Thue–Morse along the sequence of cubes

Lukas Spiegelhofer

Feb 29, 2024 Combinatoire des mots, CIRM

Lukas Spiegelhofer (MU Leoben)

Thue-Morse along the sequence of cubes

Feb 29, 2024

Section 1

Subsequences of the Thue–Morse [tux moxrs] sequence

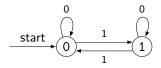
Lukas Spiegelhofer (MU Leoben)

Thue–Morse along the sequence of cubes

Feb 29, 2024

The Thue–Morse sequence

We denote the Thue–Morse sequence on $\{0,1\}$ by **t**, and the Thue–Morse sequence on $\{1,-1\}$ by **u**. It is given by the binary sum-of-digits function *s*, reduced modulo 2.



 ${\bm t} = {\tt 01101001100101100101100101001} \cdots$

Lukas Spiegelhofer (MU Leoben)

Arithmetic subsequences of s

Each subsequence $n \mapsto \mathbf{t}(An + B)$ is an automatic sequence.

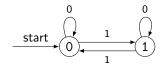


Figure: An automaton for $\mathbf{t}(n)$

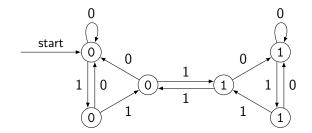
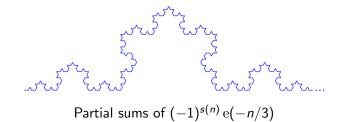


Figure: An automaton for t(3n)

Lukas Spiegelhofer (MU Leoben)

Thue–Morse \rightleftharpoons Koch

Let $e(x) = e^{2\pi i x}$. The sequence $n \mapsto (-1)^{s(n)} e(-n/3)$ describes the direction of the (n + 1)th segment in the "unscaled Koch curve":

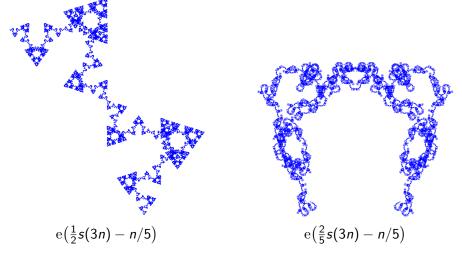


Lukas Spiegelhofer (MU Leoben)

Thue–Morse along the sequence of cubes

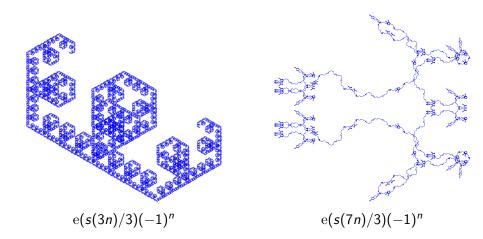
Feb 29, 2024

The sum of digits along arithmetic progressions For all integers p, q, d, k such that $q \ge 1$ and $d \ge 0$, the sequence $n \mapsto \exp\left(\frac{ps(dn)+kn}{a}\right)$ is 2-automatic. Partial sums yield interesting pictures.



Lukas Spiegelhofer (MU Leoben)

The sum of digits along arithmetic progressions

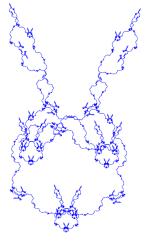


Lukas Spiegelhofer (MU Leoben)

Thue-Morse along the sequence of cubes

Feb 29, 2024

The sum of digits along arithmetic progressions



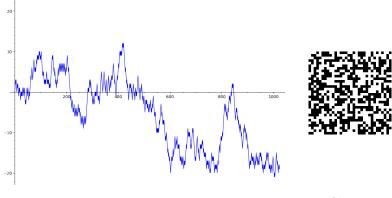
 $e(s(7n)/3)(-1)^n$, closeup

Source: Wikipedia, "Rabbit"

Every finite sequence $\omega \in \{0,1\}^L$ appears as an arithmetic subsequence of **t**: the Thue–Morse word has full *arithmetical complexity* (Avgustinovich–Fon-Der-Flaass–Frid 2003, Müllner–Spiegelhofer 2017, Konieczny–Müllner 2024+).

