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Abstract. Starting with a paper of Jacobson form the 1960s, many authors became interested
in characterizing all algebraic number fields in which each integer is the sum of pairwise dis-
tinct units. Although there exist many partial results for number fields of low degree, a full
characterization of these number fields is still not available. Narkiewicz and Jarden posed an
analogous question for sums of units that are not necessarily distinct.

In this paper we propose a generalization of these problems. In particular, for a given
rational integer n we consider the following problem. Characterize all number fields for which
every integer is a linear combination

a1ε1 + · · · + aℓεℓ

of finitely many units εi in a way that the coefficients ai ∈ N are bounded by n.
The paper gives several partial results on this problem. In our proofs we exploit the fact that

these representations are related to symmetric beta expansions with respect to Pisot bases.

1. Introduction

The representation of algebraic integers as sums of distinct units goes back to Jacobson [11] who

observed that the fields Q(
√

2) and Q(
√

5) have the property that every algebraic integer can be
written as a sum of distinct units. He conjectured that these are the only quadratic fields with this
property, which was proved some years later by Śliwa [17]. These results were extended to cubic
and quartic fields by Belcher [5, 6]. The problem of characterizing all number fields in which every
integer is a sum of distinct units is still unsolved. It is listed as Problem 18 in Narkiewicz’ [15,
539ff] problem list.

More recently Jarden and Narkiewicz [12] showed that not every algebraic integer in a given
number field can be written as the sum of a bounded number of units that are not necessarily
distinct. Jarden and Narkiewicz also ask for a characterization of all number fields having the
property that every integer can be written as the sum of (not necessarily distinct) units. This
problem is known as the unit sum number problem for number fields and was considered for
quadratic [5, 3], complex cubic [20], and complex quartic fields [9, 21].

In the present paper we want to consider a generalization of both of these problems. To this
matter we introduce the following definition.

Definition 1.1. Let o be some order of a number field and α ∈ o some algebraic integer. Assume
that α can be written as a linear combination

(1.1) α = a1ε1 + · · · + aℓεℓ,

where ε1, . . . , εℓ ∈ o
∗ are distinct units and a1 ≥ · · · ≥ aℓ > 0 are integers. If (in case there exist

more than one representations of the form (1.1)) a1 in (1.1) is chosen as small as possible, we call
ω(α) = a1 the unit sum height of α. In addition we define ω(0) = 0 and ω(α) = ∞ if α admits
no representation as a finite sum of units. Moreover, we define

ω(o) = max{ω(α) : α ∈ o}
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if the maximum exists. If the maximum does not exist we write

ω(o) =

{

ω if ω(α) < ∞ for each α ∈ o,

∞ if there exists α ∈ o such that ω(α) = ∞.

If o is the maximal order of a number field k we also write ω(k) := ω(o).

The purpose of the present paper is to investigate the unit sum height. In particular we are
interested in upper bounds for ω(k) for any given field k. By the above-mentioned result of

Jacobson we know that ω(Q(
√

2)) = ω(Q(
√

5)) = 1. On the other hand it is easy to see that
ω(Z) = ω. Moreover, it is clear that every order o that is not generated by its units has unit sum
height ω(o) = ∞. Therefore we are only interested in orders that are generated by their units.
We call these orders unit generated orders, UG orders for short.

Belcher [6] found a simple sufficient condition for the maximal order o of a number field having
unit sum height 1 (this condition is a fortiori valid for any order). In particular he proved that
an UG order o has unit sum height 1, provided that 2 can be written as the sum of two distinct
units. Note that the converse of this assertion is not true. With the methods introduced in this
paper we are able to find fields that do not satisfy “Belcher’s test” but have unit sum height 1.
Such examples can be found in the family of Shank’s simplest cubic fields, i.e., fields Q(α) where
α is a root of the polynomial

X3 − (a − 1)X2 − (a + 2)X − 1,

with a ∈ Z. In particular, take a = 2. Then, because a2 + a + 7 = 13 is square-free in this case we
have o = Z[α] by the considerations in [14, p.53]. Thus Theorem 7.4 and the remark in its proof
imply that ω(k) = ω(Z[α]) = 1 despite 2 cannot be written as the sum of two distinct units.

