Thue–Morse along the sequence of cubes

Lukas Spiegelhofer

March 21, 2024 AAA7, Graz

Section 1

Subsequences of the Thue–Morse [t+x mɔxrs] sequence

The Thue–Morse sequence

We denote the Thue–Morse sequence on $\{0,1\}$ by \mathbf{t} . It is given by the binary sum-of-digits function s, reduced modulo 2, or as the fixed point of the morphism $0\mapsto 01,\ 1\mapsto 10$ that starts with 0.

 $\mathbf{t} = 01101001100101101001011001101001 \cdots$

Also, denote the Thue–Morse sequence on $\{1,-1\}$ by ${\bf u}.$

Partial sums of $(-1)^{s(n)} e(-n/3)$, reverse zoom

Partial sums of $(-1)^{s(n)} e(-n/3)$, reverse zoom

Partial sums of $(-1)^{s(n)} e(-n/3)$, reverse zoom

Partial sums of $(-1)^{s(n)} e(-n/3)$, reverse zoom

Partial sums of $(-1)^{s(n)} e(-n/3)$, reverse zoom

Arithmetic subsequences of s

Arithmetic subsequences of t are automatic.

Figure: An automaton for $\mathbf{t}(n)$

Figure: An automaton for $\mathbf{t}(3n)$

The sum of digits along arithmetic progressions

For all integers $d \ge 0$ and rationals x and y, the sequence $n \mapsto \mathrm{e} \big(s(dn) x + ny \big)$ is 2-automatic. Partial sums yield interesting pictures.

The sum of digits along arithmetic progressions

 $e(s(7n)/3)(-1)^n$, closeup

Source: Wikipedia, "Rabbit"

© CC BY-SA 3.0

The sum of digits along arithmetic progressions

The function s_q along arithmetic progressions is uniformly distributed in residue classes modulo m if $\gcd(q-1,m)=1$. We state the following special case.

Theorem (Gelfond 1968)

Let $d \ge 1$ and a be integers. There is an absolute $\lambda < 1$ such that

$$\left|\left\{1 \leq n \leq x : \mathbf{t}(n) = 0, n \equiv a \mod d\right\}\right| = \frac{x}{2d} + \mathcal{O}(x^{\lambda}).$$

Very sparse arithmetic subsequences of t

The Thue–Morse sequence has mean value around 1/2 along most very short arithmetic progressions — \mathbf{t} (and \mathbf{u}) has "level of distribution 1".

Theorem (S. 2020)

For all $\varepsilon > 0$ we have

$$\left| \sum_{1 \le d \le D} \max_{\substack{y,z \ge 0 \\ z - y \le x}} \max_{0 \le a < d} \left| \sum_{\substack{y \le n < z \\ n \equiv a \bmod d}} \mathbf{u}(n) \right| \le C x^{1 - \eta}$$

for some C and $\eta > 0$ depending on ε , where $D = x^{1-\varepsilon}$.

In more relaxed language: let R > 0. As $N \to \infty$, the following holds.

Most $d \simeq N^R$ have the property that

$$\#\big\{0\leq n< N: \mathbf{t}(nd+a)=0\big\}$$

is close to N/2 for all shifts a.

In more relaxed language: let R > 0. As $N \to \infty$, the following holds.

Most $d \simeq N^R$ have the property that

$$\#\big\{0\leq n< N: \mathbf{t}(nd+a)=0\big\}$$

is close to N/2 for all shifts a.

Problem [⋯]

Prove that for most $d \approx N^R$,

$$m \mapsto \# \left\{ 0 \le n < N : s(nd + a) = m \right\}$$

closely follows a Gaussian for all shifts a.

 2^{15} terms of $s(3^{21}n)$

Let $S = s_q$ be the sum-of-digits function in base $q \ge 2$.

Finalement, signalons comme problème à résoudre l'estimation du nombre des valeurs du polynôme P(t) ne prenant que des valeurs entières sur l'ensemble $[\ldots]$ des entiers rationels, pour lesquelles on a $S[P(n)] \equiv \ell \mod m$.