Every finite sequence $\omega \in \{0,1\}^L$ appears as an arithmetic subsequence of **t**: the Thue–Morse word has full *arithmetical complexity* (Avgustinovich–Fon-Der-Flaass–Frid 2003, Müllner–Spiegelhofer 2017, Konieczny–Müllner 2024+).

Short arithmetic subsequences of t even seem to behave randomly.



 $N = 32 \times 32$ terms, common difference $d = 3^{21}$

Lukas Spiegelhofer (MU Leoben)

The sum of digits along arithmetic progressions

The function s_q along arithmetic progressions is uniformly distributed in residue classes modulo m if gcd(q-1,m) = 1. We state the following special case.

Theorem (Gelfond 1968)

Let $d \ge 1$ and a be integers. There is an absolute $\lambda < 1$ such that

$$\left|\left\{1 \le n \le x : \mathbf{t}(n) = 0, n \equiv a \mod d\right\}\right| = \frac{x}{2d} + \mathcal{O}(x^{\lambda}).$$

Lukas Spiegelhofer (MU Leoben)

Very sparse arithmetic subsequences of t

The Thue–Morse sequence has mean value around 1/2 along most very short arithmetic progressions — "t has level of distribution 1".

Theorem (S. 2020)

For all $\varepsilon > 0$ we have

$$\sum_{1 \le d \le D} \max_{\substack{y,z \ge 0 \\ z-y \le x}} \max_{\substack{0 \le a < d \\ n \equiv a \mod d}} \left| \sum_{\substack{y \le n < z \\ n \equiv a \mod d}} (-1)^{s(n)} \right| \le C x^{1-\eta}$$

for some C and $\eta > 0$ depending on ε , where $D = x^{1-\varepsilon}$.

Lukas Spiegelhofer (MU Leoben)

Thue–Morse along the sequence of cubes

Feb 29, 2024

In more relaxed language: let R > 0. As $N \to \infty$, the following holds.

Most $d \simeq N^R$ have the property that for all a, the number

$$\#\big\{0\leq n< N: \mathbf{t}(nd+a)=0\big\}$$

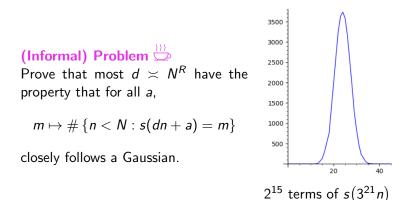
is close to N/2.

In more relaxed language: let R > 0. As $N \to \infty$, the following holds.

Most $d \simeq N^R$ have the property that for all a, the number

$$\#\big\{0\leq n< N: \mathbf{t}(nd+a)=0\big\}$$

is close to N/2.



Gelfond's third problem

Let $S = s_q$ be the sum-of-digits function in base $q \ge 2$.

Finalement, signalons comme problème à résoudre l'estimation du nombre des valeurs du polynôme P(t) ne prenant que des valeurs entières sur l'ensemble [...] des entiers rationels, pour lesquelles on a $S[P(n)] \equiv \ell \mod m$.

A. O. Gelfond, 1967/1968

Gelfond's third problem

Let $S = s_q$ be the sum-of-digits function in base $q \ge 2$.

Finalement, signalons comme problème à résoudre l'estimation du nombre des valeurs du polynôme P(t)ne prenant que des valeurs entières sur l'ensemble [...] des entiers rationels, pour lesquelles on a $S[P(n)] \equiv \ell \mod m$.

