if

$$
n \varphi
$$

is contained in a certain interval modulo 1 .

The blue and red intervals are separated \leadsto integers having Zeckendorf expansion $\cdots * * 00 *$ cannot be detected by a single interval.

The Zeckendorf case: digit detection

Ostrowski expansion, $\varphi=\frac{\sqrt{5}+1}{2}$: The Zeckendorf digits of n with indices below B are equal to prescribed values if and only if

$$
n \varphi
$$

is contained in a certain interval modulo 1 .

The blue and red intervals are separated \leadsto integers having Zeckendorf expansion $\cdots * * 00 *$ cannot be detected by a single interval.

Wrap

Wrap this around the two-dimensional torus in such a way that adjacent digit combinations (w.r.t. the lexicographical ordering) lie "parallel to each other" (illustration in a moment): set

$$
p(n)=\left(\frac{n}{\varphi^{B}}, \frac{n}{\varphi^{B+1}}\right) .
$$

The closure of the set of points $p(n) \bmod 1 \times 1$ is a union of finitely many line segments, since

$$
\frac{F_{B+1}}{\varphi^{B}}+\frac{F_{B}}{\varphi^{B+1}}=1
$$

Wrap

Wrap this around the two-dimensional torus in such a way that adjacent digit combinations (w.r.t. the lexicographical ordering) lie "parallel to each other" (illustration in a moment): set

$$
p(n)=\left(\frac{n}{\varphi^{B}}, \frac{n}{\varphi^{B+1}}\right) .
$$

The closure of the set of points $p(n) \bmod 1 \times 1$ is a union of finitely many line segments, since

$$
\frac{F_{B+1}}{\varphi^{B}}+\frac{F_{B}}{\varphi^{B+1}}=1
$$

Detecting the lowest Zeckendorf digit: $B=3$

The least significant digit is given by the Fibonacci word

$$
F=(0100101001001010010100100101001001 \cdots),
$$

the fixed point of the Fibonacci substitution $\sigma: 0 \mapsto 01,1 \mapsto 0$.

Detecting the lowest Zeckendorf digit: $B=3$

The least significant digit is given by the Fibonacci word

$$
F=(0100101001001010010100100101001001 \cdots)
$$

the fixed point of the Fibonacci substitution $\sigma: 0 \mapsto 01,1 \mapsto 0$.

One significant digit: $\mathrm{B}=3$

Three significant digits
no longer separated!

$$
\underbrace{000,001}, 010,100,101
$$

The Zeckendorf digits of n with indices in $[A, B)$ are equal to prescribed values $\omega_{A}, \ldots, \omega_{B-1}$ if and only if

$$
\left(\frac{n}{\varphi^{B}}, \frac{n}{\varphi^{B+1}}\right)
$$

is contained in $Q+\mathbb{Z}^{2}$, where Q is a certain parallelogram depending on the values $\omega_{j} . \quad \leadsto$ trigonometric approximation of Q !

Together with the following lemma, we may eliminate Zeckendorf digits in our sum $\sum_{n} \mathrm{e}(\vartheta \mathrm{z}(n d+a))$.
Lemma (generalized vdC inequality)
Let I be a finite interval in \mathbb{Z} containing M integers and $x_{m} \in \mathbb{C}$ for $m \in I$. Assume that $K \subset \mathbb{N}$ is a finite nonempty set. Then

The Zeckendorf digits of n with indices in $[A, B)$ are equal to prescribed values $\omega_{A}, \ldots, \omega_{B-1}$ if and only if

$$
\left(\frac{n}{\varphi^{B}}, \frac{n}{\varphi^{B+1}}\right)
$$

is contained in $Q+\mathbb{Z}^{2}$, where Q is a certain parallelogram depending on the values $\omega_{j} . \quad \leadsto$ trigonometric approximation of Q !

