Thue–Morse along the sequence of cubes

Lukas Spiegelhofer

Sep 19, 2023 ÖMG Tagung 2023, Universität Graz

Lukas Spiegelhofer (MU Leoben)

Thue-Morse along the sequence of cubes

Sep 19, 2023

Section 1

Thue–Morse [tuː mɔːrs]

Lukas Spiegelhofer (MU Leoben)

Thue–Morse along the sequence of cubes

Sep 19, 2023

The Thue–Morse sequence \mathbf{t} is the fixed point of the substitution

 $0\mapsto 01, \quad 1\mapsto 10$

that starts with 0.

It is given by the binary sum-of-digits function s, reduced modulo 2.

 $t = \texttt{01101001100101100101100101100101} \cdots$

Lukas Spiegelhofer (MU Leoben)

Thue–Morse \rightleftharpoons Koch

The sequence $n \mapsto (-1)^{s(n)} e(-n/3)$ describes the orientation of the *n*th segment in the "unscaled Koch (snowflake) curve" (where $e(x) = e^{2\pi i x}$):

The sum of digits along arithmetic progressions

Lukas Spiegelhofer (MU Leoben)

Thue-Morse along the sequence of cubes

Sep 19, 2023

The sum of digits along arithmetic progressions

Lukas Spiegelhofer (MU Leoben)

Thue-Morse along the sequence of cubes

Sep 19, 2023

The sum of digits along arithmetic progressions

 $e(s(7n)/3)(-1)^n$, closeup

Lukas Spiegelhofer (MU Leoben)

Every finite sequence $\omega \in \{0,1\}^L$ appears as an arithmetic subsequence of **t**: the Thue–Morse word has full *arithmetical complexity* (Avgustinovich–Fon-Der-Flaass–Frid 2003, Müllner–Spiegelhofer 2017, Konieczny–Müllner 2023+).

Every finite sequence $\omega \in \{0,1\}^L$ appears as an arithmetic subsequence of **t**: the Thue–Morse word has full *arithmetical complexity* (Avgustinovich–Fon-Der-Flaass–Frid 2003, Müllner–Spiegelhofer 2017, Konieczny–Müllner 2023+).

Short arithmetic subsequences of **t** even seems to behave randomly.

Lukas Spiegelhofer (MU Leoben)

Every finite sequence $\omega \in \{0,1\}^L$ appears as an arithmetic subsequence of **t**: the Thue–Morse word has full *arithmetical complexity* (Avgustinovich–Fon-Der-Flaass–Frid 2003, Müllner–Spiegelhofer 2017, Konieczny–Müllner 2023+).

Short arithmetic subsequences of **t** even seems to behave randomly.

Lukas Spiegelhofer (MU Leoben)

Informal question Let $A \gg N^R$, and assume that A contains many blocks of 1s in binary. Is $P: \{0, ..., N\} \rightarrow \{0, 1\}, n \mapsto t(nA + B)$

a good pseudorandom number generator?

Gelfond's third problem

Let $S = s_q$ be the sum-of-digits function in base $q \ge 2$.

Finalement, signalons comme problème à résoudre l'estimation du nombre des valeurs du polynôme P(t)ne prenant que des valeurs entières sur l'ensemble [...] des entiers rationels, pour lesquelles on a $S[P(n)] \equiv \ell \mod m$.

A. O. Gelfond, 1967/1968

10 / 25

Gelfond's third problem

Let $S = s_q$ be the sum-of-digits function in base $q \ge 2$.

Finalement, signalons comme problème à résoudre l'estimation du nombre des valeurs du polynôme P(t)ne prenant que des valeurs entières sur l'ensemble [...] des entiers rationels, pour lesquelles on a $S[P(n)] \equiv \ell \mod m$.