A. O. Gelfond, 1967/1968

That is, if P is a polynomial such that $P(\mathbb{N}) \subseteq \mathbb{N}$, we are interested in

$$A(q, P, m, \ell, x) \coloneqq \# \big\{ n < x : s_q(P(n)) \equiv \ell \mod m \big\}.$$

Lukas Spiegelhofer (MU Leoben)

Partial results

Write $s(n) = s_2(n)$. We have

- $\mathbf{t} = \big(s(n) \bmod 2 \big)_{n \ge 0}$

 - Lower bounds for the numbers A(q, P, m, l, x) are known (Dartyge–Tenenbaum 2006; Stoll 2012);
 - The case P(x) = x² has been answered by Mauduit and Rivat (Acta Math., 2009). In particular, for some c > 0 and C,

$$\left| \# \left\{ n < x : \mathbf{t} \left(n^2 \right) = 0 \right\} - \frac{x}{2} \right| \le C x^{1-c}.$$
 (1)

For "sufficiently large bases" q coprime to the leading coefficient of P, and gcd(q − 1, m) = 1, the equivalence A(q, P, m, ℓ, x) ~ x/m has been proved (Drmota–Mauduit–Rivat 2011).

Lukas Spiegelhofer (MU Leoben)

- Lower bounds for the numbers A(q, P, m, l, x) are known (Dartyge–Tenenbaum 2006; Stoll 2012);
- The case P(x) = x² has been answered by Mauduit and Rivat (Acta Math., 2009). In particular, for some c > 0 and C,

$$\left|\#\left\{n < x : \mathbf{t}(n^2) = 0\right\} - \frac{x}{2}\right| \le C x^{1-c}.$$
 (1)

For "sufficiently large bases" q coprime to the leading coefficient of P, and gcd(q − 1, m) = 1, the equivalence A(q, P, m, ℓ, x) ~ x/m has been proved (Drmota–Mauduit–Rivat 2011).

Lukas Spiegelhofer (MU Leoben)

Partial results Write $s(n) = s_2(n)$. We have $\mathbf{t} = (s(n) \mod 2)_{n \ge 0}$ $= (01 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \cdots)$

- Lower bounds for the numbers A(q, P, m, l, x) are known (Dartyge–Tenenbaum 2006; Stoll 2012);
- The case P(x) = x² has been answered by Mauduit and Rivat (Acta Math., 2009). In particular, for some c > 0 and C,

$$\left|\#\left\{n < x : \mathbf{t}(n^2) = 0\right\} - \frac{x}{2}\right| \le C x^{1-c}.$$
 (1)

For "sufficiently large bases" q coprime to the leading coefficient of P, and gcd(q − 1, m) = 1, the equivalence A(q, P, m, ℓ, x) ~ x/m has been proved (Drmota–Mauduit–Rivat 2011).

Lukas Spiegelhofer (MU Leoben)

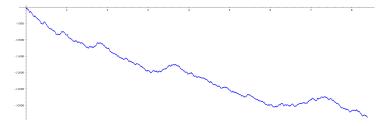
Block occurrences in $\mathbf{t}(n^2)$

The Thue–Morse sequence along n^2 is normal (Drmota–Mauduit–Rivat): each finite sequence over $\{0,1\}$ of length *L* appears with frequency 2^{-L} along $\mathbf{t}(n^2)$.

Block occurrences in $\mathbf{t}(n^2)$

The Thue–Morse sequence along n^2 is normal (Drmota–Mauduit–Rivat): each finite sequence over $\{0,1\}$ of length *L* appears with frequency 2^{-L} along $\mathbf{t}(n^2)$.

Partial sums of $(-1)^{s(n^2)}$ for $x < 2^{23}$:



Problem $\stackrel{\text{```}}{\Box}$

A *drift* appears to be present. How is this related to the fact that n^2 avoids certain residue classes?

Lukas Spiegelhofer (MU Leoben)

Problem, part 2 $\stackrel{\text{\tiny{W}}}{\Box}$

Prove that there exist real numbers $c \neq 0$ and $\eta \in (0,1)$, and a 1-periodic, continuous, nowhere differentiable function Φ , such that

$$\sum_{n < x} \mathbf{t}(n^2) \sim c x^{\eta} \Phi(\log x / \log 2).$$

Lukas Spiegelhofer (MU Leoben)

The main result

Theorem (S. 2024+)

There exist real numbers c > 0 and C such that for all $x \ge 1$,

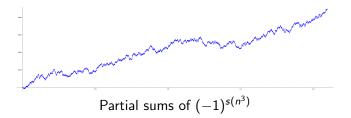
$$\left| \# \left\{ n < x : \mathbf{t} \left(n^3 \right) = 0 \right\} - \frac{x}{2} \right| \le C x^{1-c}.$$
 (2)