A. O. Gelfond, Acta Arithmetica 13 (1967/1968)

Let $S = s_q$ be the sum-of-digits function in base $q \ge 2$.

Finalement, signalons comme problème à résoudre l'estimation du nombre des valeurs du polynôme P(t) ne prenant que des valeurs entières sur l'ensemble $[\dots]$ des entiers rationels, pour lesquelles on a $S[P(n)] \equiv \ell \mod m$.

A. O. Gelfond, Acta Arithmetica 13 (1967/1968)

That is, if P is a polynomial such that $P(\mathbb{N}) \subseteq \mathbb{N}$, we are interested in

$$A(q, P, m, \ell, x) := \#\{n < x : s_q(P(n)) \equiv \ell \mod m\}.$$

Let $S = s_q$ be the sum-of-digits function in base $q \ge 2$.

Finalement, signalons comme problème à résoudre l'estimation du nombre des valeurs du polynôme P(t) ne prenant que des valeurs entières sur l'ensemble $[\ldots]$ des entiers rationels, pour lesquelles on a $S[P(n)] \equiv \ell \mod m$.

A. O. Gelfond, Acta Arithmetica 13 (1967/1968)

That is, if P is a polynomial such that $P(\mathbb{N}) \subseteq \mathbb{N}$, we are interested in

$$A(q, P, m, \ell, x) := \#\{n < x : s_q(P(n)) \equiv \ell \mod m\}.$$

$$\mathbf{t} = (s_2(n) \bmod 2)_{n \ge 0}$$

$$= (0 \ 1 \ 1 \ 0 \ 1 \$$

Let $S = s_q$ be the sum-of-digits function in base $q \ge 2$.

Finalement, signalons comme problème à résoudre l'estimation du nombre des valeurs du polynôme P(t) ne prenant que des valeurs entières sur l'ensemble $[\ldots]$ des entiers rationels, pour lesquelles on a $S[P(n)] \equiv \ell \mod m$.

A. O. Gelfond, Acta Arithmetica 13 (1967/1968)

That is, if P is a polynomial such that $P(\mathbb{N}) \subseteq \mathbb{N}$, we are interested in

$$A(q, P, m, \ell, x) := \#\{n < x : s_q(P(n)) \equiv \ell \mod m\}.$$

$$\mathbf{t} = (s_2(n) \mod 2)_{n \ge 0}$$

$$= (01 \quad 1 \quad 0 \quad 1 \quad 1$$

 $1\cdots)$

We have

Lower bounds for the numbers $A(q, P, m, \ell, x)$ are known (Dartyge–Tenenbaum 2006; Stoll 2012);

We have

- Lower bounds for the numbers $A(q, P, m, \ell, x)$ are known (Dartyge–Tenenbaum 2006; Stoll 2012);
- ▶ The case $P(x) = x^2$ has been answered by Mauduit and Rivat (Acta Math., 2009). In particular, for some c > 0 and C,

$$\left| \# \left\{ n < x : \mathbf{t} \left(n^2 \right) = 0 \right\} - \frac{x}{2} \right| \le C x^{1-c}.$$
 (1)

We have

- Lower bounds for the numbers $A(q, P, m, \ell, x)$ are known (Dartyge–Tenenbaum 2006; Stoll 2012);
- ► The case $P(x) = x^2$ has been answered by Mauduit and Rivat (Acta Math., 2009). In particular, for some c > 0 and C,

$$\left| \# \left\{ n < x : \mathbf{t} \left(n^2 \right) = 0 \right\} - \frac{x}{2} \right| \le C x^{1-c}.$$
 (1)

The sequence $\mathbf{t}(n^2)$ was later even shown to be *normal* (Drmota–Mauduit–Rivat 2019).

We have

- Lower bounds for the numbers $A(q, P, m, \ell, x)$ are known (Dartyge–Tenenbaum 2006; Stoll 2012);
- ► The case $P(x) = x^2$ has been answered by Mauduit and Rivat (Acta Math., 2009). In particular, for some c > 0 and C,

$$\left| \# \left\{ n < x : \mathbf{t} \left(n^2 \right) = 0 \right\} - \frac{x}{2} \right| \le C x^{1-c}.$$
 (1)

The sequence $\mathbf{t}(n^2)$ was later even shown to be *normal* (Drmota–Mauduit–Rivat 2019).

