Thue-Morse along the sequence of cubes

Lukas Spiegelhofer

$1 /$ MONTAN UNIVERSITAT

March 21, 2024
AAA7, Graz

Section 1

Subsequences of the Thue-Morse [tt: morrs] sequence

The Thue-Morse sequence

We denote the Thue-Morse sequence on $\{0,1\}$ by \mathbf{t}. It is given by the binary sum-of-digits function s, reduced modulo 2 , or as the fixed point of the morphism $0 \mapsto 01,1 \mapsto 10$ that starts with 0 .

$$
\mathbf{t}=01101001100101101001011001101001 \cdots
$$

Also, denote the Thue-Morse sequence on $\{1,-1\}$ by \mathbf{u}.

Thue-Morse \rightleftharpoons Koch

Let $\mathrm{e}(x)=e^{2 \pi i x}$. The sequence $n \mapsto(-1)^{s(n)} \mathrm{e}(-n / 3)$ describes the direction of the $(n+1)$ th segment in the "unscaled Koch curve":

Thue-Morse \rightleftharpoons Koch

Let $\mathrm{e}(x)=e^{2 \pi i x}$. The sequence $n \mapsto(-1)^{s(n)} \mathrm{e}(-n / 3)$ describes the direction of the $(n+1)$ th segment in the "unscaled Koch curve":

Partial sums of $(-1)^{s(n)} \mathrm{e}(-n / 3)$, reverse zoom

Thue-Morse \rightleftharpoons Koch

Let $\mathrm{e}(x)=e^{2 \pi i x}$. The sequence $n \mapsto(-1)^{s(n)} \mathrm{e}(-n / 3)$ describes the direction of the $(n+1)$ th segment in the "unscaled Koch curve":

Partial sums of $(-1)^{s(n)} \mathrm{e}(-n / 3)$, reverse zoom

Thue-Morse \rightleftharpoons Koch

Let $\mathrm{e}(x)=e^{2 \pi i x}$. The sequence $n \mapsto(-1)^{s(n)} \mathrm{e}(-n / 3)$ describes the direction of the $(n+1)$ th segment in the "unscaled Koch curve":

Partial sums of $(-1)^{s(n)} \mathrm{e}(-n / 3)$, reverse zoom

Thue-Morse \rightleftharpoons Koch

Let $\mathrm{e}(x)=e^{2 \pi i x}$. The sequence $n \mapsto(-1)^{s(n)} \mathrm{e}(-n / 3)$ describes the direction of the $(n+1)$ th segment in the "unscaled Koch curve":

Partial sums of $(-1)^{s(n)} \mathrm{e}(-n / 3)$, reverse zoom

Arithmetic subsequences of s

Arithmetic subsequences of \mathbf{t} are automatic.

Figure: An automaton for $\mathbf{t}(n)$

Figure: An automaton for $\mathbf{t}(3 n)$

The sum of digits along arithmetic progressions
For all integers $d \geq 0$ and rationals x and y, the sequence $n \mapsto \mathrm{e}(s(d n) x+n y)$ is 2-automatic. Partial sums yield interesting pictures.

The sum of digits along arithmetic progressions

Source: Wikipedia, "Rabbit"
(c) CC BY-SA 3.0

The sum of digits along arithmetic progressions

The function s_{q} along arithmetic progressions is uniformly distributed in residue classes modulo m if $\operatorname{gcd}(q-1, m)=1$. We state the following special case.

Theorem (Gelfond 1968)
Let $d \geq 1$ and a be integers. There is an absolute $\lambda<1$ such that

$$
|\{1 \leq n \leq x: \mathbf{t}(n)=0, n \equiv a \bmod d\}|=\frac{x}{2 d}+\mathcal{O}\left(x^{\lambda}\right)
$$

Very sparse arithmetic subsequences of \mathbf{t}

The Thue-Morse sequence has mean value around $1 / 2$ along most very short arithmetic progressions - \mathbf{t} (and \mathbf{u}) has "level of distribution 1".