The main result

Theorem (S. 2024+)

There exist real numbers c > 0 and C such that for all $x \ge 1$,

$$\left|\#\left\{n < x : \mathbf{t}(n^3) = 0\right\} - \frac{x}{2}\right| \le C x^{1-c}.$$
 (2)



Lukas Spiegelhofer (MU Leoben)

Thue–Morse along the sequence of cubes

Feb 29, 2024

Section 2

Sketch of the proof

Lukas Spiegelhofer (MU Leoben)

Thue–Morse along the sequence of cubes

Feb 29, 2024

Carry Lemma (Mauduit–Rivat 2009, 2010)

We are interested in the sum

$$S_0 \coloneqq \sum_{n < 2^{\nu}} \mathrm{e}\Big(\frac{1}{2} s(n^3) \Big).$$

Lukas Spiegelhofer (MU Leoben)

Carry Lemma (Mauduit–Rivat 2009, 2010)

We are interested in the sum

$$S_0 \coloneqq \sum_{n < 2^{\nu}} \mathrm{e}\Big(\frac{1}{2}s(n^3)\Big).$$

After an application of van der Corput's inequality it remains to handle the correlation

$$\sum_{n<2^{\nu}} \mathrm{e}\Big(\frac{1}{2}s\big((n+r)^3\big) - \frac{1}{2}s\big(n^3\big)\Big).$$

Carry Lemma (Mauduit-Rivat 2009, 2010)

We are interested in the sum

$$S_0 \coloneqq \sum_{n < 2^{\nu}} \mathrm{e}\Big(\frac{1}{2}s(n^3)\Big).$$

After an application of van der Corput's inequality it remains to handle the correlation

$$\sum_{n<2^{\nu}} e\left(\frac{1}{2}s\left((n+r)^3\right) - \frac{1}{2}s(n^3)\right).$$

The arguments (n + r)³ and n³ usually have the same digits with indices above

$$\lambda \coloneqq \nu(2 + \varepsilon),$$

if r is small compared to 2^{ν} .

These digits can therefore be discarded.

Lukas Spiegelhofer (MU Leoben)

- The window of remaining digits is about twice the size of the binary expansion of n.
- Therefore we cannot obtain uniform distribution of these digits, as n runs.

- The window of remaining digits is about twice the size of the binary expansion of n.
- Therefore we cannot obtain uniform distribution of these digits, as n runs.
- ▶ A similar problem arises for sparse arithmetic progressions nd + a, where $n < 2^{\nu}$ and $d \gg 2^{R\nu}$: the digits of (n + r)d + a and nd + a usually differ at about $R\nu$ indices.
- In [Spiegelhofer 2020] we apply van der Corput's inequality repeatedly in order to eliminate digits, block by block.

- The window of remaining digits is about twice the size of the binary expansion of n.
- Therefore we cannot obtain uniform distribution of these digits, as n runs.
- ▶ A similar problem arises for sparse arithmetic progressions nd + a, where $n < 2^{\nu}$ and $d \gg 2^{R\nu}$: the digits of (n + r)d + a and nd + a usually differ at about $R\nu$ indices.
- In [Spiegelhofer 2020] we apply van der Corput's inequality repeatedly in order to eliminate digits, block by block.

Wikipedia: "Salami", by Aka (CC BY-SA 2.5)

Lukas Spiegelhofer (MU Leoben)

Thue-Morse along the sequence of cubes

Feb 29, 2024

20 / 30

Iterated van der Corput could so far not be used for removing sufficiently many digits of polynomial values P(n), if deg P > 1.

A trivial decomposition¹

• Choose $\rho < \nu$ in such a way that $3\rho \ge \lambda$, and write

$$n = 2^{\rho} n_1 + n_0$$
, where $\begin{cases} 0 \le n_1 < 2^{\nu - \rho}, \\ 0 \le n_0 < 2^{\rho} \end{cases}$

Expanding $n^3 \mod 2^{\lambda}$, we see that the cubic term in n_1 disappears.

