The simplest 2-regular sequences

Lukas Spiegelhofer
MU Leoben, Austria

I MONTAN
 universitiat

December 14, 2023, JצUU Linz

Outline

1. k-regular sequences
2. The discrepancy of the van der Corput sequence

3. Odd binomial coefficients

Section 1

k-regular sequences

k-regular sequences

If there exists an integer r, sequences S_{0}, \ldots, S_{r-1}, and $r \times r$-matrices B_{0}, \ldots, B_{k-1} such that

$$
\left(\begin{array}{c}
S_{0}(k n+a) \\
\vdots \\
S_{r-1}(k n+a)
\end{array}\right)=B_{a}\left(\begin{array}{c}
S_{0}(n) \\
\vdots \\
S_{r-1}(n)
\end{array}\right)
$$

for all $n \geq 0$ and $0 \leq a<k$, the sequence S_{0} is called k-regular. [Allouche-Shallit 1992]

First example. The Stern sequence, defined by

$$
\begin{aligned}
z(0) & =0, \quad z(1)=1, \\
z(2 n) & =z(n), \\
z(2 n+1) & =z(n)+z(n+1)
\end{aligned}
$$

is 2-regular. Corresponding matrices are given by

$$
B_{0}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \quad B_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

and we have

$$
\begin{aligned}
& \binom{z(2 n)}{z(2 n+1)}=B_{0}\binom{z(n)}{z(n+1)}, \\
& \binom{z(2 n+1)}{z(2 n+2)}=B_{1}\binom{z(n)}{z(n+1)} .
\end{aligned}
$$

The values of the Stern sequence are distributed according to a log-normal distribution [Bettin, Drappeau, Spiegelhofer 2017]

First example. The Stern sequence, defined by

$$
\begin{aligned}
z(0) & =0, \quad z(1)=1, \\
z(2 n) & =z(n), \\
z(2 n+1) & =z(n)+z(n+1)
\end{aligned}
$$

is 2-regular. Corresponding matrices are given by

$$
B_{0}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \quad B_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

and we have

$$
\begin{aligned}
& \binom{z(2 n)}{z(2 n+1)}=B_{0}\binom{z(n)}{z(n+1)}, \\
& \binom{z(2 n+1)}{z(2 n+2)}=B_{1}\binom{z(n)}{z(n+1)} .
\end{aligned}
$$

The values of the Stern sequence are distributed according to a log-normal distribution [Bettin, Drappeau, Spiegelhofer 2017]

Second example

The binary sum-of-digits function satisfies

$$
\begin{aligned}
s(2 n) & =s(n), \\
s(2 n+1) & =s(n)+1 .
\end{aligned}
$$

Corresponding matrices are

$$
B_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad B_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

and

$$
\begin{aligned}
\binom{s(2 n)}{1} & =B_{0}\binom{s(n)}{1}, \\
\binom{s(2 n+1)}{1} & =B_{1}\binom{s(n)}{1} .
\end{aligned}
$$

Theorem (S2023+)
The function $s\left(n^{3}\right)$ is uniformly distributed in $\mathbb{Z} / 2 \mathbb{Z}$.

Second example

The binary sum-of-digits function satisfies

$$
\begin{aligned}
s(2 n) & =s(n), \\
s(2 n+1) & =s(n)+1 .
\end{aligned}
$$

Corresponding matrices are

$$
B_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad B_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

and

$$
\begin{aligned}
\binom{s(2 n)}{1} & =B_{0}\binom{s(n)}{1}, \\
\binom{s(2 n+1)}{1} & =B_{1}\binom{s(n)}{1} .
\end{aligned}
$$

Theorem (S2023+)
The function $s\left(n^{3}\right)$ is uniformly distributed in $\mathbb{Z} / 2 \mathbb{Z}$.