Theorem (S. 2020)
For all $\varepsilon>0$ we have

$$
\sum_{1 \leq d \leq D} \max _{1 \leq, z \geq 0} \max _{\substack{y, y \leq x}}\left|\sum_{\substack{y \leq n<z \\ n \equiv a \bmod d}} \mathbf{u}(n)\right| \leq C x^{1-\eta}
$$

for some C and $\eta>0$ depending on ε, where $D=x^{1-\varepsilon}$.

In more relaxed language: let $R>0$. As $N \rightarrow \infty$, the following holds.

Most $d \asymp N^{R}$ have the property that

$$
\#\{0 \leq n<N: \mathbf{t}(n d+a)=0\}
$$

is close to $N / 2$ for all shifts a.

In more relaxed language: let $R>0$. As $N \rightarrow \infty$, the following holds.

Most $d \asymp N^{R}$ have the property that

$$
\#\{0 \leq n<N: \mathbf{t}(n d+a)=0\}
$$

is close to $N / 2$ for all shifts a.

Problem $\stackrel{\text { 㘶 }}{\sim}$

Prove that for most $d \asymp N^{R}$,

$$
m \mapsto \#\{0 \leq n<N: s(n d+a)=m\}
$$

2^{15} terms of $s\left(3^{21} n\right)$
closely follows a Gaussian for all shifts a.

Polynomials of higher degree: Gelfond's third problem

Let $S=s_{q}$ be the sum-of-digits function in base $q \geq 2$.
Finalement, signalons comme problème à résoudre l'estimation du nombre des valeurs du polynôme $P(t)$ ne prenant que des valeurs entières sur l'ensemble [...] des entiers rationels, pour lesquelles on a $S[P(n)] \equiv \ell \bmod m$.
A. O. Gelfond, Acta Arithmetica 13 (1967/1968)

Polynomials of higher degree: Gelfond's third problem

Let $S=s_{q}$ be the sum-of-digits function in base $q \geq 2$.
Finalement, signalons comme problème à résoudre l'estimation du nombre des valeurs du polynôme $P(t)$ ne prenant que des valeurs entières sur l'ensemble [...] des entiers rationels, pour lesquelles on a $S[P(n)] \equiv \ell \bmod m$.

$$
\text { A. O. Gelfond, Acta Arithmetica } 13(1967 / 1968)
$$

That is, if P is a polynomial such that $P(\mathbb{N}) \subseteq \mathbb{N}$, we are interested in

$$
A(q, P, m, \ell, x):=\#\left\{n<x: s_{q}(P(n)) \equiv \ell \bmod m\right\} .
$$

Polynomials of higher degree: Gelfond's third problem

Let $S=s_{q}$ be the sum-of-digits function in base $q \geq 2$.
Finalement, signalons comme problème à résoudre l'estimation $d u$ nombre des valeurs du polynôme $P(t)$ ne prenant que des valeurs entières sur l'ensemble [...] des entiers rationels, pour lesquelles on a $S[P(n)] \equiv \ell \bmod m$.

$$
\text { A. O. Gelfond, Acta Arithmetica } 13(1967 / 1968)
$$

That is, if P is a polynomial such that $P(\mathbb{N}) \subseteq \mathbb{N}$, we are interested in

$$
A(q, P, m, \ell, x):=\#\left\{n<x: s_{q}(P(n)) \equiv \ell \bmod m\right\}
$$

$$
\mathbf{t}=\left(s_{2}(n) \bmod 2\right)_{n \geq 0}
$$

$$
=\left(0^{\downarrow} 1^{\downarrow} 101^{\downarrow} 0011^{\downarrow} 0101101^{\downarrow} 001011001^{\downarrow} 10100110010{ }^{\downarrow} 1100110100101^{\downarrow} \cdots\right)
$$

Polynomials of higher degree: Gelfond's third problem

Let $S=s_{q}$ be the sum-of-digits function in base $q \geq 2$.
Finalement, signalons comme problème à résoudre l'estimation $d u$ nombre des valeurs du polynôme $P(t)$ ne prenant que des valeurs entières sur l'ensemble [...] des entiers rationels, pour lesquelles on a $S[P(n)] \equiv \ell \bmod m$.