A. O. Gelfond, 1967/1968

That is, if P is a polynomial such that $P(\mathbb{N}) \subseteq \mathbb{N}$, we are interested in

$$A(q, P, m, \ell, x) \coloneqq \# \big\{ n < x : s_q(P(n)) \equiv \ell \mod m \big\}.$$

Lukas Spiegelhofer (MU Leoben)

Thue–Morse along the sequence of cubes

10 / 25

Partial results

- Lower bounds for the numbers A(q, P, m, l, x) are known (Dartyge–Tenenbaum 2006; Stoll 2012);
- For "sufficiently large bases" q coprime to the leading coefficient of P, and gcd(q − 1, m) = 1, the equivalence A(q, P, m, ℓ, x) ~ x/m has been proved (Drmota–Mauduit–Rivat 2011);

The case P(x) = x² has been answered by Mauduit and Rivat (Acta Math., 2009).

Lukas Spiegelhofer (MU Leoben)

Partial results

- Lower bounds for the numbers A(q, P, m, l, x) are known (Dartyge–Tenenbaum 2006; Stoll 2012);
- For "sufficiently large bases" q coprime to the leading coefficient of P, and gcd(q − 1, m) = 1, the equivalence A(q, P, m, ℓ, x) ~ x/m has been proved (Drmota–Mauduit–Rivat 2011);

The case P(x) = x² has been answered by Mauduit and Rivat (Acta Math., 2009).

Lukas Spiegelhofer (MU Leoben)

Partial results

01 1 0 1 1 0 1

- Lower bounds for the numbers A(q, P, m, l, x) are known (Dartyge–Tenenbaum 2006; Stoll 2012);
- For "sufficiently large bases" q coprime to the leading coefficient of P, and gcd(q − 1, m) = 1, the equivalence A(q, P, m, ℓ, x) ~ x/m has been proved (Drmota–Mauduit–Rivat 2011);

The case P(x) = x² has been answered by Mauduit and Rivat (Acta Math., 2009).

Lukas Spiegelhofer (MU Leoben)

Generalizations

The Thue–Morse sequence along n^2 is normal (Drmota–Mauduit–Rivat): each finite sequence over $\{0,1\}$ of length L appears with frequency 2^{-L} along $\mathbf{t}(n^2)$.

Generalizations

The Thue–Morse sequence along n^2 is normal (Drmota–Mauduit–Rivat): each finite sequence over $\{0,1\}$ of length L appears with frequency 2^{-L} along $\mathbf{t}(n^2)$.

Partial sums of $\mathbf{t}(n^2)$ for $x < 2^{23}$:

A *drift* appears to be present. How is this related to the fact that n^2 avoids $2 + 3\mathbb{Z}$?

Lukas Spiegelhofer (MU Leoben)

Conjecture ($\stackrel{\text{```}}{\Box}$ $\stackrel{\text{```}}{\Box}$)

There exist real numbers c and η , and a 1-periodic, continuous, nowhere differentiable function Φ , such that

$$\sum_{n < x} \mathbf{t}(n^2) \sim c x^{\eta} \Phi(\log x / \log 2).$$

Theorem (S. 2023+)

There exist real numbers c > 0 and C such that for all $x \ge 1$,

$$\left|\#\left\{n < x : \mathbf{t}(n^3) = 0\right\} - \frac{x}{2}\right| \le C x^{1-c}.$$
 (1)

Section 2

Sketch of the proof

Lukas Spiegelhofer (MU Leoben)

Thue–Morse along the sequence of cubes

Sep 19, 2023

$$S_0 \coloneqq \sum_{n < 2^{\nu}} \mathrm{e}\Big(\frac{1}{2} s(n^3) \Big).$$

Lukas Spiegelhofer (MU Leoben)

