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Section 1

Thue–Morse [t0: mO:rs]
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The Thue–Morse sequence t is the fixed point of the substitution

0 7→ 01, 1 7→ 10

that starts with 0.
It is given by the binary sum-of-digits function s, reduced modulo 2.

0 1

0

1

1

0

t = 01101001100101101001011001101001 · · ·
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Thue–Morse ⇌ Koch

The sequence n 7→ (−1)s(n) e(−n/3) describes the orientation of the nth
segment in the “unscaled Koch (snowflake) curve” (where e(x) = e2πix):
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The sum of digits along arithmetic progressions

e
(
1
2s(3n)− n/5

)
e
(
2
5s(3n)− n/5

)
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The sum of digits along arithmetic progressions

e(s(3n)/3)(−1)n e(s(7n)/3)(−1)n
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The sum of digits along arithmetic progressions

e(s(7n)/3)(−1)n, closeup
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Every finite sequence ω ∈ {0, 1}L appears as an arithmetic subsequence of
t: the Thue–Morse word has full arithmetical complexity
(Avgustinovich–Fon-Der-Flaass–Frid 2003, Müllner–Spiegelhofer 2017,
Konieczny–Müllner 2023+).

Short arithmetic subsequences of t even seems to behave randomly.

N = 128× 128 terms, common difference NR = 321

every pattern occurs

Lukas Spiegelhofer (MU Leoben) Thue–Morse along the sequence of cubes Sep 19, 2023 8 / 25



Every finite sequence ω ∈ {0, 1}L appears as an arithmetic subsequence of
t: the Thue–Morse word has full arithmetical complexity
(Avgustinovich–Fon-Der-Flaass–Frid 2003, Müllner–Spiegelhofer 2017,
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Informal question

Let A ≫ NR , and assume that A contains many blocks of 1s in binary. Is

P : {0, . . . ,N} → {0, 1}, n 7→ t(nA+ B)

a good pseudorandom number generator?
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Gelfond’s third problem

Let S = sq be the sum-of-digits function in base q ≥ 2.

Finalement, signalons comme problème à résoudre
l’estimation du nombre des valeurs du polynôme P(t)
ne prenant que des valeurs entières sur l’ensemble [ . . . ] des
entiers rationels, pour lesquelles on a S [P(n)] ≡ ℓ mod m.

A. O. Gelfond, 1967/1968

That is, if P is a polynomial such that P(N) ⊆ N, we are interested in

A(q,P,m, ℓ, x) := #
{
n < x : sq(P(n)) ≡ ℓ mod m

}
.
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l’estimation du nombre des valeurs du polynôme P(t)
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Partial results

↓
0
↓
110

↓
10011

↓
0010110

↓
100101100

↓
11010011001

↓
0110011010010

↓
1

▶ Lower bounds for the numbers A(q,P,m, ℓ, x) are known
(Dartyge–Tenenbaum 2006; Stoll 2012);

▶ For “sufficiently large bases” q coprime to the leading coefficient of
P, and gcd(q − 1,m) = 1, the equivalence A(q,P,m, ℓ, x) ∼ x/m has
been proved (Drmota–Mauduit–Rivat 2011);

▶ The case P(x) = x2 has been answered by Mauduit and Rivat (Acta
Math., 2009).
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Generalizations

The Thue–Morse sequence along n2 is normal (Drmota–Mauduit–Rivat):
each finite sequence over {0, 1} of length L appears with frequency 2−L

along t(n2).

Partial sums of t
(
n2
)
for x < 223:

A drift appears to be present. How is this related to the fact that n2

avoids 2 + 3Z?
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Conjecture ( )

There exist real numbers c and η, and a 1-periodic, continuous, nowhere
differentiable function Φ, such that∑

n<x

t
(
n2
)
∼ cxηΦ

(
log x/ log 2

)
.
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The main result

Theorem (S. 2023+)

There exist real numbers c > 0 and C such that for all x ≥ 1,∣∣∣#{
n < x : t

(
n3
)
= 0

}
− x

2

∣∣∣ ≤ Cx1−c . (1)
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Section 2

Sketch of the proof
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▶ We are interested in the sum

S0 :=
∑
n<2ν

e
(
1
2s(n

3)
)
.