In the next section we give some notations and state our results. Section 3 contains results
on symmetric beta expansions with respect to Pisot numbers which will be needed later on. In
Section 4 we prove a theorem which is strongly related to the theory of beta expansions (Theo-
rem 2.1) that works very well in the case of unit rank 1. In Section 5 we derive some consequences
of Theorem 2.1 and apply symmetric beta expansions to our problems. In particular we com-
pletely characterize ω(o) for all real quadratic and purely cubic fields. In most cases with unit
rank greater than one Theorem 2.1 provides only crude bounds for ω. Better bounds are obtained
by using Theorem 2.10 which goes beyond the framework of beta expansions. This result is proved
in Section 6. In the last section we deal with Shank’s simplest cubic fields in order to demonstrate
the potential of our method.

2. Notations and Statement of Results

In the present section we give the basic notions and definitions that we need throughout the
paper. Moreover, we state our main results.

Let k be a field of degree n and signature (r, s) and let us fix the real embeddings σ1, . . . , σr

and the complex embeddings σr+1 = σ̄r+s+1, . . . , σr+s = σ̄r+2s of k. For α ∈ k we denote the
Galois conjugates of α by α(i) = σiα and by convention we write α = α(1) and α′ = α(2).

We recall that an algebraic integer α is a Pisot number if α > 1 and all conjugates of α have
absolute value less than 1.

Let o be some fixed order of k. For our purposes the following notation for a “cylinder” will be
used.

T (x1, . . . , xr+s) = {y ∈ o : |y(i)| ≤ xi}.
With this notation we are in a position to state our first result.

Theorem 2.1. Let k 6= Q be a real number field and o some order of k. Let ε ∈ o
∗ be a Pisot

unit of k and put w1 =
⌈

ε−1
2

⌉
. Then for each α ∈ o there exists N ∈ N such that

(2.1) αεN = β +

n∑

i=0

aiε
i,
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with |ai| ≤ w1 and β is contained in the finite set

Bε := T

(
1

2
,

w1

1 − |ε(2)| , · · · ,
w1

1 − |ε(r+s)|

)

.

The elements of Bε \ {0} will be called critical points.

Remark 2.2. Note that each real number field k contains a Pisot unit. This is an immediate
consequence of the proof of Dirichlet’s Unit Theorem, see [13, p. 104–109] (we also refer the
reader to the slight variant in [16, I, §7, Exercise 6]).

Remark 2.3. This theorem is strongly related to beta numeration with respect to Pisot numbers
(see e.g. Frougny and Solomyak [10]). Indeed, it is a slight variation of the fact that beta trans-
formations related to symmetric beta expansions (see Akiyama and Scheicher [1] for a definition
and basic properties of these objects) admit ultimately periodic orbits. Indeed, Theorem 2.1 even
gives an upper bound for the elements contained in the periods. For a survey on beta numeration
see e.g. Barat et al. [4].

This theorem has a number of interesting consequences. An immediate consequence is the
following corollary.

Corollary 2.4. Let the assumptions and notations of Theorem 2.1 be in force and set

w2 = max{ω(β) : β ∈ Bε},
where we assume the ordering 0 < 1 < 2 < · · · < ω < ∞. Then ω(o) ≤ w1 + w2, with the
convention that l + ∞ = ∞. (Note that neither w1 nor w2 can be equal to ω.)

The following result will be derived from Theorem 2.1 at the beginning of Section 5.

Corollary 2.5. Let the assumptions and notations of Theorem 2.1 be in force. Let o be some UG
order of k. Then ω(o) is finite.

In the case of real quadratic and real cubic fields having signature (1, 1) we are able to give more
precise statements. In particular, for quadratic fields we even give an exact formula. Moreover,
in the following corollary we recover theorems due to Śliwa [17] and Belcher [6] for the quadratic
and respectively for the real cubic case with signature (1, 1).

Corollary 2.6. The following two assertions hold:

• There are only finitely many real quadratic fields k satisfying ω(k) = 1.
• There are only finitely many cubic fields k with signature (1, 1) satisfying ω(k) = 1.

Indeed we are able to show more. Corollary 2.6 will be a special case of the following two
theorems.

For the case of quadratic fields we get the following complete characterization of ω(k).

Theorem 2.7. Let k = Q(
√

d) be a quadratic field with d > 1 square-free.

• If d = a2 ± 1 for some a ∈ N and d 6≡ 1 mod 4, then we have ω(k) = a.
• If d = a2 − 4 for some a ∈ N and d ≡ 1 mod 4, then we have ω(k) = a−1

2 .

• If d = a2 + 4 for some a ∈ N and d ≡ 1 mod 4, then we have ω(k) = a+1
2 .

All the other real quadratic fields are not generated by their units.