Third example

The number A_{n} of odd entries in row n of Pascal's triangle satisfies

$$
A_{n}=2^{s(n)},
$$

that is,

$$
\begin{gathered}
A_{2 n}=A_{n}, \quad A_{2 n+1}=2 A_{n} \\
\left(A_{2 n}\right)=(1)\left(A_{n}\right) \\
\left(A_{2 n+1}\right)=(2)\left(A_{n}\right)
\end{gathered}
$$

Fourth example

The discrepancy of the van der Corput sequence satisfies

$$
\begin{aligned}
d(1) & =1, \\
d(2 n) & =d(n), \\
d(2 n+1) & =\frac{d(n)+d(n+1)+1}{2} \\
\left(\begin{array}{c}
d(2 n) \\
d(2 n+1) \\
1
\end{array}\right) & =\left(\begin{array}{lll}
1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
d(n) \\
d(n+1) \\
1
\end{array}\right) \\
\left(\begin{array}{c}
d(2 n+1) \\
d(2 n+2) \\
1
\end{array}\right) & =\left(\begin{array}{lll}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
d(n) \\
d(n+1) \\
1
\end{array}\right)
\end{aligned}
$$

Section 2

The discrepancy of the van der Corput sequence

It is known [Drmota, Larcher, Pillichshammer 2005] that $d(n)$ is normally distributed.

Theorem (DLP2005)
For every $y \in \mathbb{R}$ we have

$$
\frac{1}{M} \#\left\{N<M: d(n) \leq \frac{1}{4} \log _{2} N+y \frac{1}{4 \sqrt{3}} \sqrt{\log _{2} N}\right\}=\Phi(y)+o(1)
$$

where

$$
\Phi(y)=\int_{-\infty}^{y} e^{-t^{2} / 2} \mathrm{~d} t .
$$

We want to obtain a finer distribution result using moments of $d(n)$, for example, involving a polynomially perturbed Gaussian

$$
C \int_{-\infty}^{y} e^{-t^{2} / 2} p(t) d t
$$

together with a better error term.

It is known [Drmota, Larcher, Pillichshammer 2005] that $d(n)$ is normally distributed.

Theorem (DLP2005)

For every $y \in \mathbb{R}$ we have

$$
\frac{1}{M} \#\left\{N<M: d(n) \leq \frac{1}{4} \log _{2} N+y \frac{1}{4 \sqrt{3}} \sqrt{\log _{2} N}\right\}=\Phi(y)+o(1)
$$

where

$$
\Phi(y)=\int_{-\infty}^{y} e^{-t^{2} / 2} \mathrm{~d} t .
$$

We want to obtain a finer distribution result using moments of $d(n)$, for example, involving a polynomially perturbed Gaussian

$$
C \int_{-\infty}^{y} e^{-t^{2} / 2} p(t) \mathrm{d} t
$$

together with a better error term.

The expectation of $d(n)$

We have

$$
\frac{1}{2^{\lambda}} \sum_{2^{\lambda} \leq n<2^{\lambda+1}} d(n)=1+\frac{\lambda}{4} .
$$

For $\lambda \geq 0$ and $2^{\lambda} \leq n<2^{\lambda+1}$, we define

$$
\begin{aligned}
& e_{\lambda}(n)=d(n)-1-\frac{\lambda}{4} \\
& \Delta(n)=d(n)-d(n+1)=e_{\lambda}(n)-e_{\lambda}(n+1)
\end{aligned}
$$

By construction,

The expectation of $d(n)$

We have

$$
\frac{1}{2^{\lambda}} \sum_{2^{\lambda} \leq n<2^{\lambda+1}} d(n)=1+\frac{\lambda}{4} .
$$

For $\lambda \geq 0$ and $2^{\lambda} \leq n<2^{\lambda+1}$, we define

$$
\begin{aligned}
& e_{\lambda}(n)=d(n)-1-\frac{\lambda}{4} \\
& \Delta(n)=d(n)-d(n+1)=e_{\lambda}(n)-e_{\lambda}(n+1)
\end{aligned}
$$

By construction,

$$
\sum_{2^{\lambda} \leq n<2^{\lambda+1}} e_{\lambda}(n)=\sum_{2^{\lambda} \leq n<2^{\lambda+1}} \Delta(n)=0 .
$$