▶ After an application of van der Corput’s inequality it remains to
handle the correlation∑

n<2ν

e
(
1
2s2

(
(n + r)3

)
− 1

2s2
(
n3
))

.

▶ But (n + r)3 and n3 usually have the same digits with indices above

λ := ν(2 + ε),

if r is small compared to 2ν . These digits can therefore be discarded.

▶ This is standard.
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S. 2020

In the paper (Compos. Math. 2020) we apply van der Corput’s inequality
repeatedly in order to eliminate blocks of digits, piece by piece.

In this way, a statement on very sparse arithmetic subsequences of t could
be derived. These progressions have length ≍ N, while their common
difference is ≍ NR , where R > 0 is arbitrary!

But: iterated van der Corput could so far not be used for removing
sufficiently many digits of polynomial values, if degP > 1.

s2
(
n3
)
− s2

(
(n + r)3

)
− s2

(
(n + s)3

)
+ s2

(
(n + r + s)3

)
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A trivial decomposition

We write
n = 2ρn1 + n0,

where 3ρ ≥ λ and n0 < 2ρ. The variable n0 is treated as a parameter.
Expanding n3 mod 2λ, we see that the cubic term in n1 disappears.

On the critical interval [2ρ, λ) of length κ := λ− 2ρ, the term n21 is still
relevant.

?
After removing this complication, a linear problem remains,
which can be handled by an extension of the method in
[S. 2020] . . .

! In the actual proof, the elimination of the digits in the critical
interval [2ρ, λ) comes first.
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The critical interval of digits

For a subset J ⊆ N, let sJ denote the restricted binary sum-of-digits
function: only digits with indices in J are counted. We write

S0 =
∑

0≤j<2κ

(−1)s2(j)
∑
n<2ν

e
(
1
2s

N\[2ρ,λ)(n3))[[n3
2λ

∈
[
j

2κ
,
j + 1

2κ

)
+ Z

]]
.

(1) An additional sum of length 2κ is introduced;

(2) The “prepared” set N \ [2ρ, λ) will lead to a linear sum-of-digits
problem after cutting away the digits with indices ≥ λ (as above);

(3) The rightmost factor is approximated by a trigonometric polynomial,
evaluated at n3/2λ.
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Even sketchier idea of the proof

▶ Writing n = 2ρn1 + n0 as before, the term n31 does not appear in the
argument of the trigonometric polynomial.

▶ Applying van der Corput’s inequality, the degree of the argument (in
n1) is reduced by 1 once more.

▶ The linear trigonometric polynomial in n1 is decoupled from the sum
over n, using suitable arithmetic subsequences and summation by
parts.

▶ The sum over h together with the decoupled exponential term yields a
geometric sum ∑

0≤h<H

e(hx) ≪ min
(
H, ∥x∥−1

)
,

where ∥x∥ is the distance of x to the nearest integer.

This is only logarithmic in mean (over x)!
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Essence of the proof

Summarizing, the additional sum introduced for digit detection in the
critical interval only contributes a logarithm. A linear digital problem
remains, for which there are methods available.
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THANK YOU!
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van der Corput’s inequality

Lemma
Let I be a finite interval containing N integers and let an be a complex
number for n ∈ I . For all integers K ≥ 1 and R ≥ 1 we have∣∣∣∣∣∑

n∈I
an

∣∣∣∣∣
2

≤ N + K (R − 1)

R

∑
|r |<R

(
1− |r |

R

) ∑
n∈I

n+Kr∈I

an+Kran.

Instead of the original sum, we now have to estimate certain correlations
(where KR will be small compared to N).
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