For the case of cubic number fields with signature (1, 1) we do not know a nice characterization
(in terms of the discriminant or the regulator) of the fields having a maximal order that is UG.
For this reason, we cannot give a complete characterization like in the quadratic case. However,
we shall prove the following partial result.

Theorem 2.8. Let k be a cubic field with signature (1, 1) and let ε > 1 be a fundamental unit of
k. If the maximal order of k is UG, then ω(k) =

⌈
ε−1
2

⌉
.

In particular, for each constant C > 0 there exist only finitely many cubic fields with signature
(1, 1) satisfying ω(k) ≤ C.
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On the other hand we know by the work of Tichy and Ziegler [20] which maximal orders of
pure cubic fields are UG. Using this characterization we obtain the following result.

Theorem 2.9. Let d > 1 be a cube-free integer. Then the maximal order o of k = Q( 3
√

d) is
UG if and only if d is square-free, d 6≡ ±1 mod 9 and d = a3 ± 1 for some integer a or d = 28.
Moreover we have

• ω(k) = 3a2

2 if a is even,

• ω(k) = 3a2+1
2 if a is odd and d = a3 + 1 and d 6= 28,

• ω(k) = 3a2−1
2 if a is odd and d = a3 − 1,

• ω(k) = 3 if d = 28.

We want to point out that Corollary 2.4 gives sharp bounds only in case of unit rank 1. In
case of higher unit rank the bound is in most cases far from the truth. However, if k is real and
provides at least one non-trivial Q-automorphism we can significantly improve our result.

Theorem 2.10. Let k be a real number field with signature (r, s) with at least one non-trivial
Q-automorphism σ and let o be some order of k. Let ε = ε(1) ∈ o

∗ be a Pisot unit with conjugates
ε(1), . . . , ε(n) and let us assume that ε(2) = ε′ = σε and ε(r) = σ−1ε. Define the set

Bε,σ = T

(
1

2
,

w

1 − |ε(2)| , . . . ,
w

1 − |ε(r−1)| , w +
(w − 1 + |ε|B)|)|ε(r)|

1 − |ε(r)| ,

w

1 − |ε(r+1)| , . . . ,
w

1 − |ε(r+s)|

)

,

where

B =

⌊

− log ε − log 2 − log w

log |ε′|

⌋

+ 1 and w =

⌈

ε · 1 − |ε′|
2|ε′|

⌉

.

Then for each α ∈ o there exists an integer N such that

αεN = β +

m∑

i=0

ni∑

j=0

aijε
i(ε′)j

for some positive integers m, n1, . . . , nm, integer coefficients |aij | ≤ w and β ∈ Bε,σ.

Note that the set Bε,σ in Theorem 2.10 is finite and effectively computable.

3. Preliminaries on symmetric beta expansions

In the present section we review results on symmetric beta numeration that will be used in
subsequent sections. All these results are taken from Akiyama and Scheicher [1].

Let β > 1 be a Pisot number with minimal polynomial A(x) = xd − a1x
d−1 − . . . − ad ∈ Z[x]

and define the real numbers r1, . . . , rd−1 by

rd−j+1 =
aj

β
+

aj+1

β2
+ · · · + ad

βd−j+1
(2 ≤ j ≤ d).

In other words, r1, . . . , rd−1 are the coefficients of the polynomial defined by

A(x) = (x − β)(xd−1 + rd−1x
d−2 + · · · + r1)

Let D be the closed triangle with vertices (− 1
2 , 0), (1

2 , 1), (1
2 ,−1), L1 the straight line connecting

(− 1
2 , 0) and (1

2 ,−1), and L2 the straight line connecting (1
2 , 1

2 ) and (1
2 , 1).

Then the following result holds.

Proposition 3.1 (see [1]). For Pisot numbers of degree two and three we get the following results.

• Let β be a quadratic Pisot number. If r1 ∈ (− 1
2

1
2 ] then each α ∈ Z[β] admits an expansion

of the shape

α =
m∑

j=n

ajβ
j

with |aj | ≤
⌈

β−1
2

⌉

and n, m ∈ Z.
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• Let β be a cubic Pisot number.
If (r1, r2) ∈ D \ (L1 ∪ L2) then each α ∈ Z[β] admits an expansion of the shape

α =

m∑

j=n

ajβ
j

with |aj | ≤
⌈

β−1
2

⌉

and n, m ∈ Z.

Note that in the quadratic case we have r1 = −β′ while in the cubic case we get r1 = β(2)β(3)

and r2 = −β(2) − β(3). In the sequel we will use these representation of r1 and r2.