$$
\text { A. O. Gelfond, Acta Arithmetica } 13(1967 / 1968)
$$

That is, if P is a polynomial such that $P(\mathbb{N}) \subseteq \mathbb{N}$, we are interested in

$$
A(q, P, m, \ell, x):=\#\left\{n<x: s_{q}(P(n)) \equiv \ell \bmod m\right\}
$$

$$
\begin{align*}
\mathbf{t} & =\left(s_{2}(n) \bmod 2\right)_{n \geq 0} \\
& =\left(\begin{array}{lll}
01 & 1 & 0
\end{array}\right. \tag{0}
\end{align*}
$$1

Partial results

We have

- Lower bounds for the numbers $A(q, P, m, \ell, x)$ are known (Dartyge-Tenenbaum 2006; Stoll 2012);

Partial results

We have

- Lower bounds for the numbers $A(q, P, m, \ell, x)$ are known (Dartyge-Tenenbaum 2006; Stoll 2012);
- The case $P(x)=x^{2}$ has been answered by Mauduit and Rivat (Acta Math., 2009). In particular, for some $c>0$ and C,

$$
\begin{equation*}
\left|\#\left\{n<x: \mathbf{t}\left(n^{2}\right)=0\right\}-\frac{x}{2}\right| \leq C x^{1-c} . \tag{1}
\end{equation*}
$$

Partial results

We have

- Lower bounds for the numbers $A(q, P, m, \ell, x)$ are known (Dartyge-Tenenbaum 2006; Stoll 2012);
- The case $P(x)=x^{2}$ has been answered by Mauduit and Rivat (Acta Math., 2009). In particular, for some $c>0$ and C,

$$
\begin{equation*}
\left|\#\left\{n<x: \mathbf{t}\left(n^{2}\right)=0\right\}-\frac{x}{2}\right| \leq C x^{1-c} . \tag{1}
\end{equation*}
$$

The sequence $\mathbf{t}\left(n^{2}\right)$ was later even shown to be normal (Drmota-Mauduit-Rivat 2019).

Partial results

We have

- Lower bounds for the numbers $A(q, P, m, \ell, x)$ are known (Dartyge-Tenenbaum 2006; Stoll 2012);
- The case $P(x)=x^{2}$ has been answered by Mauduit and Rivat (Acta Math., 2009). In particular, for some $c>0$ and C,

$$
\begin{equation*}
\left|\#\left\{n<x: \mathbf{t}\left(n^{2}\right)=0\right\}-\frac{x}{2}\right| \leq C x^{1-c} . \tag{1}
\end{equation*}
$$

The sequence $\mathbf{t}\left(n^{2}\right)$ was later even shown to be normal (Drmota-Mauduit-Rivat 2019).

- For "sufficiently large bases" q coprime to the leading coefficient of P, and $\operatorname{gcd}(q-1, m)=1$, the equivalence $A(q, P, m, \ell, x) \sim x / m$ has been proved (Drmota-Mauduit-Rivat 2011).

The main result

Theorem (S. 2024+)
There exist real numbers $c>0$ and C such that for all $x \geq 1$,

$$
\begin{equation*}
\left|\#\left\{n<x: \mathbf{t}\left(n^{3}\right)=0\right\}-\frac{x}{2}\right| \leq C x^{1-c} . \tag{2}
\end{equation*}
$$

The main result

Theorem (S. 2024+)
There exist real numbers $c>0$ and C such that for all $x \geq 1$,

$$
\begin{equation*}
\left|\#\left\{n<x: \mathbf{t}\left(n^{3}\right)=0\right\}-\frac{x}{2}\right| \leq C x^{1-c} . \tag{2}
\end{equation*}
$$

The main result

Theorem (S. 2024+)
There exist real numbers $c>0$ and C such that for all $x \geq 1$,

$$
\begin{equation*}
\left|\#\left\{n<x: \mathbf{t}\left(n^{3}\right)=0\right\}-\frac{x}{2}\right| \leq C x^{1-c} . \tag{2}
\end{equation*}
$$

Caveat. Currently, c is not guaranteed to be greater than $2^{-500000}$.