16 / 25

$$S_0 \coloneqq \sum_{n < 2^{\nu}} \mathrm{e}\Big(\frac{1}{2}s(n^3)\Big).$$

 After an application of van der Corput's inequality it remains to handle the correlation

$$\sum_{n<2^{\nu}} \mathrm{e}\Big(\frac{1}{2}s_2\big((n+r)^3\big) - \frac{1}{2}s_2\big(n^3\big)\Big).$$

$$S_0 \coloneqq \sum_{n < 2^{\nu}} \mathrm{e}\Big(\frac{1}{2}s(n^3)\Big).$$

After an application of van der Corput's inequality it remains to handle the correlation

$$\sum_{n<2^{\nu}} \mathrm{e}\Big(\frac{1}{2}s_2\big((n+r)^3\big) - \frac{1}{2}s_2\big(n^3\big)\Big).$$

• But $(n + r)^3$ and n^3 usually have the same digits with indices above

$$\lambda \coloneqq \nu(2+\varepsilon),$$

if r is small compared to 2^{ν} . These digits can therefore be discarded.

Lukas Spiegelhofer (MU Leoben)

Thue-Morse along the sequence of cubes

Sep 19, 2023 16 / 25

$$S_0 \coloneqq \sum_{n < 2^{\nu}} \mathrm{e}\Big(\frac{1}{2}s(n^3)\Big).$$

After an application of van der Corput's inequality it remains to handle the correlation

$$\sum_{n<2^{\nu}} \mathrm{e}\Big(\frac{1}{2}s_2\big((n+r)^3\big) - \frac{1}{2}s_2\big(n^3\big)\Big).$$

• But $(n + r)^3$ and n^3 usually have the same digits with indices above

$$\lambda \coloneqq \nu(2+\varepsilon),$$

if r is small compared to 2^{ν} . These digits can therefore be discarded.

This is standard.

Lukas Spiegelhofer (MU Leoben) Thue–Morse along the sequence of cubes Sep 19, 2023 16 / 25

S. 2020

In the paper (Compos. Math. 2020) we apply van der Corput's inequality repeatedly in order to eliminate blocks of digits, piece by piece.

S. 2020

In the paper (Compos. Math. 2020) we apply van der Corput's inequality repeatedly in order to eliminate blocks of digits, piece by piece.

In this way, a statement on very sparse arithmetic subsequences of **t** could be derived. These progressions have length $\approx N$, while their common difference is $\approx N^R$, where R > 0 is arbitrary!

S. 2020

In the paper (Compos. Math. 2020) we apply van der Corput's inequality repeatedly in order to eliminate blocks of digits, piece by piece.

In this way, a statement on very sparse arithmetic subsequences of t could be derived. These progressions have length $\approx N$, while their common difference is $\approx N^R$, where R > 0 is arbitrary!

But: iterated van der Corput could so far not be used for removing sufficiently many digits of polynomial values, if deg P > 1.

$$s_2(n^3) - s_2((n+r)^3) - s_2((n+s)^3) + s_2((n+r+s)^3)$$

Lukas Spiegelhofer (MU Leoben)

We write

$$n=2^{\rho}n_1+n_0,$$

where $3\rho \ge \lambda$ and $n_0 < 2^{\rho}$. The variable n_0 is treated as a parameter. Expanding $n^3 \mod 2^{\lambda}$, we see that the cubic term in n_1 disappears.

We write

$$n=2^{\rho}n_1+n_0,$$

where $3\rho \ge \lambda$ and $n_0 < 2^{\rho}$. The variable n_0 is treated as a parameter. Expanding $n^3 \mod 2^{\lambda}$, we see that the cubic term in n_1 disappears.

On the critical interval $[2\rho, \lambda)$ of length $\kappa := \lambda - 2\rho$, the term n_1^2 is still relevant.

We write

$$n=2^{\rho}n_1+n_0,$$

where $3\rho \ge \lambda$ and $n_0 < 2^{\rho}$. The variable n_0 is treated as a parameter. Expanding $n^3 \mod 2^{\lambda}$, we see that the cubic term in n_1 disappears.

On the critical interval $[2\rho, \lambda)$ of length $\kappa := \lambda - 2\rho$, the term n_1^2 is still relevant.

After removing this complication, a linear problem remains, which can be handled by an extension of the method in [S. 2020] ...