4. Proof of Theorem 2.1

In this section we provide the proof of Theorem 2.1. The proof is in the spirit of many proofs
occurring in the theory of numeration when proving that certain number systems admit eventually
periodic digit expansion. Here, the Pisot unit ε plays the role of the “base” and the coefficients
ai of the linear combination in (2.1) are the “digits”. We start with the following lemma.

Lemma 4.1. Let x, ε ∈ R with ε > 1 and set w1 =
⌈

ε−1
2

⌉
. Then there exist rational integers

n, a0, . . . , an with |ai| ≤ w1 such that
∣
∣
∣
∣
∣
x −

n∑

i=0

aiε
i

∣
∣
∣
∣
∣
≤ 1

2
.

Proof. The proof is easy when we have a greedy digit expansion in mind. For completeness we
give a proof by induction. If |x| ≤ 1

2 the proof is obvious. Assume that for each |x| ≤ εn

2

(4.1)

∣
∣
∣
∣
∣
x −

n−1∑

i=0

aiε
i

∣
∣
∣
∣
∣
≤ 1

2

holds with ai as specified in the lemma. We shall prove the analogous assertion for n replaced by

n + 1. Let |x| ≤ εn+1

2 . Then, by the definition of w1 there exists an ∈ Z with |an| ≤ w1 such that

|x − anεn| ≤ εn

2
.

The result now follows by induction, if we replace x by x − anεn in (4.1). �

To prove Theorem 2.1 let α ∈ o be arbitrary. Since ε is a Pisot number, for each δ > 0 there
exists N ∈ N such that

∣
∣α(i)(ε(i))N

∣
∣ < δ holds for i = 2, . . . , n. In other words, apart form αεN

itself all conjugates of αεN are small. We now want to approximate αεN by a sum of units. To
this matter let us apply Lemma 4.1 to x = αεN . This yields n, a0, . . ., an such that

(4.2)

∣
∣
∣
∣
∣
αεN −

n∑

i=0

aiε
i

∣
∣
∣
∣
∣
≤ 1

2
.

Write β = αεN − ∑n

i=0 aiε
i. Then, taking conjugates, we have

(4.3) |β(i)| ≤ w1

n∑

k=0

|(ε(i))k| + δ <
w1

1 − |ε(i)| + δ

for 2 ≤ i ≤ r + s. Therefore we have proved that β = αεN − ∑n

i=0 aiε
i lies in the set

T

(
1

2
,

w1

1 − |ε(2)| + δ, · · · ,
w1

1 − |ε(r+s)| + δ

)

.

Let (r, s) be the signature of k and recall that the natural embedding o → Rr × C2s, y 7→
(y(1), . . . , y(n)) of o is a discrete set in Rr ×C2s. Therefore there exists δ0 > 0 such that for every
0 < δ < δ0 we have

T

(
1

2
,

w1

1 − |ε(2)| + δ, · · · ,
w1

1 − |ε(r+s)| + δ

)

= T

(
1

2
,

w1

1 − |ε(2)| , · · · ,
w1

1 − |ε(r+s)|

)

.
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Choosing δ small enough proves Theorem 2.1.

5. Quadratic and cubic fields

This section is devoted to the consequences of Theorem 2.1. A first consequence is that every
UG order of a real number field has finite unit sum height (see Corollary 2.5). Indeed, note that
Bε is a finite set and that the unit weights of associated elements are equal. Therefore let us write
w2 = max{ω(β) : β ∈ Bε}. But by Theorem 2.1 we know that ω(αεN − β) ≤ w1 and therefore
ω(α) ≤ w1 + w2 for all α ∈ o, hence Corollary 2.5 is proved.

Now let us draw our attention to quadratic fields and cubic fields with signature (1, 1).

Lemma 5.1. Let k be a real quadratic field or a real cubic field with signature (1, 1) and let the
notations and assumptions of Theorem 2.1 be in force. Then we have w1 ≤ ω(k) ≤ w1 + w2.

Proof. The upper bound has been already proved. For the proof of the lower bound we may
assume that w1 ≥ 2 and, hence, ε > 3 is the fundamental unit. Let us consider sums of the form

S =
m∑

j=n+1

ajε
j

with aj ∈ Z, |aj | ≤ w1 − 1 for n + 1 ≤ j ≤ m and m ≥ n + 1. Let us assume for a moment that
m > n + 1 and that am ≥ 1. Then we have

S ≥ εm − εn+1(w1 − 1)
εm−n−1 − 1

ε − 1
>

εm − εn+1 ε − 1

2
· εm−n−1 − 1

ε − 1
+ εn+1 εm−n−1 − 1

ε − 1
>

εm

2
+

εn+1

2
> εn+1.