¹Thanks to Michael Drmota, "maybe this can also be used for the cubes" Lukas Spiegelhofer (MU Leoben) Thue–Morse along the sequence of cubes Feb 29, 2024

A trivial decomposition¹

• Choose $\rho < \nu$ in such a way that $3\rho \ge \lambda$, and write

$$n = 2^{\rho} n_1 + n_0$$
, where $\begin{cases} 0 \le n_1 < 2^{\nu - \rho}, \\ 0 \le n_0 < 2^{\rho} \end{cases}$

- Expanding $n^3 \mod 2^{\lambda}$, we see that the cubic term in n_1 disappears.
- On the critical interval [2ρ, λ) of length κ := λ − 2ρ, the term n₁² is still relevant.
- We introduce an additional sum ∑_{0≤j<2^κ} that parametrizes the digit combinations in the critical interval.

¹Thanks to Michael Drmota, "maybe this can also be used for the cubes" Lukas Spiegelhofer (MU Leoben) Thue–Morse along the sequence of cubes Feb 29, 2024

The critical interval of digits

For a subset $J \subseteq \mathbb{N}$, let s^J denote the *restricted binary sum-of-digits* function: only digits with indices in J are counted. We write

$$\begin{split} S_0 &= \sum_{n < 2^{\nu}} e\Big(\frac{1}{2} s(n^3)\Big) \\ &= \sum_{0 \le j < 2^{\kappa}} (-1)^{s(j)} \sum_{n < 2^{\nu}} e\Big(\frac{1}{2} s^{\mathbb{N} \setminus [2\rho, \lambda)} (n^3)\Big) \left[\!\left[\frac{n^3}{2^{\lambda}} \in \left[\frac{j}{2^{\kappa}}, \frac{j+1}{2^{\kappa}}\right] + \mathbb{Z}\right]\!\right] \end{split}$$

The critical interval of digits

For a subset $J \subseteq \mathbb{N}$, let s^J denote the *restricted binary sum-of-digits* function: only digits with indices in J are counted. We write

$$\begin{split} S_{0} &= \sum_{n < 2^{\nu}} \mathrm{e} \Big(\frac{1}{2} s(n^{3}) \Big) \\ &= \sum_{0 \leq j < 2^{\kappa}} (-1)^{s(j)} \sum_{n < 2^{\nu}} \mathrm{e} \Big(\frac{1}{2} s^{\mathbb{N} \setminus [2\rho, \lambda)} \big(n^{3} \big) \Big) \left[\frac{n^{3}}{2^{\lambda}} \in \left[\frac{j}{2^{\kappa}}, \frac{j+1}{2^{\kappa}} \right) + \mathbb{Z} \right] \end{split}$$

(1.) An additional sum of length 2^{κ} is introduced;

The critical interval of digits

For a subset $J \subseteq \mathbb{N}$, let s^J denote the *restricted binary sum-of-digits* function: only digits with indices in J are counted. We write

$$\begin{split} S_{0} &= \sum_{n < 2^{\nu}} \mathrm{e} \Big(\frac{1}{2} s(n^{3}) \Big) \\ &= \sum_{0 \leq j < 2^{\kappa}} (-1)^{s(j)} \sum_{n < 2^{\nu}} \mathrm{e} \Big(\frac{1}{2} s^{\mathbb{N} \setminus [2\rho, \lambda)} (n^{3}) \Big) \left[\frac{n^{3}}{2^{\lambda}} \in \left[\frac{j}{2^{\kappa}}, \frac{j+1}{2^{\kappa}} \right) + \mathbb{Z} \right] \end{split}$$

(1.) An additional sum of length 2^{κ} is introduced;

(2.) After cutting away also the digits with indices $\geq \lambda$ (carry lemma), a linear sum-of-digits problem remains;

Lukas Spiegelhofer (MU Leoben)