Together with the following lemma, we may eliminate Zeckendorf digits in our sum $\sum_{n} \mathrm{e}(\vartheta \mathrm{z}(n d+a))$.
Lemma (generalized vdC inequality)
Let I be a finite interval in \mathbb{Z} containing M integers and $x_{m} \in \mathbb{C}$ for $m \in I$. Assume that $K \subset \mathbb{N}$ is a finite nonempty set. Then

$$
\left|\sum_{m \in I} x_{m}\right|^{2} \leq \frac{M+\max K-\min K}{|K|^{2}} \sum_{\left(k, k^{\prime}\right) \in K^{2}} \sum_{m \in I \cap\left(I-k+k^{\prime}\right)} x_{m} \overline{x_{m+k-k^{\prime}}}
$$

- Apply this process repeatedly, until only few digits remain. - In analogy to the Thue-Morse case, it remained to estimate a Gowers (type) norm for the Zeckendorf sum-of-digits function.
- Apply this process repeatedly, until only few digits remain.
- In analogy to the Thue-Morse case, it remained to estimate a Gowers (type) norm for the Zeckendorf sum-of-digits function.
- Apply this process repeatedly, until only few digits remain.
- In analogy to the Thue-Morse case, it remained to estimate a Gowers (type) norm for the Zeckendorf sum-of-digits function.
$2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83$, $89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173$, $179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263$, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, $367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457$, $461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569$, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, $661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769$, $773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881$, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997,

Generalizations

For the (Ostrowski) α-sum-of-digits function s_{α}, we expect that the method generalizes, at least for the case that α is an algebraic number. Algebraicity is probably needed for multi-dimensional detection.

More interestingly, we are interested in morphic sequences: take a fixed point of a substitution over a finite alphabet, and possibly rename the letters afterwards. Examples: the Thue-Morse sequence defined by
or the Zeckendorf sum-of-digits function modulo 2,

Automatic sequences were treated by Müllner (Duke Math. J. 2017), but
the general case (morphic sequences) is wide open.

Generalizations

For the (Ostrowski) α-sum-of-digits function s_{α}, we expect that the method generalizes, at least for the case that α is an algebraic number. Algebraicity is probably needed for multi-dimensional detection.

More interestingly, we are interested in morphic sequences: take a fixed point of a substitution over a finite alphabet, and possibly rename the letters afterwards. Examples: the Thue-Morse sequence defined by

$$
\sigma: 0 \mapsto 01, \quad 1 \mapsto 10,
$$

or the Zeckendorf sum-of-digits function modulo 2,

$$
\sigma:\left\{\begin{array}{lll}
\mathrm{a} & \mapsto & \mathrm{ad} \\
\mathrm{~b} & \mapsto & \mathrm{a} \\
\mathrm{c} & \mapsto & \mathrm{cb} \\
\mathrm{~d} & \mapsto & \mathrm{c}
\end{array}\right\}, \quad \pi:\left\{\begin{array}{lll}
\mathrm{a} & \mapsto & 0 \\
\mathrm{~b} & \mapsto & 0 \\
\mathrm{c} & \mapsto & 1 \\
\mathrm{~d} & \mapsto & 1
\end{array}\right\} .
$$

Automatic sequences were treated by Müllner (Duke Math. J. 2017), but
the general case (morphic sequences) is wide open.

Generalizations

For the (Ostrowski) α-sum-of-digits function s_{α}, we expect that the method generalizes, at least for the case that α is an algebraic number. Algebraicity is probably needed for multi-dimensional detection.

More interestingly, we are interested in morphic sequences: take a fixed point of a substitution over a finite alphabet, and possibly rename the letters afterwards. Examples: the Thue-Morse sequence defined by

$$
\sigma: 0 \mapsto 01, \quad 1 \mapsto 10,
$$

or the Zeckendorf sum-of-digits function modulo 2,

$$
\sigma:\left\{\begin{array}{lll}
\mathrm{a} & \mapsto & \mathrm{ad} \\
\mathrm{~b} & \mapsto & \mathrm{a} \\
\mathrm{c} & \mapsto & \mathrm{cb} \\
\mathrm{~d} & \mapsto & \mathrm{c}
\end{array}\right\}, \quad \pi:\left\{\begin{array}{lll}
\mathrm{a} & \mapsto & 0 \\
\mathrm{~b} & \mapsto & 0 \\
\mathrm{c} & \mapsto & 1 \\
\mathrm{~d} & \mapsto & 1
\end{array}\right\} .
$$

Automatic sequences were treated by Müllner (Duke Math. J. 2017), but the general case (morphic sequences) is wide open.