Section 2

Sketch of the proof

Carry Lemma (Mauduit-Rivat 2009, 2010)

- We are interested in the sum

$$
S_{0}:=\sum_{n<2^{\nu}} \mathbf{u}\left(n^{3}\right)
$$

Carry Lemma (Mauduit-Rivat 2009, 2010)

- We are interested in the sum

$$
S_{0}:=\sum_{n<2^{\nu}} \mathbf{u}\left(n^{3}\right)
$$

- After an application of van der Corput's inequality it remains to handle the correlation

$$
\sum_{n<2^{\nu}} \mathbf{u}\left((n+r)^{3}\right) \mathbf{u}\left(n^{3}\right)
$$

where r is small compared to 2^{ν}.

Carry Lemma (Mauduit-Rivat 2009, 2010)

- We are interested in the sum

$$
S_{0}:=\sum_{n<2^{\nu}} \mathbf{u}\left(n^{3}\right)
$$

- After an application of van der Corput's inequality it remains to handle the correlation

$$
\sum_{n<2^{\nu}} \mathbf{u}\left((n+r)^{3}\right) \mathbf{u}\left(n^{3}\right)
$$

where r is small compared to 2^{ν}.

- The arguments $(n+r)^{3}$ and n^{3} usually have the same digits with indices above

$$
\lambda:=\nu(2+\varepsilon)
$$

- These digits can therefore be discarded.

Carry lemma: a picture

Carry lemma: a picture

- In the correlation $\mathbf{u}\left((n+r)^{3}\right) \mathbf{u}\left(n^{3}\right)$, we may replace \mathbf{u} by the restricted Thue-Morse sequence $\mathbf{u}^{[0, \lambda)}(n):=\mathbf{u}\left(n \bmod 2^{\lambda}\right)$.

Carry lemma: a picture

- In the correlation $\mathbf{u}\left((n+r)^{3}\right) \mathbf{u}\left(n^{3}\right)$, we may replace \mathbf{u} by the restricted Thue-Morse sequence $\mathbf{u}^{[0, \lambda)}(n):=\mathbf{u}\left(n \bmod 2^{\lambda}\right)$.
- The remaining window $[0, \lambda)$ of digits is about twice as long as the binary expansion of n.

Carry lemma: a picture

- In the correlation $\mathbf{u}\left((n+r)^{3}\right) \mathbf{u}\left(n^{3}\right)$, we may replace \mathbf{u} by the restricted Thue-Morse sequence $\mathbf{u}^{[0, \lambda)}(n):=\mathbf{u}\left(n \bmod 2^{\lambda}\right)$.
- The remaining window $[0, \lambda)$ of digits is about twice as long as the binary expansion of n.
- Therefore we cannot obtain uniform distribution of these digits, as n runs.

Too many significant digits

- A similar problem arises for sparse arithmetic progressions nd $+a$, where $n<2^{\nu}$ and $d \gg 2^{R \nu}$: the binary digits of $(n+r) d+a$ and $n d+a$ usually differ up to index $\approx R \nu$.

Too many significant digits

- A similar problem arises for sparse arithmetic progressions nd $+a$, where $n<2^{\nu}$ and $d \gg 2^{R \nu}$: the binary digits of $(n+r) d+a$ and $n d+a$ usually differ up to index $\approx R \nu$.

- Remedy: in [Spiegelhofer 2020] we apply van der Corput's inequality repeatedly in order to eliminate digits, block by block.

Too many significant digits

- A similar problem arises for sparse arithmetic progressions nd $+a$, where $n<2^{\nu}$ and $d \gg 2^{R \nu}$: the binary digits of $(n+r) d+a$ and $n d+a$ usually differ up to index $\approx R \nu$.

- Remedy: in [Spiegelhofer 2020] we apply van der Corput's inequality repeatedly in order to eliminate digits, block by block.

