# Thue-Morse along the sequence of cubes 

Lukas Spiegelhofer

## $1 /$ MONTAN UNIVERSITAT

Feb 29, 2024
Combinatoire des mots, CIRM

## Section 1

## Subsequences of the Thue-Morse [tt: morrs] sequence

## The Thue-Morse sequence

We denote the Thue-Morse sequence on $\{0,1\}$ by $\mathbf{t}$, and the Thue-Morse sequence on $\{1,-1\}$ by $\mathbf{u}$. It is given by the binary sum-of-digits function $s$, reduced modulo 2 .


$$
\mathbf{t}=01101001100101101001011001101001 \cdots
$$

## Arithmetic subsequences of $s$

Each subsequence $n \mapsto \mathbf{t}(A n+B)$ is an automatic sequence.


Figure: An automaton for $\mathbf{t}(n)$


Figure: An automaton for $\mathbf{t}(3 n)$

## Thue-Morse $\rightleftharpoons$ Koch

Let $\mathrm{e}(x)=e^{2 \pi i x}$. The sequence $n \mapsto(-1)^{s(n)} \mathrm{e}(-n / 3)$ describes the direction of the $(n+1)$ th segment in the "unscaled Koch curve":


Partial sums of $(-1)^{s(n)} \mathrm{e}(-n / 3)$

The sum of digits along arithmetic progressions For all integers $p, q, d, k$ such that $q \geq 1$ and $d \geq 0$, the sequence $n \mapsto \exp \left(\frac{p s(d n)+k n}{q}\right)$ is 2-automatic. Partial sums yield interesting pictures.


## The sum of digits along arithmetic progressions



## The sum of digits along arithmetic progressions



Every finite sequence $\omega \in\{0,1\}^{L}$ appears as an arithmetic subsequence of $\mathbf{t}$ : the Thue-Morse word has full arithmetical complexity (Avgustinovich-Fon-Der-Flaass-Frid 2003, Müllner-Spiegelhofer 2017, Konieczny-Müllner 2024+).

Every finite sequence $\omega \in\{0,1\}^{L}$ appears as an arithmetic subsequence of t: the Thue-Morse word has full arithmetical complexity (Avgustinovich-Fon-Der-Flaass-Frid 2003, Müllner-Spiegelhofer 2017, Konieczny-Müllner 2024+).
Short arithmetic subsequences of $\mathbf{t}$ even seem to behave randomly.

$N=32 \times 32$ terms, common difference $d=3^{21}$

## The sum of digits along arithmetic progressions

The function $s_{q}$ along arithmetic progressions is uniformly distributed in residue classes modulo $m$ if $\operatorname{gcd}(q-1, m)=1$. We state the following special case.

Theorem (Gelfond 1968)
Let $d \geq 1$ and a be integers. There is an absolute $\lambda<1$ such that

$$
|\{1 \leq n \leq x: \mathbf{t}(n)=0, n \equiv a \bmod d\}|=\frac{x}{2 d}+\mathcal{O}\left(x^{\lambda}\right)
$$

## Very sparse arithmetic subsequences of $\mathbf{t}$

The Thue-Morse sequence has mean value around $1 / 2$ along most very short arithmetic progressions - "t has level of distribution 1".

Theorem (S. 2020)
For all $\varepsilon>0$ we have

$$
\sum_{1 \leq d \leq D} \max _{\substack{y, z \geq 0 \\ z-y \leq x}} \max _{\substack{0 \leq a<d}}\left|\sum_{\substack{y \leq n<z \\ n \equiv a \bmod d}}(-1)^{s(n)}\right| \leq C x^{1-\eta}
$$

for some $C$ and $\eta>0$ depending on $\varepsilon$, where $D=x^{1-\varepsilon}$.

In more relaxed language: let $R>0$. As $N \rightarrow \infty$, the following holds.
Most $d \asymp N^{R}$ have the property that for all a, the number

$$
\#\{0 \leq n<N: \mathbf{t}(n d+a)=0\}
$$

is close to $N / 2$.

In more relaxed language: let $R>0$. As $N \rightarrow \infty$, the following holds.
Most $d \asymp N^{R}$ have the property that for all a, the number

$$
\#\{0 \leq n<N: \mathbf{t}(n d+a)=0\}
$$

is close to $N / 2$.

## (Informal) Problem

Prove that most $d \asymp N^{R}$ have the property that for all a,

$$
m \mapsto \#\{n<N: s(d n+a)=m\}
$$

closely follows a Gaussian.

