Subsequences of digitally defined functions

Lukas Spiegelhofer
University of Leoben, Austria

\square MONTAN
 universitiot

November 20, 2023, IMath Webinar

Outline

1. Digital expansions

2. Sparse subsequences
3. Long arithmetic subsequences

Section 1

Digital expansions

In the simplest case, a digital expansion Φ assigns to each natural number a finite string of digits in an injective manner.

n	$\Phi(n)$	n	$\Phi(n)$	n	$\Phi(n)$
0	0	8	1000	16	10000
1	1	9	1001	17	10001
2	10	10	1010	18	10010
3	11	11	1011	19	10011
4	100	12	1100	20	10100
5	101	13	1101	21	10101
6	110	14	1110	22	10110
7	111	15	1111	23	10111

Figure: The binary expansion

Let $s_{2}(n)$ be the number of $1 s$ in the binary expansion of n. The sequence s_{2} is a fixed point of the substitution defined by

$$
n \mapsto(n, n+1), \quad n \geq 0 .
$$

$$
s_{2}=01121223122323341223233423343445 \ldots
$$

$$
\begin{aligned}
s_{2}= & 01121223122323341223233423343445 \\
& 12232334233434452334344534454556 \ldots
\end{aligned}
$$

The Thue-Morse sequence

Let $\mathrm{t}(n)=\mathrm{s}_{2}(n) \bmod 2$.

$$
\mathrm{t}=01101001 \cdots .
$$

This sequence is an automatic sequence, and a fixed point of

$$
0 \mapsto 01, \quad 1 \mapsto 10 .
$$

Automatic sequences are given by deterministic finite automata with output (DFAO), where the input is the base- q expansion of integers.

2-automatic sequences

Each subsequence $n \mapsto \mathrm{t}(A n+B)$ is an automatic sequence.

Figure: An automaton for $\mathrm{t}(\mathrm{n})$

Figure: An automaton for $\mathrm{t}(3 n)$

Section 2

Sparse subsequences

Few big steps

General idea: along sparse subsequences, t behaves "randomly". For example, every finite sequence on $\{0,1\}$ appears as an arithmetic subsequence of t (Avgustinovich-Fon-Der-Flaass-Frid 2003, Müllner-Spiegelhofer 2017 ("correct" rate of appearance), Konieczny-Müllner 2023+ (general automatic sequences)).

Very sparse arithmetic subsequences of t

The Thue-Morse sequence has level of distribution 1.
Theorem (S. 2020, Compos. Math.)
For all $\varepsilon>0$ we have

$$
\sum_{1 \leq d \leq D} \max _{\substack{y, z \geq 0 \\ z-y \leq x}} \max _{0 \leq a<d}\left|\sum_{\substack{y \leq n<z \\ n \equiv a \bmod d}}(-1)^{s_{2}(n)}\right| \leq C x^{1-\eta}
$$

for some C and $\eta>0$ depending on ε, where $D=x^{1-\varepsilon}$.
In more relaxed language: let $R>0$. As $N \rightarrow \infty$, the following holds.
Most $d \asymp N^{R}$ have the property that for all a, the number

$$
\#\{0 \leq n<N: \mathrm{t}(n d+a)=0\}
$$

is close to $N / 2$.

Drmota-Müllner-S. 2023+

Together with Drmota and Müllner, we proved a theorem on the subsequence indexed by the sequence of primes. Let $z(n)$ be the smallest k such that n is the number of k Fibonacci numbers.
Theorem (Drmota-Müllner-S., to appear in Mem. Amer. Math. Soc.)

- The sequence $n \mapsto \exp (2 \pi i \vartheta z(n))$ has level of distribution 1 .
- For $m \geq 1$ and $a \in \mathbb{Z}$, we have

$$
\left\{p<x: p \operatorname{prime}, \mathrm{z}(p) \equiv \operatorname{a\operatorname {mod}m\} \sim \frac {\pi (x)}{m}}\right.
$$

as $x \rightarrow \infty$.

- For k large enough, there exists a prime number p that is the sum of exactly k different, non-consecutive Fibonacci numbers.

(Informal) open questions

- Let $R>0$. As $N \rightarrow \infty$, most $d \in\left[N^{R}, 2 N^{R}\right)$ should have the property that

$$
m \mapsto \#\left\{0 \leq n<N: s_{2}(n d)=m\right\}
$$

closely follows a Gaussian.