Some values

$$
\begin{gathered}
d(1)=1, \quad d(2)=1, \quad d(3)=\frac{3}{2}, \\
e_{0}(1)=0, \quad e_{1}(2)=-\frac{1}{4}, \quad e_{1}(3)=\frac{1}{4}, \\
\Delta(1)=0, \quad \Delta(2)=-\frac{1}{2}, \quad \Delta(3)=\frac{1}{2}, \\
d(4)=1, \quad d(5)=\frac{7}{4}, \quad d(6)=\frac{3}{2}, \quad d(7)=\frac{7}{4}, \\
e_{2}(4)=-\frac{1}{2}, \quad e_{2}(5)=\frac{1}{4}, \quad e_{2}(6)=0, \quad e_{2}(7)=\frac{1}{4}, \\
\Delta(4)=-\frac{3}{4}, \quad \Delta(5)=\frac{1}{4}, \quad \Delta(6)=-\frac{1}{4}, \quad \Delta(7)=\frac{3}{4} .
\end{gathered}
$$

Mixed moments

For integers $k, \ell, \lambda \geq 0$ we define

$$
m_{k, \ell, \lambda}=\frac{1}{2^{\lambda}} \sum_{2^{\lambda} \leq n<2^{\lambda+1}} e_{\lambda}^{k}(n) \Delta^{\ell}(n)
$$

After some rewriting we obtain

$$
\begin{aligned}
m_{k, \ell, \lambda+1} & =\frac{1}{2^{\lambda+1}} \sum_{2^{\lambda} \leq n<2^{\lambda+1}}\left(e_{\lambda}(n)-\frac{1}{4}\right)^{k}\left(\frac{\Delta(n)}{2}-\frac{1}{2}\right)^{\ell} \\
& +\frac{1}{2^{\lambda+1}} \sum_{2^{\lambda} \leq n<2^{\lambda+1}}\left(e_{\lambda}(n)-\frac{\Delta(n)}{2}+\frac{1}{4}\right)^{k}\left(\frac{\Delta(n)}{2}+\frac{1}{2}\right)^{\ell} .
\end{aligned}
$$

The contribution of the moments $m_{k, r, \lambda}$, where $r \leq \ell$, is given by

$$
\frac{1}{2^{\ell}} \sum_{\substack{0 \leq r \leq \ell \\ 2 \mid r}}\binom{\ell}{r} m_{k, \ell-r, \lambda}
$$

We see that matrix products such as

$$
\left(\begin{array}{ccccccc}
\frac{1}{2^{6}} & 0 & \frac{1}{2^{6}}\binom{6}{2} & 0 & \frac{1}{2^{6}}\binom{6}{4} & 0 & \frac{1}{2^{6}}\binom{6}{6} \\
0 & \frac{1}{2^{5}} & 0 & \frac{1}{2^{5}}\binom{5}{2} & 0 & \frac{1}{2^{5}}\binom{5}{4} & 0 \\
0 & 0 & \frac{1}{2^{4}} & 0 & \frac{1}{2^{4}}\binom{4}{2} & 0 & \frac{1}{2^{4}}\binom{4}{4} \\
0 & 0 & 0 & \frac{1}{2^{3}} & 0 & \frac{1}{2^{3}}\binom{3}{2} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2^{2}} & 0 & \frac{1}{2^{2}}\binom{2}{2} \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)^{M}\left(\begin{array}{l}
m_{k, 6, \lambda} \\
m_{k, 5, \lambda} \\
m_{k, 4, \lambda} \\
m_{k, 3, \lambda} \\
m_{k, 2, \lambda} \\
m_{k, 1, \lambda} \\
m_{k, 0, \lambda}
\end{array}\right)
$$

will play a role!

Example.

$$
\begin{gathered}
A=\left(\begin{array}{ccccc}
\frac{1}{16} & 0 & \frac{3}{16} & 0 & \frac{1}{16} \\
0 & \frac{1}{8} & 0 & \frac{3}{8} & 0 \\
0 & 0 & \frac{1}{4} & 0 & \frac{1}{4} \\
0 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right), \text { then } \\
A^{k}=\left(\begin{array}{ccccc}
\frac{1}{16^{k}} & 0 & \frac{2}{4^{k}}-\frac{2}{16^{k}} & 0 & \frac{16^{k}-1}{5 \cdot 16^{k}}-2 \frac{4^{k}-1}{3 \cdot 16^{k}} \\
0 & \frac{1}{8^{k}} & 0 & \frac{1}{2^{k}}-\frac{1}{8^{k}} & 0 \\
0 & 0 & \frac{1}{4^{k}} & 0 & \frac{16^{k}-4^{k}}{3 \cdot 16^{k}} \\
0 & 0 & 0 & \frac{1}{2^{k}} & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) .
\end{gathered}
$$

Idea: Formulas for powers of such matrices of size K will enable us to describe all moments of $e_{\lambda}(n)$ with precision $O\left(\lambda^{-K / 2}\right)$.