Thue–Morse along the sequence of cubes

The critical interval of digits

For a subset $J \subseteq \mathbb{N}$, let s^J denote the *restricted binary sum-of-digits function*: only digits with indices in J are counted. We write

$$\begin{split} S_{0} &= \sum_{n < 2^{\nu}} \mathrm{e} \Big(\frac{1}{2} s(n^{3}) \Big) \\ &= \sum_{0 \leq j < 2^{\kappa}} (-1)^{s(j)} \sum_{n < 2^{\nu}} \mathrm{e} \Big(\frac{1}{2} s^{\mathbb{N} \setminus [2\rho, \lambda)} (n^{3}) \Big) \left[\frac{n^{3}}{2^{\lambda}} \in \left[\frac{j}{2^{\kappa}}, \frac{j+1}{2^{\kappa}} \right) + \mathbb{Z} \right] \end{split}$$

(1.) An additional sum of length 2^{κ} is introduced;

- (2.) After cutting away also the digits with indices $\geq \lambda$ (carry lemma), a linear sum-of-digits problem remains;
- (3.) The rightmost factor is approximated by a trigonometric polynomial, evaluated at $(2^{\rho}n_1 + n_0)^3/2^{\lambda}$, which only depends on n_1 in a quadratic manner.

Even sketchier idea of the proof

Applying van der Corput's inequality another time, the argument becomes linear in n₁ (cf. van der Corput difference theorem). At this point all squares and cubes have been eliminated, at the cost of a much longer summation.

Even sketchier idea of the proof

- Applying van der Corput's inequality another time, the argument becomes linear in n₁ (cf. van der Corput difference theorem). At this point all squares and cubes have been eliminated, at the cost of a much longer summation.
- The resulting trigonometric polynomial in n₁ is *decoupled* from the sum over n, using suitable arithmetic subsequences and summation by parts. (Note that "everything is linear"!)

Even sketchier idea of the proof

- Applying van der Corput's inequality another time, the argument becomes linear in n₁ (cf. van der Corput difference theorem). At this point all squares and cubes have been eliminated, at the cost of a much longer summation.
- The resulting trigonometric polynomial in n₁ is decoupled from the sum over n, using suitable arithmetic subsequences and summation by parts. (Note that "everything is linear"!)
- The trigonometric component yields a geometric sum

$$\sum_{0\leq h< H} \mathbf{e}(hx) \ll \min\left(H, \|x\|^{-1}\right),$$

where ||x|| is the distance of x to the nearest integer.

The average in x of this expression is only $\log H$ in size!

Lukas Spiegelhofer (MU Leoben)

Thue-Morse along the sequence of cubes

Due to the small (logarithmic) contribution of the critical interval, we only have to obtain a small gain in the sum-of-digits component. This component is basically of the form

$$\sum e \bigg(s^{[0,2\rho)} (dn + a) \bigg).$$

(In fact, four different slopes d_0, d_1, d_2, d_3 play a role, coming from two applications of van der Corput ...)

Due to the small (logarithmic) contribution of the critical interval, we only have to obtain a small gain in the sum-of-digits component. This component is basically of the form

$$\sum e \bigg(s^{[0,2\rho)} (dn+a) \bigg).$$

(In fact, four different slopes d_0, d_1, d_2, d_3 play a role, coming from two applications of van der Corput ...)

This is amenable to an iterated digit-elimination procedure [S2020].

Due to the small (logarithmic) contribution of the critical interval, we only have to obtain a small gain in the sum-of-digits component. This component is basically of the form

$$\sum e \bigg(s^{[0,2\rho)} (dn+a) \bigg).$$

(In fact, four different slopes d_0, d_1, d_2, d_3 play a role, coming from two applications of van der Corput ...)

- This is amenable to an iterated digit-elimination procedure [S2020].
- As in that paper, we end up with a *Gowers norm* for the Thue–Morse sequence, which was estimated by Konieczny (2019) (and Byszewski–Konieczny–Müllner 2023 for general automatic sequences):

$$\frac{1}{2^{(m+1)\rho}} \sum_{n,r_1,\dots,r_m < 2^{\rho}} \prod_{\varepsilon_1,\dots,\varepsilon_m \in \{0,1\}} \mathbf{u} \left(n + \sum_{1 \le i \le m} \varepsilon_i r_i \bmod 2^{\rho} \right) \\ = O(\exp(-c\rho)).$$