Figure: $N=2^{12}, d=3^{30}$

More open questions

- Prove prime number theorems for more general morphic sequences, such as

$$
\begin{gathered}
\sigma:\left\{\begin{array}{llllllll}
\mathrm{a} & \mapsto & \mathrm{ae}, & \mathrm{~b} & \mapsto & \mathrm{af}, & \mathrm{c} & \mapsto \\
\mathrm{~d} & \mapsto & \mathrm{db}, & \mathrm{e} & \mapsto & \mathrm{dc}, & \mathrm{f} & \mapsto
\end{array}\right\}, \\
\pi(\mathrm{a})=\pi(\mathrm{b})=\pi(\mathrm{c})=0 \\
\pi(\mathrm{~d})=\pi(\mathrm{e})=\pi(\mathrm{f})=1
\end{gathered}
$$

The projection under π of the fixed point starting with a is

$$
\operatorname{tr}=0110100100101100101101101001011011010011010 \cdots
$$

- Prove a level-of-distribution result for arbitrary automatic sequences.

Section 3

Long arithmetic subsequences

Digital expansions and addition

how does the sum of digits of an integer change when a constant d is added repeatedly?

Differences along an arithmetic progression $d \mathbb{N}$:

$$
\delta(d, a, j):=\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N: s_{2}((n+1) d)-\mathrm{s}_{2}(n d)=j\right\} .
$$

This value is in fact identical to

$$
\delta(d, j):=\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N: \mathrm{s}_{2}(n+d)-\mathrm{s}_{2}(n)=j\right\}
$$

Cusick's conjecture

When traversing an infinite arithmetic subsequence of s_{2}, how often does the value weakly increase? This is the subject of Cusick's conjecture.

Conjecture (Cusick)
For all $d \geq 0$, we have

$$
c_{d}>1 / 2
$$

where

$$
\begin{aligned}
c_{d} & =\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N: s_{2}(n+d) \geq \mathrm{s}_{2}(n)\right\} \\
& =\sum_{j \geq 0} \delta(d, j)
\end{aligned}
$$

First example: $d=1$

$$
\begin{cases}s_{2}(n+1)-s_{2}(n)=1 & \text { if and only if } n \equiv 0 \bmod 2, \\ s_{2}(n+1)-s_{2}(n)=0 & \text { if and only if } n \equiv 1 \bmod 4,\end{cases}
$$

and $\mathrm{s}_{2}(n+1)-\mathrm{s}_{2}(n)<0$ for $n \equiv 3 \bmod 4$. Therefore $c_{1}=3 / 4$.

\leadsto "ruler sequence".

Second example: $d=3$

$$
\begin{cases}\mathrm{s}_{2}(n+3)-\mathrm{s}_{2}(n)=2 & \text { if and only if } n \equiv 0 \bmod 4 \\ \mathrm{~s}_{2}(n+3)-\mathrm{s}_{2}(n)=1 & \text { if and only if } n \equiv 2 \bmod 8 \\ \mathrm{~s}_{2}(n+3)-\mathrm{s}_{2}(n)=0 & \text { if and only if } \begin{cases}n \equiv 1 \bmod 8 \\ n \equiv 3 \bmod 8 & \text { or } \\ n \equiv 6 \bmod 16\end{cases} \end{cases}
$$

and $\mathrm{s}_{2}(n+3)-\mathrm{s}_{2}(n)<0$ otherwise, therefore $c_{3}=11 / 16$.

SW2023

Let $M=M(d)$ be the number of maximal blocks of 1 s in the binary expansion of d.

Theorem (S.-Wallner 2023, Ann. Sc. norm. super. Pisa - Cl. sci.) Let $d \geq 1$. If $M(d)$ is larger than some absolute, effective constant M_{1}, then $c_{d}>1 / 2$.

SW2023, part II

Again, let $M=M(d)$ be the number of blocks of 1 s in d.
Theorem (S.-Wallner 2023)
Set $\kappa(1)=2$, and for $d \geq 1$ let $\kappa(2 d)=\kappa(d)$, and

$$
\kappa(2 d+1)=\frac{\kappa(d)+\kappa(d+1)}{2}+1 .
$$

Then

$$
\delta(j, d)=\frac{1}{\sqrt{2 \pi \kappa(d)}} \exp \left(-\frac{j^{2}}{2 \kappa(d)}\right)+\mathcal{O}\left(\frac{(\log M)^{4}}{M}\right)
$$

for all integers j. The implied constant is absolute.
"The sum of digits along arithmetic progressions varies according to a normal distribution."
"Your paper reduces my conjecture to what I will call the 'hard cases' [...]" (T. W. Cusick, 2021)

Consider graphs of $j \mapsto \delta(d, j)$:

easier

More structures to be discovered!

THANK YOU!

閪 M. Drmota, C. Müllner, and L. Spiegelhofer, Primes as sums of Fibonacci numbers, 2021.
Accepted for publication in Mem. Amer. Math. Soc. (2022).
(L. Spiegelhofer, The level of distribution of the Thue-Morse sequence, Compos. Math., 156 (2020), pp. 2560-2587.

回 L. Spiegelhofer and M. Wallner, The binary digits of $n+t$, Ann. Sc. Norm. Super. Pisa, CI. Sci. (5), 24 (2023), pp. 1-31.

Supported by the FWF-ANR joint project ArithRand, and P36137 (FWF).