For "sufficiently large bases" q coprime to the leading coefficient of P, and $\gcd(q-1,m)=1$, the equivalence $A(q,P,m,\ell,x)\sim x/m$ has been proved (Drmota–Mauduit–Rivat 2011).

The main result

Theorem (S. 2024+)

There exist real numbers c > 0 and C such that for all $x \ge 1$,

$$\left| \# \left\{ n < x : \mathbf{t} \left(n^3 \right) = 0 \right\} - \frac{x}{2} \right| \le C x^{1-c}.$$
 (2)

The main result

Theorem (S. 2024+)

There exist real numbers c > 0 and C such that for all $x \ge 1$,

$$\left| \# \left\{ n < x : \mathbf{t} \left(n^3 \right) = 0 \right\} - \frac{x}{2} \right| \le C x^{1-c}.$$
 (2)

The main result

Theorem (S. 2024+)

There exist real numbers c > 0 and C such that for all $x \ge 1$,

$$\left| \# \left\{ n < x : \mathbf{t} \left(n^3 \right) = 0 \right\} - \frac{x}{2} \right| \le C x^{1-c}.$$
 (2)

Caveat. Currently, c is not guaranteed to be greater than $2^{-500000}$.

Section 2

Sketch of the proof

Carry Lemma (Mauduit-Rivat 2009, 2010)

We are interested in the sum

$$S_0 := \sum_{n < 2^{\nu}} \mathbf{u}(n^3).$$

Carry Lemma (Mauduit-Rivat 2009, 2010)

We are interested in the sum

$$S_0 := \sum_{n < 2^{\nu}} \mathbf{u}(n^3).$$

► After an application of *van der Corput's inequality* it remains to handle the correlation

$$\sum_{n<2^{\nu}}\mathbf{u}\big((n+r)^3\big)\mathbf{u}\big(n^3\big),$$

where r is small compared to 2^{ν} .

Carry Lemma (Mauduit-Rivat 2009, 2010)

▶ We are interested in the sum

$$S_0 := \sum_{n < 2^{\nu}} \mathbf{u}(n^3).$$

► After an application of *van der Corput's inequality* it remains to handle the correlation

$$\sum_{n<2^{\nu}}\mathbf{u}\big((n+r)^3\big)\mathbf{u}\big(n^3\big),$$

where r is small compared to 2^{ν} .

► The arguments $(n + r)^3$ and n^3 usually have the same digits with indices above

$$\lambda := \nu(2 + \varepsilon).$$

These digits can therefore be discarded.

Carry lemma: a picture

▶ In the correlation $\mathbf{u}((n+r)^3)\mathbf{u}(n^3)$, we may replace \mathbf{u} by the restricted Thue–Morse sequence $\mathbf{u}^{[0,\lambda)}(n) := \mathbf{u}(n \mod 2^{\lambda})$.

Carry lemma: a picture

- ▶ In the correlation $\mathbf{u}((n+r)^3)\mathbf{u}(n^3)$, we may replace \mathbf{u} by the restricted Thue–Morse sequence $\mathbf{u}^{[0,\lambda)}(n) := \mathbf{u}(n \mod 2^{\lambda})$.
- The remaining window $[0, \lambda)$ of digits is about twice as long as the binary expansion of n.

Carry lemma: a picture

- ▶ In the correlation $\mathbf{u}((n+r)^3)\mathbf{u}(n^3)$, we may replace \mathbf{u} by the restricted Thue–Morse sequence $\mathbf{u}^{[0,\lambda)}(n) := \mathbf{u}(n \mod 2^{\lambda})$.
- ▶ The remaining window $[0, \lambda)$ of digits is about twice as long as the binary expansion of n.
- ► Therefore we cannot obtain uniform distribution of these digits, as *n* runs.