$2^{15}$ terms of $s\left(3^{21} n\right)$

## Gelfond's third problem

Let $S=s_{q}$ be the sum-of-digits function in base $q \geq 2$.
Finalement, signalons comme problème à résoudre l'estimation $d u$ nombre des valeurs du polynôme $P(t)$ ne prenant que des valeurs entières sur l'ensemble [...] des entiers rationels, pour lesquelles on a $S[P(n)] \equiv \ell \bmod m$.
A. O. Gelfond, 1967/1968

## Gelfond's third problem

Let $S=s_{q}$ be the sum-of-digits function in base $q \geq 2$.
Finalement, signalons comme problème à résoudre l'estimation $d u$ nombre des valeurs du polynôme $P(t)$ ne prenant que des valeurs entières sur l'ensemble [...] des entiers rationels, pour lesquelles on a $S[P(n)] \equiv \ell \bmod m$.
A. O. Gelfond, 1967/1968

That is, if $P$ is a polynomial such that $P(\mathbb{N}) \subseteq \mathbb{N}$, we are interested in

$$
A(q, P, m, \ell, x):=\#\left\{n<x: s_{q}(P(n)) \equiv \ell \bmod m\right\}
$$

## Partial results

Write $s(n)=s_{2}(n)$. We have

$$
\begin{aligned}
\mathbf{t} & =(s(n) \bmod 2)_{n \geq 0} \\
& =(01101001100101101001011001101001100101100110100101 \cdots)
\end{aligned}
$$

- Lower bounds for the numbers $A(q, P, m, \ell, x)$ are known (Dartyge-Tenenbaum 2006; Stoll 2012);
- The case $P(x)=x^{2}$ has been answered by Mauduit and Rivat (Acta Math., 2009). In particular, for some $c>0$ and $C$,

$$
\begin{equation*}
\left|\#\left\{n<x: \mathbf{t}\left(n^{2}\right)=0\right\}-\frac{x}{2}\right| \leq C x^{1-c} . \tag{1}
\end{equation*}
$$

- For "sufficiently large bases" $q$ coprime to the leading coefficient of $P$, and $\operatorname{gcd}(q-1, m)=1$, the equivalence $A(q, P, m, \ell, x) \sim x / m$ has been proved (Drmota-Mauduit-Rivat 2011).


## Partial results

Write $s(n)=s_{2}(n)$. We have

$$
\mathbf{t}=(s(n) \bmod 2)_{n \geq 0}
$$

$$
=\left(0^{\downarrow} 1^{\downarrow} 10100110{ }^{\downarrow} 0101101001011001^{\downarrow} 10100110010{ }^{\downarrow} 1100110100101^{\downarrow} \cdots\right)
$$

- Lower bounds for the numbers $A(q, P, m, \ell, x)$ are known (Dartyge-Tenenbaum 2006; Stoll 2012);
- The case $P(x)=x^{2}$ has been answered by Mauduit and Rivat (Acta Math., 2009). In particular, for some $c>0$ and $C$,

$$
\begin{equation*}
\left|\#\left\{n<x: \mathbf{t}\left(n^{2}\right)=0\right\}-\frac{x}{2}\right| \leq C x^{1-c} . \tag{1}
\end{equation*}
$$

- For "sufficiently large bases" $q$ coprime to the leading coefficient of $P$, and $\operatorname{gcd}(q-1, m)=1$, the equivalence $A(q, P, m, \ell, x) \sim x / m$ has been proved (Drmota-Mauduit-Rivat 2011).


## Partial results

Write $s(n)=s_{2}(n)$. We have

$$
\begin{align*}
\mathbf{t} & =(s(n) \bmod 2)_{n \geq 0} \\
& =\left(\begin{array}{lll}
01 & 1
\end{array}\right. \tag{0}
\end{align*}
$$

$$
1
$$

$$
1
$$

- Lower bounds for the numbers $A(q, P, m, \ell, x)$ are known (Dartyge-Tenenbaum 2006; Stoll 2012);
- The case $P(x)=x^{2}$ has been answered by Mauduit and Rivat (Acta Math., 2009). In particular, for some $c>0$ and $C$,

$$
\begin{equation*}
\left|\#\left\{n<x: \mathbf{t}\left(n^{2}\right)=0\right\}-\frac{x}{2}\right| \leq C x^{1-c} . \tag{1}
\end{equation*}
$$

- For "sufficiently large bases" $q$ coprime to the leading coefficient of $P$, and $\operatorname{gcd}(q-1, m)=1$, the equivalence $A(q, P, m, \ell, x) \sim x / m$ has been proved (Drmota-Mauduit-Rivat 2011).