Lukas Spiegelhofer (MU Leoben)

Thue–Morse along the sequence of cubes

Essence of the proof

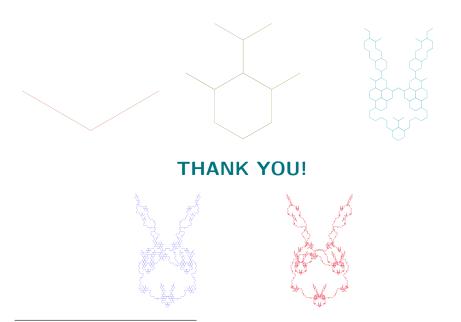
The additional sum introduced for digit detection in the critical interval only contributes a logarithm. A linear digital problem remains, which can be handled by iterated digit block elimination.

- A. O. GEL'FOND, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith., 13 (1967/1968), pp. 259–265.
- C. DARTYGE AND G. TENENBAUM, Congruences of sums of digits of polynomial values, Bull. Lond. Math. Soc., 38 (2006), pp. 61–69.
- C. MAUDUIT AND J. RIVAT, La somme des chiffres des carrés, Acta Math., 203 (2009), pp. 107–148.
- M. DRMOTA, C. MAUDUIT, AND J. RIVAT, The sum-of-digits function of polynomial sequences, J. Lond. Math. Soc. (2), 84 (2011), pp. 81–102.
- T. STOLL, *The sum of digits of polynomial values in arithmetic progressions*, Funct. Approximatio, Comment. Math., 47 (2012), pp. 233–239.
- M. DRMOTA, C. MAUDUIT, AND J. RIVAT, *Normality along squares*, J. Eur. Math. Soc, 21 (2019), pp. 507–548.
- J. KONIECZNY, Gowers norms for the Thue-Morse and Rudin-Shapiro sequences, Ann. Inst. Fourier, 69 (2019), pp. 1897–1913.
- L. SPIEGELHOFER, *The level of distribution of the Thue–Morse sequence*, Compos. Math., 156 (2020), pp. 2560–2587.

—, Thue–Morse along the sequence of cubes, 2023. Preprint, arXiv:2308.09498.

Lukas Spiegelhofer (MU Leoben)

Thue-Morse along the sequence of cubes



Supported by the FWF-ANR joint project ArithRand, and P36137 (FWF).

Lukas Spiegelhofer (MU Leoben)

Thue-Morse along the sequence of cubes

van der Corput's inequality

Lemma

Let I be a finite interval containing N integers and let a_n be a complex number for $n \in I$. For all integers $K \ge 1$ and $R \ge 1$ we have

$$\left|\sum_{n\in I}a_n\right|^2 \leq \frac{N+K(R-1)}{R}\sum_{|r|< R}\left(1-\frac{|r|}{R}\right)\sum_{\substack{n\in I\\n+Kr\in I}}a_{n+Kr}\overline{a_n}.$$

Lukas Spiegelhofer (MU Leoben)

Thue–Morse along the sequence of cubes

van der Corput's inequality

Lemma

Let I be a finite interval containing N integers and let a_n be a complex number for $n \in I$. For all integers $K \ge 1$ and $R \ge 1$ we have

$$\left|\sum_{n\in I}a_n\right|^2 \leq \frac{N+K(R-1)}{R}\sum_{|r|< R}\left(1-\frac{|r|}{R}\right)\sum_{\substack{n\in I\\n+Kr\in I}}a_{n+Kr}\overline{a_n}.$$

Instead of the original sum, we now have to estimate certain correlations (where KR will be small compared to N).

Lukas Spiegelhofer (MU Leoben)

Thue–Morse along the sequence of cubes

Higher degree polynomials

- Why not iterate the procedure of degree reduction?
- Note that

$$\int_0^1 \min\left(H, \|x\|^{-1}\right) \mathrm{d}x \asymp \log H,$$

while

$$\int_0^1 \left| \min \left(H, \|x\|^{-1} \right) \right|^2 \mathrm{d}x \asymp H.$$

Lukas Spiegelhofer (MU Leoben)

Thue–Morse along the sequence of cubes