Too many significant digits

▶ A similar problem arises for sparse arithmetic progressions nd + a, where $n < 2^{\nu}$ and $d \gg 2^{R\nu}$: the binary digits of (n+r)d + a and nd + a usually differ up to index $\approx R\nu$.

Too many significant digits

▶ A similar problem arises for sparse arithmetic progressions nd + a, where $n < 2^{\nu}$ and $d \gg 2^{R\nu}$: the binary digits of (n+r)d + a and nd + a usually differ up to index $\approx R\nu$.

▶ Remedy: in [Spiegelhofer 2020] we apply van der Corput's inequality repeatedly in order to eliminate digits, block by block.

Too many significant digits

▶ A similar problem arises for sparse arithmetic progressions nd + a, where $n < 2^{\nu}$ and $d \gg 2^{R\nu}$: the binary digits of (n+r)d + a and nd + a usually differ up to index $\approx R\nu$.

▶ Remedy: in [Spiegelhofer 2020] we apply van der Corput's inequality repeatedly in order to eliminate digits, block by block.

Wikipedia: "Salami", by Aka (CC BY-SA 2.5)

Gowers norm

Iterated application (Cauchy–Schwarz, van der Corput) m leads to higher order correlations of the Thue–Morse sequence, more precisely, a *Gowers norm*. This was estimated by Konieczny (2019) (and for general automatic sequences, by Byszewski–Konieczny–Müllner 2023): for some c = c(m) > 0,

$$\frac{1}{2^{(m+1)\rho}} \sum_{n,r_1,\dots,r_m < 2^{\rho}} \prod_{\varepsilon_1,\dots,\varepsilon_m \in \{0,1\}} \mathbf{u}^{[0,\rho)} \left(n + \sum_{1 \le i \le m} \varepsilon_i r_i\right) \\
= O\left(\exp(-c\rho)\right).$$

Iterated van der Corput could so far not be used for removing sufficiently many digits of polynomial values P(n), if deg P > 2.

A trivial decomposition¹

▶ Choose $\rho < \nu$ in such a way that $3\rho \ge \lambda$, and write

$$n = 2^{\rho} n_1 + n_0$$
, where $\begin{cases} 0 \le n_1 < 2^{\nu - \rho}, \\ 0 \le n_0 < 2^{\rho}. \end{cases}$

 \triangleright Expanding n^3 mod 2^{λ} , we see that the cubic term in n_1 disappears.

¹Thanks to Michael Drmota, "maybe this can also be used for the cubes"

▶ On the critical interval $[2\rho, \lambda)$ of length $\kappa := \lambda - 2\rho$, the term n_1^2 is still relevant.

- ▶ On the critical interval $[2\rho, \lambda)$ of length $\kappa := \lambda 2\rho$, the term n_1^2 is still relevant.
- We introduce an additional sum $\sum_{0 \le j < 2^{\kappa}}$ that parametrizes the digit combinations in this interval.

We write

$$\begin{split} S_0 &= \sum_{n < 2^{\nu}} \mathbf{u} \big(n^3 \big) = \sum_{n < 2^{\nu}} \mathbf{u}^{[2\rho, \lambda)} \big(n^3 \big) \, \mathbf{u}^{\mathbb{N} \setminus [2\rho, \lambda)} \big(n^3 \big) \\ &= \sum_{0 \le j < 2^{\kappa}} \mathbf{u} (j) \sum_{n < 2^{\nu}} \mathbf{u}^{\mathbb{N} \setminus [2\rho, \lambda)} \big(n^3 \big) \left[\frac{n^3}{2^{\lambda}} \in \left[\frac{j}{2^{\kappa}}, \frac{j+1}{2^{\kappa}} \right) + \mathbb{Z} \right]. \end{split}$$