## Block occurrences in $\mathbf{t}\left(n^{2}\right)$

The Thue-Morse sequence along $n^{2}$ is normal (Drmota-Mauduit-Rivat): each finite sequence over $\{0,1\}$ of length $L$ appears with frequency $2^{-L}$ along $\mathbf{t}\left(n^{2}\right)$.

## Block occurrences in $\mathbf{t}\left(n^{2}\right)$

The Thue-Morse sequence along $n^{2}$ is normal (Drmota-Mauduit-Rivat): each finite sequence over $\{0,1\}$ of length $L$ appears with frequency $2^{-L}$ along $\mathbf{t}\left(n^{2}\right)$.

Partial sums of $(-1)^{s\left(n^{2}\right)}$ for $x<2^{23}$ :


## Problem

A drift appears to be present. How is this related to the fact that $n^{2}$ avoids certain residue classes?

## Problem, part $2 \stackrel{\text { III }}{=}$

Prove that there exist real numbers $c \neq 0$ and $\eta \in(0,1)$, and a 1-periodic, continuous, nowhere differentiable function $\Phi$, such that

$$
\sum_{n<x} \mathbf{t}\left(n^{2}\right) \sim c x^{\eta} \Phi(\log x / \log 2) .
$$

## The main result

Theorem (S. 2024+)
There exist real numbers $c>0$ and $C$ such that for all $x \geq 1$,

$$
\begin{equation*}
\left|\#\left\{n<x: \mathbf{t}\left(n^{3}\right)=0\right\}-\frac{x}{2}\right| \leq C x^{1-c} . \tag{2}
\end{equation*}
$$

## The main result

Theorem (S. 2024+)
There exist real numbers $c>0$ and $C$ such that for all $x \geq 1$,

$$
\begin{equation*}
\left|\#\left\{n<x: \mathbf{t}\left(n^{3}\right)=0\right\}-\frac{x}{2}\right| \leq C x^{1-c} . \tag{2}
\end{equation*}
$$



## Section 2

## Sketch of the proof

## Carry Lemma (Mauduit-Rivat 2009, 2010)

- We are interested in the sum

$$
S_{0}:=\sum_{n<2^{\nu}} \mathrm{e}\left(\frac{1}{2} s\left(n^{3}\right)\right)
$$

## Carry Lemma (Mauduit-Rivat 2009, 2010)

- We are interested in the sum

$$
S_{0}:=\sum_{n<2^{\nu}} \mathrm{e}\left(\frac{1}{2} s\left(n^{3}\right)\right)
$$

- After an application of van der Corput's inequality it remains to handle the correlation

$$
\sum_{n<2^{\nu}} \mathrm{e}\left(\frac{1}{2} s\left((n+r)^{3}\right)-\frac{1}{2} s\left(n^{3}\right)\right)
$$

## Carry Lemma (Mauduit-Rivat 2009, 2010)

- We are interested in the sum

$$
S_{0}:=\sum_{n<2^{\nu}} \mathrm{e}\left(\frac{1}{2} s\left(n^{3}\right)\right)
$$

- After an application of van der Corput's inequality it remains to handle the correlation

$$
\sum_{n<2^{\nu}} \mathrm{e}\left(\frac{1}{2} s\left((n+r)^{3}\right)-\frac{1}{2} s\left(n^{3}\right)\right)
$$

- The arguments $(n+r)^{3}$ and $n^{3}$ usually have the same digits with indices above

$$
\lambda:=\nu(2+\varepsilon)
$$

if $r$ is small compared to $2^{\nu}$.

- These digits can therefore be discarded.


## Too many significant digits

- The window of remaining digits is about twice the size of the binary expansion of $n$.
- Therefore we cannot obtain uniform distribution of these digits, as $n$ runs.


## Too many significant digits

- The window of remaining digits is about twice the size of the binary expansion of $n$.
- Therefore we cannot obtain uniform distribution of these digits, as $n$ runs.
- A similar problem arises for sparse arithmetic progressions nd $+a$, where $n<2^{\nu}$ and $d \gg 2^{R \nu}$ : the digits of $(n+r) d+a$ and $n d+a$ usually differ at about $R \nu$ indices.
- In [Spiegelhofer 2020] we apply van der Corput's inequality repeatedly in order to eliminate digits, block by block.