Wikipedia: "Salami", by Aka (CC BY-SA 2.5)

Gowers norm

Iterated application (Cauchy-Schwarz, van der Corput) ${ }^{m}$ leads to higher order correlations of the Thue-Morse sequence, more precisely, a Gowers norm. This was estimated by Konieczny (2019) (and for general automatic sequences, by Byszewski-Konieczny-Müllner 2023): for some $c=c(m)>0$,

$$
\begin{aligned}
\frac{1}{2^{(m+1) \rho}} \sum_{n, r_{1}, \ldots, r_{m}<2^{\rho}} \prod_{\varepsilon_{1}, \ldots, \varepsilon_{m} \in\{0,1\}} \mathbf{u}^{[0, \rho)}(n+ & \left.\sum_{1 \leq i \leq m} \varepsilon_{i} r_{i}\right) \\
& =O(\exp (-c \rho)) .
\end{aligned}
$$

Iterated van der Corput could so far not be used for removing sufficiently many digits of polynomial values $P(n)$, if $\operatorname{deg} P>2$.

A trivial decomposition ${ }^{1}$

- Choose $\rho<\nu$ in such a way that $3 \rho \geq \lambda$, and write

$$
n=2^{\rho} n_{1}+n_{0}, \quad \text { where } \quad\left\{\begin{array}{l}
0 \leq n_{1}<2^{\nu-\rho} \\
0 \leq n_{0}<2^{\rho}
\end{array}\right.
$$

- Expanding $n^{3} \bmod 2^{\lambda}$, we see that the cubic term in n_{1} disappears.

[^0]

- On the critical interval $[2 \rho, \lambda)$ of length $\kappa:=\lambda-2 \rho$, the term n_{1}^{2} is still relevant.

- On the critical interval $[2 \rho, \lambda)$ of length $\kappa:=\lambda-2 \rho$, the term n_{1}^{2} is still relevant.
- We introduce an additional sum $\sum_{0 \leq j<2^{\kappa}}$ that parametrizes the digit combinations in this interval.

The critical interval of digits

We write

$$
\begin{aligned}
& S_{0}=\sum_{n<2^{\nu}} \mathbf{u}\left(n^{3}\right)=\sum_{n<2^{\nu}} \mathbf{u}^{[2 \rho, \lambda)}\left(n^{3}\right) \mathbf{u}^{\mathbb{N} \backslash[2 \rho, \lambda)}\left(n^{3}\right) \\
& \quad=\sum_{0 \leq j<2^{\kappa}} \mathbf{u}(j) \sum_{n<2^{\nu}} \mathbf{u}^{\mathbb{N} \backslash[2 \rho, \lambda)}\left(n^{3}\right) \llbracket \frac{n^{3}}{2^{\lambda}} \in\left[\frac{j}{2^{\kappa}}, \frac{j+1}{2^{\kappa}}\right)+\mathbb{Z} \| .
\end{aligned}
$$

The critical interval of digits

We write

$$
\begin{aligned}
& S_{0}=\sum_{n<2^{\nu}} \mathbf{u}\left(n^{3}\right)=\sum_{n<2^{\nu}} \mathbf{u}^{[2 \rho, \lambda)}\left(n^{3}\right) \mathbf{u}^{\mathbb{N} \backslash[2 \rho, \lambda)}\left(n^{3}\right) \\
& \left.\quad=\sum_{0 \leq j<2^{\kappa}} \mathbf{u}(j) \sum_{n<2^{\nu}} \mathbf{u}^{\mathbb{N} \backslash[2 \rho, \lambda)}\left(n^{3}\right) \llbracket \frac{n^{3}}{2^{\lambda}} \in\left[\frac{j}{2^{\kappa}}, \frac{j+1}{2^{\kappa}}\right)+\mathbb{Z}\right] .
\end{aligned}
$$

(1.) An additional sum of length 2^{κ} is introduced;