We write

$$n=2^{\rho}n_1+n_0,$$

where $3\rho \ge \lambda$ and $n_0 < 2^{\rho}$. The variable n_0 is treated as a parameter. Expanding $n^3 \mod 2^{\lambda}$, we see that the cubic term in n_1 disappears.

On the critical interval $[2\rho, \lambda)$ of length $\kappa := \lambda - 2\rho$, the term n_1^2 is still relevant.

? After removing this complication, a linear problem remains, which can be handled by an extension of the method in [S. 2020] ...

In the actual proof, the elimination of the digits in the critical interval $[2\rho, \lambda)$ comes first.

Lukas Spiegelhofer (MU Leoben)

For a subset $J \subseteq \mathbb{N}$, let s^J denote the *restricted binary sum-of-digits* function: only digits with indices in J are counted. We write

$$S_0 = \sum_{0 \le j < 2^{\kappa}} (-1)^{s_2(j)} \sum_{n < 2^{\nu}} e\left(\frac{1}{2} s^{\mathbb{N} \setminus [2\rho, \lambda)}(n^3)\right) \left[\!\!\left[\frac{n^3}{2^{\lambda}} \in \left[\frac{j}{2^{\kappa}}, \frac{j+1}{2^{\kappa}}\right] + \mathbb{Z}\right]\!\!\right].$$

For a subset $J \subseteq \mathbb{N}$, let s^J denote the *restricted binary sum-of-digits* function: only digits with indices in J are counted. We write

$$S_0 = \sum_{0 \le j < 2^{\kappa}} (-1)^{s_2(j)} \sum_{n < 2^{\nu}} e\left(\frac{1}{2} s^{\mathbb{N} \setminus [2\rho, \lambda)}(n^3)\right) \left[\!\left[\frac{n^3}{2^{\lambda}} \in \left[\frac{j}{2^{\kappa}}, \frac{j+1}{2^{\kappa}}\right] + \mathbb{Z}\right]\!\right].$$

(1) An additional sum of length 2^{κ} is introduced;

For a subset $J \subseteq \mathbb{N}$, let s^J denote the *restricted binary sum-of-digits* function: only digits with indices in J are counted. We write

$$S_{0} = \sum_{0 \le j < 2^{\kappa}} (-1)^{s_{2}(j)} \sum_{n < 2^{\nu}} e\left(\frac{1}{2} s^{\mathbb{N} \setminus [2\rho, \lambda)}(n^{3})\right) \left[\!\left[\frac{n^{3}}{2^{\lambda}} \in \left[\frac{j}{2^{\kappa}}, \frac{j+1}{2^{\kappa}}\right] + \mathbb{Z}\right]\!\right].$$

(1) An additional sum of length 2^{κ} is introduced;

(2) The "prepared" set $\mathbb{N} \setminus [2\rho, \lambda)$ will lead to a linear sum-of-digits problem after cutting away the digits with indices $\geq \lambda$ (as above);

For a subset $J \subseteq \mathbb{N}$, let s^J denote the *restricted binary sum-of-digits* function: only digits with indices in J are counted. We write

$$S_{0} = \sum_{0 \leq j < 2^{\kappa}} (-1)^{s_{2}(j)} \sum_{n < 2^{\nu}} e\left(\frac{1}{2} s^{\mathbb{N} \setminus [2\rho, \lambda)}(n^{3})\right) \left[\frac{n^{3}}{2^{\lambda}} \in \left[\frac{j}{2^{\kappa}}, \frac{j+1}{2^{\kappa}}\right) + \mathbb{Z} \right].$$

- (1) An additional sum of length 2^{κ} is introduced;
- (2) The "prepared" set $\mathbb{N} \setminus [2\rho, \lambda)$ will lead to a linear sum-of-digits problem after cutting away the digits with indices $\geq \lambda$ (as above);
- (3) The rightmost factor is approximated by a trigonometric polynomial, evaluated at $n^3/2^{\lambda}$.