## Too many significant digits

- The window of remaining digits is about twice the size of the binary expansion of $n$.
- Therefore we cannot obtain uniform distribution of these digits, as $n$ runs.
- A similar problem arises for sparse arithmetic progressions nd $+a$, where $n<2^{\nu}$ and $d \gg 2^{R \nu}$ : the digits of $(n+r) d+a$ and $n d+a$ usually differ at about $R \nu$ indices.
- In [Spiegelhofer 2020] we apply van der Corput's inequality repeatedly in order to eliminate digits, block by block.


Wikipedia: "Salami", by Aka (CC BY-SA 2.5)

## Too many significant digits

Iterated van der Corput could so far not be used for removing sufficiently many digits of polynomial values $P(n)$, if $\operatorname{deg} P>1$.

## A trivial decomposition ${ }^{1}$

- Choose $\rho<\nu$ in such a way that $3 \rho \geq \lambda$, and write

$$
n=2^{\rho} n_{1}+n_{0}, \quad \text { where } \quad\left\{\begin{array}{l}
0 \leq n_{1}<2^{\nu-\rho} \\
0 \leq n_{0}<2^{\rho}
\end{array}\right.
$$

- Expanding $n^{3} \bmod 2^{\lambda}$, we see that the cubic term in $n_{1}$ disappears.

[^0]
## A trivial decomposition ${ }^{1}$

- Choose $\rho<\nu$ in such a way that $3 \rho \geq \lambda$, and write

$$
n=2^{\rho} n_{1}+n_{0}, \quad \text { where } \quad\left\{\begin{array}{l}
0 \leq n_{1}<2^{\nu-\rho} \\
0 \leq n_{0}<2^{\rho}
\end{array}\right.
$$

- Expanding $n^{3} \bmod 2^{\lambda}$, we see that the cubic term in $n_{1}$ disappears.
- On the critical interval $[2 \rho, \lambda)$ of length $\kappa:=\lambda-2 \rho$, the term $n_{1}^{2}$ is still relevant.
- We introduce an additional sum $\sum_{0 \leq j<2^{\kappa}}$ that parametrizes the digit combinations in the critical interval.

[^1]
## The critical interval of digits

For a subset $J \subseteq \mathbb{N}$, let $s^{J}$ denote the restricted binary sum-of-digits function: only digits with indices in $J$ are counted. We write

$$
\begin{aligned}
S_{0}= & \sum_{n<2^{\nu}} \mathrm{e}\left(\frac{1}{2} s\left(n^{3}\right)\right) \\
& =\sum_{0 \leq j<2^{\kappa}}(-1)^{s(j)} \sum_{n<2^{\nu}} \mathrm{e}\left(\frac{1}{2} s^{\mathbb{N} \backslash[2 \rho, \lambda)}\left(n^{3}\right)\right) \llbracket \frac{n^{3}}{2^{\lambda}} \in\left[\frac{j}{2^{\kappa}}, \frac{j+1}{2^{\kappa}}\right)+\mathbb{Z} \rrbracket
\end{aligned}
$$

## The critical interval of digits

For a subset $J \subseteq \mathbb{N}$, let $s^{J}$ denote the restricted binary sum-of-digits function: only digits with indices in $J$ are counted. We write

$$
\begin{aligned}
& S_{0}=\sum_{n<2^{\nu}} \mathrm{e}\left(\frac{1}{2} s\left(n^{3}\right)\right) \\
& \left.\quad=\sum_{0 \leq j<2^{\kappa}}(-1)^{s(j)} \sum_{n<2^{\nu}} \mathrm{e}\left(\frac{1}{2} s^{\mathbb{N} \backslash[2 \rho, \lambda)}\left(n^{3}\right)\right) \llbracket \frac{n^{3}}{2^{\lambda}} \in\left[\frac{j}{2^{\kappa}}, \frac{j+1}{2^{\kappa}}\right)+\mathbb{Z}\right] .
\end{aligned}
$$

(1.) An additional sum of length $2^{\kappa}$ is introduced;