Linear recurrent number systems

The Tribonacci numeration system is based on the Tribonacci numbers

$$
\begin{aligned}
a_{n} & =a_{n-1}+a_{n-2}+a_{n-3}, \\
a_{0} & =a_{1}=0, a_{2}=1, \quad \text { that is, } \\
\left(a_{n}\right)_{n \geq 3} & =(1,2,4,7,13,24,44,81,149, \ldots) .
\end{aligned}
$$

Every natural number is the unique sum of pairwise different $a_{n}, n \geq 3$, where taking three consecutive numbers is forbidden.
The lowest two Tribonacci digits exhibit a close connection to the Tribonacci word

Linear recurrent number systems

The Tribonacci numeration system is based on the Tribonacci numbers

$$
\begin{aligned}
a_{n} & =a_{n-1}+a_{n-2}+a_{n-3} \\
a_{0} & =a_{1}=0, a_{2}=1, \quad \text { that is, } \\
\left(a_{n}\right)_{n \geq 3} & =(1,2,4,7,13,24,44,81,149, \ldots) .
\end{aligned}
$$

Every natural number is the unique sum of pairwise different $a_{n}, n \geq 3$, where taking three consecutive numbers is forbidden.
The lowest two Tribonacci digits exhibit a close connection to the Tribonacci word

Linear recurrent number systems

The Tribonacci numeration system is based on the Tribonacci numbers

$$
\begin{aligned}
a_{n} & =a_{n-1}+a_{n-2}+a_{n-3}, \\
a_{0} & =a_{1}=0, a_{2}=1, \quad \text { that is, } \\
\left(a_{n}\right)_{n \geq 3} & =(1,2,4,7,13,24,44,81,149, \ldots) .
\end{aligned}
$$

Every natural number is the unique sum of pairwise different $a_{n}, n \geq 3$, where taking three consecutive numbers is forbidden.
The lowest two Tribonacci digits exhibit a close connection to the Tribonacci word

$$
\sigma:\left\{\begin{array}{lll}
0 & \mapsto & 01 \\
1 & \mapsto & 02 \\
2 & \mapsto & 0
\end{array}\right\} .
$$

Tribonacci sum of digits

Meanwhile, the Tribonacci sum-of-digits function modulo 2 appears to be given by

$$
\sigma:\left\{\begin{array}{lll}
\mathrm{a} & \mapsto & \mathrm{ae} \\
\mathrm{~b} & \mapsto & \mathrm{af} \\
\mathrm{c} & \mapsto & \mathrm{a} \\
\mathrm{~d} & \mapsto & \mathrm{db} \\
\mathrm{e} & \mapsto & \mathrm{dc} \\
\mathrm{f} & \mapsto & \mathrm{~d}
\end{array}\right\}, \quad \pi:\left\{\begin{array}{lll}
\mathrm{a} & \mapsto & 0 \\
\mathrm{~b} & \mapsto & 0 \\
\mathrm{c} & \mapsto & 0 \\
\mathrm{~d} & \mapsto & 1 \\
\mathrm{e} & \mapsto & 1 \\
\mathrm{f} & \mapsto & 1
\end{array}\right\} .
$$

$$
\operatorname{tr}=0110100100101100101101101001011011010011010 \cdots
$$

Detecting a given letter in the Tribonacci word leads to the (classical) two-dimensional Rauzy fractal.

Figure: Jolivet, Loridant, Luo 2014

> For detecting Tribonacci digits with indices in $[A, B)$, we will have to consider three-dimensional cylinders with the Rauzy fractal as base!

Detecting a given letter in the Tribonacci word leads to the (classical) two-dimensional Rauzy fractal.

Figure: Jolivet, Loridant, Luo 2014
For detecting Tribonacci digits with indices in $[A, B)$, we will have to consider three-dimensional cylinders with the Rauzy fractal as base!

Thank you!