Example.

$$
\begin{gathered}
A=\left(\begin{array}{ccccc}
\frac{1}{16} & 0 & \frac{3}{16} & 0 & \frac{1}{16} \\
0 & \frac{1}{8} & 0 & \frac{3}{8} & 0 \\
0 & 0 & \frac{1}{4} & 0 & \frac{1}{4} \\
0 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right), \text { then } \\
A^{k}=\left(\begin{array}{ccccc}
\frac{1}{16^{k}} & 0 & \frac{2}{4^{k}}-\frac{2}{16^{k}} & 0 & \frac{16^{k}-1}{5 \cdot 16^{k}}-2 \frac{4^{k}-1}{3 \cdot 16^{k}} \\
0 & \frac{1}{8^{k}} & 0 & \frac{1}{2^{k}}-\frac{1}{8^{k}} & 0 \\
0 & 0 & \frac{1}{4^{k}} & 0 & \frac{16^{k}-4^{k}}{3 \cdot 16^{k}} \\
0 & 0 & 0 & \frac{1}{2^{k}} & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) .
\end{gathered}
$$

Idea: Formulas for powers of such matrices of size K will enable us to describe all moments of $e_{\lambda}(n)$ with precision $O\left(\lambda^{-K / 2}\right)$.

$$
\underset{\square}{9!9}
$$

Section 3

Odd binomial coefficients

Let us define

$$
S(N)=\#\left\{(n, k): 0 \leq k \leq n<N: 2 \nmid\binom{n}{k}\right\}=\sum_{0 \leq n<N} 2^{s(n)} .
$$

It is easy to see that

$$
S(2 N)=3 S(N), \quad S(2 N+1)=2 S(N)+S(N+1)
$$

Many authors have studied this quantity (Flajolet, Grabner, Harborth, Kirschenhofer, Larcher, Prodinger, Stolarsky, Tichy,...).
In particular, $S(N)$ was compared to the function $f(x)=x^{\log 3 / \log 2}$, which also has the property $f(2 x)=3 f(x)$, and therefore satisfies $f\left(2^{N}\right)=S\left(2^{N}\right)$.
There is a continuous function φ with period 1 such that

$$
S(N)=N^{\log 3 / \log 2} \varphi(\log (N) / \log 2) .
$$

Let us define

$$
S(N)=\#\left\{(n, k): 0 \leq k \leq n<N: 2 \nmid\binom{n}{k}\right\}=\sum_{0 \leq n<N} 2^{s(n)} .
$$

It is easy to see that

$$
S(2 N)=3 S(N), \quad S(2 N+1)=2 S(N)+S(N+1)
$$

Many authors have studied this quantity (Flajolet, Grabner, Harborth, Kirschenhofer, Larcher, Prodinger, Stolarsky, Tichy,...).
In particular, $S(N)$ was compared to the function $f(x)=x^{\log 3 / \log 2}$, which also has the property $f(2 x)=3 f(x)$, and therefore satisfies $f\left(2^{N}\right)=S\left(2^{N}\right)$.
There is a continuous function φ with period 1 such that

$$
S(N)=N^{\log 3 / \log 2} \varphi(\log (N) / \log 2)
$$

Let us define

$$
S(N)=\#\left\{(n, k): 0 \leq k \leq n<N: 2 \nmid\binom{n}{k}\right\}=\sum_{0 \leq n<N} 2^{s(n)} .
$$

It is easy to see that

$$
S(2 N)=3 S(N), \quad S(2 N+1)=2 S(N)+S(N+1)
$$

Many authors have studied this quantity (Flajolet, Grabner, Harborth, Kirschenhofer, Larcher, Prodinger, Stolarsky, Tichy,. . .).
In particular, $S(N)$ was compared to the function $f(x)=x^{\log 3 / \log 2}$, which also has the property $f(2 x)=3 f(x)$, and therefore satisfies $f\left(2^{N}\right)=S\left(2^{N}\right)$.
There is a continuous function φ with period 1 such that

$$
S(N)=N^{\log 3 / \log 2} \varphi(\log (N) / \log 2) .
$$

Let us define

$$
S(N)=\#\left\{(n, k): 0 \leq k \leq n<N: 2 \nmid\binom{n}{k}\right\}=\sum_{0 \leq n<N} 2^{s(n)} .
$$