Lukas Spiegelhofer (MU Leoben)

• Writing $n = 2^{\rho} n_1 + n_0$ as before, the term n_1^3 does not appear in the argument of the trigonometric polynomial.

- Writing $n = 2^{\rho} n_1 + n_0$ as before, the term n_1^3 does not appear in the argument of the trigonometric polynomial.
- Applying van der Corput's inequality, the degree of the argument (in n₁) is reduced by 1 once more.

- Writing $n = 2^{\rho} n_1 + n_0$ as before, the term n_1^3 does not appear in the argument of the trigonometric polynomial.
- Applying van der Corput's inequality, the degree of the argument (in n₁) is reduced by 1 once more.
- The linear trigonometric polynomial in n₁ is *decoupled* from the sum over n, using suitable arithmetic subsequences and summation by parts.

- Writing $n = 2^{\rho} n_1 + n_0$ as before, the term n_1^3 does not appear in the argument of the trigonometric polynomial.
- Applying van der Corput's inequality, the degree of the argument (in n₁) is reduced by 1 once more.
- The linear trigonometric polynomial in n₁ is *decoupled* from the sum over n, using suitable arithmetic subsequences and summation by parts.
- The sum over h together with the decoupled exponential term yields a geometric sum

$$\sum_{0 \le h < H} \mathrm{e}(hx) \ll \min\left(H, \|x\|^{-1}\right),$$

where ||x|| is the distance of x to the nearest integer.

(

This is only logarithmic in mean (over x)!

Lukas Spiegelhofer (MU Leoben)

Essence of the proof

Summarizing, the additional sum introduced for digit detection in the critical interval only contributes a logarithm. A linear digital problem remains, for which there are methods available.

THANK YOU!

- M. DRMOTA, C. MAUDUIT, AND J. RIVAT, Normality along squares, J. Eur. Math. Soc, 21 (2019), pp. 507–548.
- A. O. GEL'FOND, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith., 13 (1967/1968), pp. 259–265.
- C. MAUDUIT AND J. RIVAT, *La somme des chiffres des carrés*, Acta Math., 203 (2009), pp. 107–148.
- L. SPIEGELHOFER, *The level of distribution of the Thue–Morse sequence*, Compos. Math., 156 (2020), pp. 2560–2587.

Preprint, http://arxiv.org/abs/2308.09498.

Supported by the FWF-ANR joint project ArithRand, and P36137 (FWF). Lukas Spiegelhofer (MU Leoben) Thue-Morse along the sequence of cubes Sep 19, 2023

23 / 25

Lukas Spiegelhofer (MU Leoben)

Thue–Morse along the sequence of cubes

Sep 19, 2023

van der Corput's inequality

Lemma

Let I be a finite interval containing N integers and let a_n be a complex number for $n \in I$. For all integers $K \ge 1$ and $R \ge 1$ we have

$$\left|\sum_{n\in I}a_n\right|^2 \leq \frac{N+K(R-1)}{R}\sum_{|r|< R}\left(1-\frac{|r|}{R}\right)\sum_{\substack{n\in I\\n+Kr\in I}}a_{n+Kr}\overline{a_n}.$$

Lukas Spiegelhofer (MU Leoben)

Thue–Morse along the sequence of cubes

Sep 19, 2023

van der Corput's inequality

Lemma

Let I be a finite interval containing N integers and let a_n be a complex number for $n \in I$. For all integers $K \ge 1$ and $R \ge 1$ we have

$$\left|\sum_{n\in I}a_n\right|^2 \leq \frac{N+K(R-1)}{R}\sum_{|r|< R}\left(1-\frac{|r|}{R}\right)\sum_{\substack{n\in I\\n+Kr\in I}}a_{n+Kr}\overline{a_n}.$$

Instead of the original sum, we now have to estimate certain correlations (where KR will be small compared to N).

Lukas Spiegelhofer (MU Leoben)