We write

$$\begin{split} S_0 &= \sum_{n < 2^{\nu}} \mathbf{u} \big(n^3 \big) = \sum_{n < 2^{\nu}} \mathbf{u}^{\left[2\rho, \lambda \right)} \big(n^3 \big) \, \mathbf{u}^{\mathbb{N} \setminus \left[2\rho, \lambda \right)} \big(n^3 \big) \\ &= \sum_{0 \le j < 2^{\kappa}} \mathbf{u}(j) \sum_{n < 2^{\nu}} \mathbf{u}^{\mathbb{N} \setminus \left[2\rho, \lambda \right)} \big(n^3 \big) \left[\frac{n^3}{2^{\lambda}} \in \left[\frac{j}{2^{\kappa}}, \frac{j+1}{2^{\kappa}} \right) + \mathbb{Z} \right]. \end{split}$$

(1.) An additional sum of length 2^{κ} is introduced;

We write

$$\begin{split} S_0 &= \sum_{n < 2^{\nu}} \mathbf{u} \big(n^3 \big) = \sum_{n < 2^{\nu}} \mathbf{u}^{\left[2\rho, \lambda \right)} \big(n^3 \big) \, \mathbf{u}^{\mathbb{N} \setminus \left[2\rho, \lambda \right)} \big(n^3 \big) \\ &= \sum_{0 \leq j < 2^{\kappa}} \mathbf{u} (j) \sum_{n < 2^{\nu}} \mathbf{u}^{\mathbb{N} \setminus \left[2\rho, \lambda \right)} \big(n^3 \big) \left[\frac{n^3}{2^{\lambda}} \in \left[\frac{j}{2^{\kappa}}, \frac{j+1}{2^{\kappa}} \right) + \mathbb{Z} \right]. \end{split}$$

- (1.) An additional sum of length 2^{κ} is introduced;
- (2.) The rightmost factor detects whether j corresponds to the digits of n^3 in the critical interval $\{\lambda \kappa, \dots, \lambda 1\}$.

We write

$$\begin{split} S_0 &= \sum_{n < 2^{\nu}} \mathbf{u} \big(n^3 \big) = \sum_{n < 2^{\nu}} \mathbf{u}^{\left[2\rho, \lambda \right)} \big(n^3 \big) \, \mathbf{u}^{\mathbb{N} \setminus \left[2\rho, \lambda \right)} \big(n^3 \big) \\ &= \sum_{0 \leq j < 2^{\kappa}} \mathbf{u} (j) \sum_{n < 2^{\nu}} \mathbf{u}^{\mathbb{N} \setminus \left[2\rho, \lambda \right)} \big(n^3 \big) \left[\left[\frac{n^3}{2^{\lambda}} \in \left[\frac{j}{2^{\kappa}}, \frac{j+1}{2^{\kappa}} \right) + \mathbb{Z} \right] \right]. \end{split}$$

- (1.) An additional sum of length 2^{κ} is introduced;
- (2.) The rightmost factor detects whether j corresponds to the digits of n^3 in the critical interval $\{\lambda \kappa, \dots, \lambda 1\}$.
- (3.) After cutting away also the digits with indices $\geq \lambda$ (carry lemma),

A LINEAR SUM-OF-DIGITS PROBLEM IN n_1 REMAINS.

Introducing trigonometric polynomials

The "green" detecting term is approximated by a trigonometric polynomial T, evaluated at $(2^{\rho}n_1 + n_0)^3/2^{\lambda}$. The term n_1^3 does not appear in the argument of T.

Introducing trigonometric polynomials

- ▶ The "green" detecting term is approximated by a trigonometric polynomial T, evaluated at $(2^{\rho}n_1 + n_0)^3/2^{\lambda}$. The term n_1^3 does not appear in the argument of T.
- Applying van der Corput's inequality another time, the argument of T becomes linear in n_1 , yielding a proper trigonometric polynomial in n_1 (cf. uniform distribution mod 1 of polynomial values).

Introducing trigonometric polynomials

- ▶ The "green" detecting term is approximated by a trigonometric polynomial T, evaluated at $(2^{\rho}n_1 + n_0)^3/2^{\lambda}$. The term n_1^3 does not appear in the argument of T.
- Applying van der Corput's inequality another time, the argument of T becomes linear in n_1 , yielding a proper trigonometric polynomial in n_1 (cf. uniform distribution mod 1 of polynomial values).
- ▶ At this point all cubes and squares have been eliminated, at the cost of a much longer summation.