The critical interval of digits

We write

$$
\begin{aligned}
& S_{0}=\sum_{n<2^{\nu}} \mathbf{u}\left(n^{3}\right)=\sum_{n<2^{\nu}} \mathbf{u}^{[2 \rho, \lambda)}\left(n^{3}\right) \mathbf{u}^{\mathbb{N} \backslash[2 \rho, \lambda)}\left(n^{3}\right) \\
& \quad=\sum_{0 \leq j<2^{\kappa}} \mathbf{u}(j) \sum_{n<2^{\nu}} \mathbf{u}^{\mathbb{N} \backslash[2 \rho, \lambda)}\left(n^{3}\right) \llbracket \frac{n^{3}}{2^{\lambda}} \in\left[\frac{j}{2^{\kappa}}, \frac{j+1}{2^{\kappa}}\right)+\mathbb{Z} \rrbracket .
\end{aligned}
$$

(1.) An additional sum of length 2^{κ} is introduced;
(2.) The rightmost factor detects whether j corresponds to the digits of n^{3} in the critical interval $\{\lambda-\kappa, \ldots, \lambda-1\}$.

The critical interval of digits

We write

$$
\begin{aligned}
& S_{0}=\sum_{n<2^{\nu}} \mathbf{u}\left(n^{3}\right)=\sum_{n<2^{\nu}} \mathbf{u}^{[2 \rho, \lambda)}\left(n^{3}\right) \mathbf{u}^{\mathbb{N} \backslash[2 \rho, \lambda)}\left(n^{3}\right) \\
& \quad=\sum_{0 \leq j<2^{\kappa}} \mathbf{u}(j) \sum_{n<2^{\nu}} \mathbf{u}^{\mathbb{N} \backslash[2 \rho, \lambda)}\left(n^{3}\right) \llbracket \frac{n^{3}}{2^{\lambda}} \in\left[\frac{j}{2^{\kappa}}, \frac{j+1}{2^{\kappa}}\right)+\mathbb{Z} \rrbracket .
\end{aligned}
$$

(1.) An additional sum of length 2^{κ} is introduced;
(2.) The rightmost factor detects whether j corresponds to the digits of n^{3} in the critical interval $\{\lambda-\kappa, \ldots, \lambda-1\}$.
(3.) After cutting away also the digits with indices $\geq \lambda$ (carry lemma),

A LINEAR SUM-OF-DIGITS PROBLEM IN n_{1} REMAINS.

Introducing trigonometric polynomials

- The "green" detecting term is approximated by a trigonometric polynomial T, evaluated at $\left(2^{\rho} n_{1}+n_{0}\right)^{3} / 2^{\lambda}$. The term n_{1}^{3} does not appear in the argument of T.

Introducing trigonometric polynomials

- The "green" detecting term is approximated by a trigonometric polynomial T, evaluated at $\left(2^{\rho} n_{1}+n_{0}\right)^{3} / 2^{\lambda}$. The term n_{1}^{3} does not appear in the argument of T.
- Applying van der Corput's inequality another time, the argument of T becomes linear in n_{1}, yielding a proper trigonometric polynomial in n_{1} (cf. uniform distribution mod 1 of polynomial values).

Introducing trigonometric polynomials

- The "green" detecting term is approximated by a trigonometric polynomial T, evaluated at $\left(2^{\rho} n_{1}+n_{0}\right)^{3} / 2^{\lambda}$. The term n_{1}^{3} does not appear in the argument of T.
- Applying van der Corput's inequality another time, the argument of T becomes linear in n_{1}, yielding a proper trigonometric polynomial in n_{1} (cf. uniform distribution mod 1 of polynomial values).
- At this point all cubes and squares have been eliminated, at the cost of a much longer summation.

Decoupling the trigonometric part

- The trigonometric polynomial in n_{1} is decoupled from the sum over n, using suitable arithmetic subsequences and summation by parts. (Note that "everything is linear"!)