This yields εn+1 is the unique minimal element (in absolute values) in the set of all sums of the
form S considered above.

Let us assume that every algebraic integer has unit sum height ≤ w1 − 1. In particular, also
the rational integer

N :=

⌊

(w1 − 1)

n∑

i=−∞
εi

⌋

+ 1 =

⌊
εn+1(w1 − 1)

ε − 1

⌋

+ 1

has unit sum height ≤ w1 − 1. By the construction of N some unit ≥ εn+1 contributes to the
representation of N as a sum of units with coefficients ≤ w1 − 1 in absolute values. Therefore
we conclude by the minimality of εn+1 (in the sense discussed above) that N − εn+1 > −N , i.e.
2N > εn+1, since otherwise all possible “reductions“ with units ≥ εn+1 (in absolute values) would
lead to an algebraic integer larger than N (in absolute values).

But on the other hand we have

2N < εn+1

(
2(w1 − 1)

ε − 1
+

2

εn+1

)

< εn+1

for sufficiently large n, by the definition of w1. �

Remark 5.2. Note that for real quadratic fields or cubic fields with signature (1, 1) the set Bε is
rather small and also the elements contained in Bε are “small”. This often guarantees that w2

stays small and hence w1 is a good guess for the unit sum height (cf. Theorem 2.7 or 2.8).

5.1. Quadratic fields. In this subsection we intend to prove Theorem 2.7. In particular we have
to distinguish the four cases d ∈ {a2 ± 1, a2 ± 4}. Note that these are the only d such that

k = Q(
√

d) has maximal order that is UG (see e.g. [3]). Moreover, this maximal order is equal to
Z[ε] where ε is the fundamental unit satisfying ε > 1.

In the case of d = a2 + 1 we know that ε = a +
√

a2 + 1 > 1 is the fundamental unit and
moreover we know ε′ = −ε−1 = a −

√
a2 + 1. Next we note that 2a < ε < 2a + 1 which yields
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w1 = a. Thus, with r1 as in Proposition 3.1 we have |r1| = |ε′| < 1
2 . Therefore, applying this

proposition in the quadratic case yields that each α ∈ Z[ε] has a representation of the form

α =

m∑

i=n

aiε
i

with |ai| ≤ w1 and m, n ∈ Z. Thus, using Lemma 4.1 we get ω(k) = w1 = a in this case

For d = a2 − 1 and a ≥ 2 we have ε = a +
√

a2 − 1, hence, 2a − 1 < ε < 2a and the result
follows analogously.

For d = a2 − 4 and a > 3 we have ε = a+
√

a2−4
2 , hence, a − 1 < ε < a and the result follows

analogously.

For d = a2 + 4 and a > 1 we have ε = a+
√

a2+4
2 , hence, a < ε < a + 1 and the result follows

analogously.
Note that for d = 5 Proposition 3.1 is not applicable, but already Jacobson [11] treated that

case. One could also apply Theorem 2.1 to the case d = 5 and would obtain Bε = {0,±ε−2}.
But, ε−2 does not contribute to the sum (2.1), hence we have proved Theorem 2.7 also in this
exceptional case.

5.2. Cubic fields. The finiteness property for general C is easy to see. First, note that for
the unique fundamental unit ε > 1 of the field k we have the inequality 1 < ε < 2C + 1 (cf.
Theorem 2.1). By the following inequality due to Artin we have (see [2] or [6])

(5.1) |Dk| < 4ε3 + 24 < 4(2C + 1)3 + 24,

where Dk denotes the discriminant of k. On the other hand we know that for fixed degree there
are only finitely many fields with bounded discriminant. Hence, the first part of Theorem 2.8 is
proved.

Since Tichy and Ziegler [20] we know that the maximal order o of a cubic field k with signature
(1, 1) is UG if and only if o = Z[ε] and we can apply Proposition 3.1 if (r1, r2) ∈ D. Therefore let
us estimate the quantities r1 and r2:

r1 =
±1

ε
and |r2| = |ε′ + ε̄′| ≤

∣
∣
∣
∣
∣

2
√

|ε|

∣
∣
∣
∣
∣
.

In particular, Proposition 3.1 is applicable if

1

2
− |r1| =

1

2
− 1

|ε| >

∣
∣
∣
∣
∣

2
√

|ε|

∣
∣
∣
∣
∣
= |r2|,

where ε′ and ε̄′ are the conjugates of ε. Note that the inequality above is true for

ε > (2 +
√

6)2 ∼ 19.798.