## The critical interval of digits

For a subset $J \subseteq \mathbb{N}$, let $s^{J}$ denote the restricted binary sum-of-digits function: only digits with indices in $J$ are counted. We write

$$
\begin{aligned}
& S_{0}=\sum_{n<2^{\nu}} \mathrm{e}\left(\frac{1}{2} s\left(n^{3}\right)\right) \\
& \quad=\sum_{0 \leq j<2^{\kappa}}(-1)^{s(j)} \sum_{n<2^{\nu}} \mathrm{e}\left(\frac{1}{2} s^{\mathbb{N} \backslash[2 \rho, \lambda)}\left(n^{3}\right)\right) \llbracket \frac{n^{3}}{2^{\lambda}} \in\left[\frac{j}{2^{\kappa}}, \frac{j+1}{2^{\kappa}}\right)+\mathbb{Z} \rrbracket .
\end{aligned}
$$

(1.) An additional sum of length $2^{\kappa}$ is introduced;
(2.) After cutting away also the digits with indices $\geq \lambda$ (carry lemma), a linear sum-of-digits problem remains;

## The critical interval of digits

For a subset $J \subseteq \mathbb{N}$, let $s^{J}$ denote the restricted binary sum-of-digits function: only digits with indices in $J$ are counted. We write

$$
\begin{aligned}
& S_{0}=\sum_{n<2^{\nu}} \mathrm{e}\left(\frac{1}{2} s\left(n^{3}\right)\right) \\
& \left.\quad=\sum_{0 \leq j<2^{\kappa}}(-1)^{s(j)} \sum_{n<2^{\nu}} \mathrm{e}\left(\frac{1}{2} s^{\mathbb{N} \backslash[2 \rho, \lambda)}\left(n^{3}\right)\right) \llbracket \frac{n^{3}}{2^{\lambda}} \in\left[\frac{j}{2^{\kappa}}, \frac{j+1}{2^{\kappa}}\right)+\mathbb{Z}\right]
\end{aligned}
$$

(1.) An additional sum of length $2^{\kappa}$ is introduced;
(2.) After cutting away also the digits with indices $\geq \lambda$ (carry lemma), a linear sum-of-digits problem remains;
(3.) The rightmost factor is approximated by a trigonometric polynomial, evaluated at $\left(2^{\rho} n_{1}+n_{0}\right)^{3} / 2^{\lambda}$, which only depends on $n_{1}$ in a quadratic manner.

## Even sketchier idea of the proof

- Applying van der Corput's inequality another time, the argument becomes linear in $n_{1}$ (cf. van der Corput difference theorem). At this point all squares and cubes have been eliminated, at the cost of a much longer summation.


## Even sketchier idea of the proof

- Applying van der Corput's inequality another time, the argument becomes linear in $n_{1}$ (cf. van der Corput difference theorem). At this point all squares and cubes have been eliminated, at the cost of a much longer summation.
- The resulting trigonometric polynomial in $n_{1}$ is decoupled from the sum over $n$, using suitable arithmetic subsequences and summation by parts. (Note that "everything is linear"!)


## Even sketchier idea of the proof

- Applying van der Corput's inequality another time, the argument becomes linear in $n_{1}$ (cf. van der Corput difference theorem). At this point all squares and cubes have been eliminated, at the cost of a much longer summation.
- The resulting trigonometric polynomial in $n_{1}$ is decoupled from the sum over $n$, using suitable arithmetic subsequences and summation by parts. (Note that "everything is linear"!)
- The trigonometric component yields a geometric sum

$$
\sum_{0 \leq h<H} \mathrm{e}(h x) \ll \min \left(H,\|x\|^{-1}\right)
$$

where $\|x\|$ is the distance of $x$ to the nearest integer.

$$
\text { The average in } x \text { of this expression is only } \log H \text { in size! }
$$

- Due to the small (logarithmic) contribution of the critical interval, we only have to obtain a small gain in the sum-of-digits component. This component is basically of the form

$$
\sum \mathrm{e}\left(s^{[0,2 \rho)}(d n+a)\right)
$$

(In fact, four different slopes $d_{0}, d_{1}, d_{2}, d_{3}$ play a role, coming from two applications of van der Corput ...)

- Due to the small (logarithmic) contribution of the critical interval, we only have to obtain a small gain in the sum-of-digits component. This component is basically of the form

$$
\sum \mathrm{e}\left(s^{[0,2 \rho)}(d n+a)\right)
$$

(In fact, four different slopes $d_{0}, d_{1}, d_{2}, d_{3}$ play a role, coming from two applications of van der Corput ...)