Decoupling the trigonometric part

The trigonometric polynomial in n_1 is *decoupled* from the sum over n, using suitable arithmetic subsequences and summation by parts. (Note that "everything is linear"!)

Decoupling the trigonometric part

- ▶ The trigonometric polynomial in n_1 is decoupled from the sum over n, using suitable arithmetic subsequences and summation by parts. (Note that "everything is linear"!)
- The trigonometric component yields a geometric sum

$$\varphi_H(x) = \sum_{0 \le h \le H} e(hx) \ll \min(H, ||x||^{-1}),$$

where ||x|| is the distance of x to the nearest integer.

The average in x of $\varphi_H(x)$ is only $\log H$ in size!

- ▶ Due to the small (logarithmic!) contribution of the critical interval, we only have to obtain a small gain in the sum-of-digits component.
- ▶ Only arithmetic progressions play a role, which is is amenable to an iterated digit-elimination procedure [S2020]. This yields a gain N^{-c} for some c > 0, easily swallowing the logarithm.

Essence of the proof

The additional sum introduced for digit detection in the critical interval only contributes a logarithm. A linear digital problem remains, which can be handled by iterated digit block elimination.

- A. O. Gel'fond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith., 13 (1967/1968), pp. 259–265.
- © C. Dartyge and G. Tenenbaum, Congruences of sums of digits of polynomial values, Bull. Lond. Math. Soc., 38 (2006), pp. 61–69.
- C. MAUDUIT AND J. RIVAT, *La somme des chiffres des carrés*, Acta Math., 203 (2009), pp. 107–148.
- M. DRMOTA, C. MAUDUIT, AND J. RIVAT, *The sum-of-digits function of polynomial sequences*, J. Lond. Math. Soc. (2), 84 (2011), pp. 81–102.
- T. Stoll, *The sum of digits of polynomial values in arithmetic progressions*, Funct. Approximatio, Comment. Math., 47 (2012), pp. 233–239.
- M. DRMOTA, C. MAUDUIT, AND J. RIVAT, *Normality along squares*, J. Eur. Math. Soc, 21 (2019), pp. 507–548.
- J. Konieczny, *Gowers norms for the Thue-Morse and Rudin-Shapiro sequences*, Ann. Inst. Fourier, 69 (2019), pp. 1897–1913.
- L. Spiegelhofer, *The level of distribution of the Thue–Morse sequence*, Compos. Math., 156 (2020), pp. 2560–2587.
- Thue-Morse along the sequence of cubes, 2023. Preprint, arXiv:2308.09498.

THANK YOU!

Supported by the FWF-ANR joint project ArithRand, and P36137 (FWF).

van der Corput's inequality

Lemma

Let I be a finite interval containing N integers and let a_n be a complex number for $n \in I$. For all integers $K \ge 1$ and $R \ge 1$ we have

$$\left| \sum_{n \in I} a_n \right|^2 \leq \frac{N + K(R-1)}{R} \sum_{|r| < R} \left(1 - \frac{|r|}{R} \right) \sum_{\substack{n \in I \\ n + Kr \in I}} a_{n + Kr} \overline{a_n}.$$

van der Corput's inequality

Lemma

Let I be a finite interval containing N integers and let a_n be a complex number for $n \in I$. For all integers $K \ge 1$ and $R \ge 1$ we have

$$\left| \sum_{n \in I} a_n \right|^2 \leq \frac{N + K(R-1)}{R} \sum_{|r| < R} \left(1 - \frac{|r|}{R} \right) \sum_{\substack{n \in I \\ n + Kr \in I}} a_{n+Kr} \overline{a_n}.$$

Instead of the original sum, we now have to estimate certain correlations (where KR will be small compared to N).

Higher degree polynomials

- Why not iterate the procedure of degree reduction?
- Note that

$$\int_0^1 \min\left(H, \|x\|^{-1}\right) \mathrm{d}x \asymp \log H,$$

while

$$\int_0^1 \left| \min \left(H, \|x\|^{-1} \right) \right|^2 \mathrm{d}x \approx H.$$