Decoupling the trigonometric part

- The trigonometric polynomial in n_{1} is decoupled from the sum over n, using suitable arithmetic subsequences and summation by parts. (Note that "everything is linear"!)
- The trigonometric component yields a geometric sum

$$
\varphi_{H}(x)=\sum_{0 \leq h<H} \mathrm{e}(h x) \ll \min \left(H,\|x\|^{-1}\right)
$$

where $\|x\|$ is the distance of x to the nearest integer.
The average in x of $\varphi_{H}(x)$ is only $\log H$ in size!

- Due to the small (logarithmic!) contribution of the critical interval, we only have to obtain a small gain in the sum-of-digits component.
- Due to the small (logarithmic!) contribution of the critical interval, we only have to obtain a small gain in the sum-of-digits component.
- Only arithmetic progressions play a role, which is is amenable to an iterated digit-elimination procedure [S2020]. This yields a gain N^{-c} for some $c>0$, easily swallowing the logarithm.

Essence of the proof

The additional sum introduced for digit detection in the critical interval only contributes a logarithm. A linear digital problem remains, which can be handled by iterated digit block elimination.

固 A．O．Gel＇fond，Sur les nombres qui ont des propriétés additives et multiplicatives données，Acta Arith．， 13 （1967／1968），pp．259－265．
© C．Dartyge and G．Tenenbaum，Congruences of sums of digits of polynomial values， Bull．Lond．Math．Soc．， 38 （2006），pp．61－69．
© C．Mauduit and J．Rivat，La somme des chiffres des carrés，Acta Math．， 203 （2009）， pp．107－148．

圆 M．Drmota，C．Mauduit，and J．Rivat，The sum－of－digits function of polynomial sequences，J．Lond．Math．Soc．（2）， 84 （2011），pp．81－102．

R T．Stoll，The sum of digits of polynomial values in arithmetic progressions，Funct． Approximatio，Comment．Math．， 47 （2012），pp．233－239．

图 M．Drmota，C．Mauduit，and J．Rivat，Normality along squares，J．Eur．Math．Soc， 21 （2019），pp．507－548．

R J．Konieczny，Gowers norms for the Thue－Morse and Rudin－Shapiro sequences，Ann． Inst．Fourier， 69 （2019），pp．1897－1913．

L．Spiegelhofer，The level of distribution of the Thue－Morse sequence，Compos．Math．， 156 （2020），pp．2560－2587．
（in－Thue－Morse along the sequence of cubes， 2023.
Preprint，arXiv：2308．09498．

THANK YOU!

Supported by the FWF-ANR joint project ArithRand, and P36137 (FWF).

van der Corput's inequality

Lemma

Let I be a finite interval containing N integers and let a_{n} be a complex number for $n \in l$. For all integers $K \geq 1$ and $R \geq 1$ we have

$$
\left|\sum_{n \in I} a_{n}\right|^{2} \leq \frac{N+K(R-1)}{R} \sum_{|r|<R}\left(1-\frac{|r|}{R}\right) \sum_{\substack{n \in I \\ n+K r \in I}} a_{n+K r} \overline{a_{n}}
$$

van der Corput's inequality

Lemma

Let I be a finite interval containing N integers and let a_{n} be a complex number for $n \in I$. For all integers $K \geq 1$ and $R \geq 1$ we have

$$
\left|\sum_{n \in I} a_{n}\right|^{2} \leq \frac{N+K(R-1)}{R} \sum_{|r|<R}\left(1-\frac{|r|}{R}\right) \sum_{\substack{n \in I \\ n+K r \in I}} a_{n+K r} \overline{a_{n}} .
$$

Instead of the original sum, we now have to estimate certain correlations (where $K R$ will be small compared to N).

Higher degree polynomials

- Why not iterate the procedure of degree reduction?
- Note that

$$
\int_{0}^{1} \min \left(H,\|x\|^{-1}\right) \mathrm{d} x \asymp \log H
$$

while

$$
\int_{0}^{1}\left|\min \left(H,\|x\|^{-1}\right)\right|^{2} \mathrm{~d} x \asymp H
$$

[^0]: ${ }^{1}$ Thanks to Michael Drmota, "maybe this can also be used for the cubes"