It is easy to see that

$$
S(2 N)=3 S(N), \quad S(2 N+1)=2 S(N)+S(N+1)
$$

Many authors have studied this quantity (Flajolet, Grabner, Harborth, Kirschenhofer, Larcher, Prodinger, Stolarsky, Tichy,. . .).
In particular, $S(N)$ was compared to the function $f(x)=x^{\log 3 / \log 2}$, which also has the property $f(2 x)=3 f(x)$, and therefore satisfies $f\left(2^{N}\right)=S\left(2^{N}\right)$.
There is a continuous function φ with period 1 such that

$$
S(N)=N^{\log 3 / \log 2} \varphi(\log (N) / \log 2)
$$

The quantity

$$
\begin{aligned}
\min _{x \in[0,1]} \varphi(x) & =\liminf _{n \rightarrow \infty} S(N) 2^{-\log 3 / \log 2} \\
& =0.8125565590160063876948821016495367124 \ldots
\end{aligned}
$$

is called Stolarsky-Harborth constant.
Larcher (1992) showed that the position y of each minimum is given by a Sturmian word with slope $\vartheta=\log 3 / \log 2-1$: for some $d \in \mathbb{R}$, we have

$$
y=\sum_{k \geq 1} 2^{-k} e_{k}
$$

where

$$
e_{k}=\lfloor(k+1) \vartheta+d\rfloor-\lfloor k \vartheta+d\rfloor .
$$

Admissible values of d, corresponding to minima, as well as their number, remain mysterious.

The quantity

$$
\begin{aligned}
\min _{x \in[0,1]} \varphi(x) & =\liminf _{n \rightarrow \infty} S(N) 2^{-\log 3 / \log 2} \\
& =0.8125565590160063876948821016495367124 \ldots
\end{aligned}
$$

is called Stolarsky-Harborth constant.
Larcher (1992) showed that the position y of each minimum is given by a Sturmian word with slope $\vartheta=\log 3 / \log 2-1$: for some $d \in \mathbb{R}$, we have

$$
y=\sum_{k \geq 1} 2^{-k} e_{k},
$$

where

$$
e_{k}=\lfloor(k+1) \vartheta+d\rfloor-\lfloor k \vartheta+d\rfloor .
$$

Admissible values of d, corresponding to minima, as well as their number, remain mysterious.

Simplification of the problem

Let $\lambda \geq 0$ be an integer. On the interval $\left[2^{\lambda}, 2^{\lambda+1}\right]$ we compare S with the line segment connecting

$$
\left(2^{\lambda}, 3^{\lambda}\right) \quad \text { and } \quad\left(2^{\lambda+1}, 3^{\lambda+1}\right)
$$

Set

$$
\Delta_{\lambda}(n)=S(N)-3^{\lambda}-\left(n-2^{\lambda}\right) \frac{2 \cdot 3^{\lambda}}{2^{\lambda}}
$$

Normalizing suitably, we obtain a continuous function

$$
\Phi:[0,1] \rightarrow \mathbb{R}
$$

such that

$$
\Delta_{\lambda}(n)=3^{\lambda} \Phi\left(\frac{n-2^{\lambda}}{2^{\lambda}}\right)
$$

for all $\lambda \geq 0$ and $2^{\lambda} \leq n<2^{\lambda+1}$.

Simplification of the problem

Let $\lambda \geq 0$ be an integer. On the interval $\left[2^{\lambda}, 2^{\lambda+1}\right]$ we compare S with the line segment connecting

$$
\left(2^{\lambda}, 3^{\lambda}\right) \quad \text { and } \quad\left(2^{\lambda+1}, 3^{\lambda+1}\right)
$$

Set

$$
\Delta_{\lambda}(n)=S(N)-3^{\lambda}-\left(n-2^{\lambda}\right) \frac{2 \cdot 3^{\lambda}}{2^{\lambda}}
$$

Normalizing suitably, we obtain a continuous function

$$
\Phi:[0,1] \rightarrow \mathbb{R}
$$

such that

$$
\Delta_{\lambda}(n)=3^{\lambda} \Phi\left(\frac{n-2^{\lambda}}{2^{\lambda}}\right)
$$

for all $\lambda \geq 0$ and $2^{\lambda} \leq n<2^{\lambda+1}$.