- This is amenable to an iterated digit-elimination procedure [S2020].
- Due to the small (logarithmic) contribution of the critical interval, we only have to obtain a small gain in the sum-of-digits component. This component is basically of the form

$$
\sum \mathrm{e}\left(s^{[0,2 \rho)}(d n+a)\right)
$$

(In fact, four different slopes $d_{0}, d_{1}, d_{2}, d_{3}$ play a role, coming from two applications of van der Corput ...)

- This is amenable to an iterated digit-elimination procedure [S2020].
- As in that paper, we end up with a Gowers norm for the Thue-Morse sequence, which was estimated by Konieczny (2019) (and Byszewski-Konieczny-Müllner 2023 for general automatic sequences):

$$
\begin{array}{r}
\frac{1}{2^{(m+1) \rho}} \sum_{n, r_{1}, \ldots, r_{m}<2^{\rho}} \prod_{\varepsilon_{1}, \ldots, \varepsilon_{m} \in\{0,1\}} \mathbf{u}\left(n+\sum_{1 \leq i \leq m} \varepsilon_{i} r_{i} \bmod 2^{\rho}\right) \\
=O(\exp (-c \rho))
\end{array}
$$

## Essence of the proof

The additional sum introduced for digit detection in the critical interval only contributes a logarithm. A linear digital problem remains, which can be handled by iterated digit block elimination.

固 A．O．Gel＇fond，Sur les nombres qui ont des propriétés additives et multiplicatives données，Acta Arith．， 13 （1967／1968），pp．259－265．
© C．Dartyge and G．Tenenbaum，Congruences of sums of digits of polynomial values， Bull．Lond．Math．Soc．， 38 （2006），pp．61－69．
© C．Mauduit and J．Rivat，La somme des chiffres des carrés，Acta Math．， 203 （2009）， pp．107－148．

圆 M．Drmota，C．Mauduit，and J．Rivat，The sum－of－digits function of polynomial sequences，J．Lond．Math．Soc．（2）， 84 （2011），pp．81－102．

R T．Stoll，The sum of digits of polynomial values in arithmetic progressions，Funct． Approximatio，Comment．Math．， 47 （2012），pp．233－239．

图 M．Drmota，C．Mauduit，and J．Rivat，Normality along squares，J．Eur．Math．Soc， 21 （2019），pp．507－548．

R J．Konieczny，Gowers norms for the Thue－Morse and Rudin－Shapiro sequences，Ann． Inst．Fourier， 69 （2019），pp．1897－1913．

L．Spiegelhofer，The level of distribution of the Thue－Morse sequence，Compos．Math．， 156 （2020），pp．2560－2587．
（in－Thue－Morse along the sequence of cubes， 2023.
Preprint，arXiv：2308．09498．


## THANK YOU!



Supported by the FWF-ANR joint project ArithRand, and P36137 (FWF).

## van der Corput's inequality

## Lemma

Let I be a finite interval containing $N$ integers and let $a_{n}$ be a complex number for $n \in I$. For all integers $K \geq 1$ and $R \geq 1$ we have

$$
\left|\sum_{n \in I} a_{n}\right|^{2} \leq \frac{N+K(R-1)}{R} \sum_{|r|<R}\left(1-\frac{|r|}{R}\right) \sum_{\substack{n \in I \\ n+K r \in I}} a_{n+K r} \overline{a_{n}}
$$

## van der Corput's inequality

## Lemma

Let I be a finite interval containing $N$ integers and let $a_{n}$ be a complex number for $n \in I$. For all integers $K \geq 1$ and $R \geq 1$ we have

$$
\left|\sum_{n \in I} a_{n}\right|^{2} \leq \frac{N+K(R-1)}{R} \sum_{|r|<R}\left(1-\frac{|r|}{R}\right) \sum_{\substack{n \in I \\ n+K r \in I}} a_{n+K r} \overline{a_{n}} .
$$

Instead of the original sum, we now have to estimate certain correlations (where $K R$ will be small compared to $N$ ).

## Higher degree polynomials

- Why not iterate the procedure of degree reduction?
- Note that

$$
\int_{0}^{1} \min \left(H,\|x\|^{-1}\right) \mathrm{d} x \asymp \log H
$$

while

$$
\int_{0}^{1}\left|\min \left(H,\|x\|^{-1}\right)\right|^{2} \mathrm{~d} x \asymp H
$$


[^0]:    ${ }^{1}$ Thanks to Michael Drmota, "maybe this can also be used for the cubes"

[^1]:    ${ }^{1}$ Thanks to Michael Drmota, "maybe this can also be used for the cubes"