The Straight Stolarsky-Harborth constant

Surprisingly,

1. this does not seem to be handled in the literature,
2. the minimum of Φ seems to be attained at

$$
x=\sum_{k \geq 1} 2^{-k} e_{k}=0.67741147741147752252682561330016 \cdots,
$$

where

$$
e_{k}=\lfloor(k+1) \vartheta+\mathbf{0}\rfloor-\lfloor k \vartheta+\mathbf{0}\rfloor
$$

and $\vartheta=\log 3 / \log 2-1$ as before. $\underbrace{\text { 泣 }}_{\square}$
The value of Φ at this position is

$$
-0.4782436127025850978521771039475291 \cdots
$$

We might call this the Straight Stolarsky-Harborth constant.

The Straight Stolarsky-Harborth constant

Surprisingly,

1. this does not seem to be handled in the literature,
2. the minimum of Φ seems to be attained at

$$
x=\sum_{k \geq 1} 2^{-k} e_{k}=0.67741147741147752252682561330016 \cdots,
$$

where

$$
e_{k}=\lfloor(k+1) \vartheta+\mathbf{0}\rfloor-\lfloor k \vartheta+\mathbf{0}\rfloor
$$

and $\vartheta=\log 3 / \log 2-1$ as before.
The value of Φ at this position is

$$
-0.4782436127025850978521771039475291 \cdots
$$

We might call this the Straight Stolarsky-Harborth constant.

A remark

Note that the continuous function Φ satisfies, and is uniquely determined by,

$$
\begin{aligned}
& \Phi(0)=\Phi(1)=0, \\
& \Phi\left(\frac{2 k+1}{2^{\lambda+1}}\right)=\frac{2}{3} \Phi\left(\frac{k}{2^{\lambda}}\right)+\frac{1}{3} \Phi\left(\frac{k+1}{2^{\lambda}}\right)-\frac{1}{3 \cdot 2^{\lambda}}
\end{aligned}
$$

for all integers $\lambda \geq 0$ and $2^{\lambda} \leq k<2^{\lambda+1}$.

Remark. Consider the Sierpiński triangle T of height 1 and Hausdorff measure $H^{\log 3 / \log 2}(T)=C$, and the red portion $A(h)$ of height h.

Remark. Consider the Sierpiński triangle T of height 1 and Hausdorff measure $H^{\log 3 / \log 2}(T)=C$, and the red portion $A(h)$ of height h.

Prove that $H^{\log 3 / \log 2}(A(h))=C\left(\frac{1}{2} \Phi(h)+h\right)$.

Higher divisibility in Pascal's triangle

Barat and Grabner (2001) also considered the number of binomial coefficients exactly divisible by a power of a prime.

Theorem (Barat-Grabner 2001, Theorem 5)
Let p be a prime, and $j \geq 0$ an integer. Define

$$
S_{j}(N)=\#\left\{(k, n): 0 \leq k \leq n<N, p^{j} \|\binom{ n}{k}\right\} .
$$

There exist continuous periodic functions of period $1, \psi_{r}^{(j)}$, for $0 \leq r \leq j$, such that

$$
S_{j}(N)=N^{\alpha} \sum_{r=0}^{j}\left(\log _{p} N\right)^{r} \psi_{r}^{(j)}\left(\log _{p} N\right)+o\left(N^{\varepsilon}\right)
$$

for $\alpha=\log _{p} \frac{p(p+1)}{2}$ and any $\varepsilon>0$. Also, $\psi_{j}^{(j)}=\frac{1}{j!}\left(\frac{p-1}{p+1}\right)^{2 j} \psi_{0}^{(0)}$.

More open questions

- (Grabner) Does there exist an exact representation of $S_{j}(N)$, where $j \geq 1$?
- What is the minimum of $\psi_{r}^{(j)}$ resp. of a straightened version?
- (Drmota, Mauduit, Rivat) Can any bounds for the sum

$$
\sum_{p \leq x} 2^{s(p)}
$$

be proved?

THANK YOU!

Supported by the FWF-ANR joint project ArithRand, and P36137 (FWF).