So we are left with fields k that have fundamental unit 1 < ε < 19.8, i.e. these fields satisfy
|Dk| < 31074 because of Artin’s inequality (5.1). Looking up in a table (e.g. [18] provides such a
list as additional package “nftables”) we can find all such cubic fields. In fact 200 fields are left.
Next, we want to consider only those fields whose maximal orders are UG. But maximal orders
of cubic fields of signature (1, 1) are UG if and only if {1, ε, ε2} is an integral basis, i.e. if and
only if the discriminant of the order Z[ε] is the field discriminant (cf. [20]). Computing these
discriminants we are left with 170 fields whose maximal orders are generated by units. Computing
the set Bε \ {0} of critical points, we see that in many cases the critical points are of the form
±ε−1,±2ε−1 or ±ε−2, which do not contribute to the sum in (2.1). Therefore we compute for
each field sets of the type

Dε(n, w) :=

{

α =

n∑

i=1

aiε
−i : ai ∈ Z, |ai| ≤ w

}

.

We see that if the critical points are contained in a set of the form Dε(n, w1) for some integer n
and w1 is the quantity defined in Theorem 2.1, then we have ω(k) = w1. In our case it is sufficient
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to put n = 8 to treat all cases. Indeed n = 4 is sufficient for most cases, and the exceptions are
the (unique) cubic fields with discriminant −31 and −23.

Remark 5.3. Let us consider the cubic field Q(α) where α is a root of x3 − 2x − 3. Then we find
r1 ∼ 0.1067 and r2 ∼ 0.6288 but (r1, r2) 6∈ D and hence Proposition 3.1 is not applicable, but
Theorem 2.1 still yields the desired result.

5.3. Pure Cubic fields. Tichy and Ziegler [20] proved that the only pure cubic fields whose

maximal orders are UG are of the form k = Q( 3
√

d), where d is square-free, d 6≡ ±1 mod 9 and
d = a3 ± 1 for some integer a or d = 28. Due to Theorem 2.8 we only have to compute ⌈ ε−1

2 ⌉. We

distinguish between the case d = a3 − 1 and d = a3 + 1. Furthermore we consider the case d = 28
separately.

In the case d = a3 + 1 we use the inequality a < 3
√

a3 + 1 < a + 1
3a2 and obtain

3a2 < ε = a2 + a
3
√

a3 + 1 + 3
√

(a3 + 1)2 < 3a2 +
1

3a2
+

2

3a
+

1

9a4
< 3a2 + 1,

provided a > 1. Thus ω(k) = w1 = 3a2

2 if a is even and ω(k) = w1 = 3a2+1
2 if a is odd. In

the case of a = 1 we have ε = 1 + 3
√

2 + 3
√

4 ∼ 3.84 and therefore we also obtain in this case

ω(k) = w1 = 1 = 3a2+1
2 .

In the case d = a3 − 1 we use the inequality a > 3
√

a3 − 1 > a − 2
3a2 and obtain

3a2 > ε = a2 + a
3
√

a3 − 1 + 3
√

(a3 − 1)2 > 3a2 − 2

3a
− 4

3a2
> 3a2 − 1

provided a ≥ 2. Thus ω(k) = w1 = 3a2

2 if a is even and ω(k) = w1 = 3a2−1
2 if a is odd.

In the case d = 28 we obtain ε = 5
3 + 2

3
3
√

28 + 1
6

3
√

28 ∼ 5.23, i.e. we have ω(k) = 3.

6. Proof of Theorem 2.10

Our first aim is to prove by induction the following lemma which plays the same part in the
proof of Theorem 2.10 as Lemma 4.1 did in the proof of Theorem 2.1.

Lemma 6.1. Let the assumptions and notations of Theorem 2.10 be in force. Let α ∈ o, then we
can find β ∈ o with |β| ≤ 1

2 such that

(6.1) α = β + a0 +

m∑

j=1

εj(aj + a′
jε

′ej ),

where m, a0, . . . , am, a′
1, . . . , a

′
m, e1, . . . , em are integers with |a0| ≤ w, |aj | ≤ w − 1, |a′

j | ≤ 1 and
0 ≤ ej ≤ B for j = 1, . . . , m, where

B =

⌊

− log ε − log 2 − log w

log |ε′|

⌋

+ 1.

Proof. Let us write

Sl := w
εl+1 − 1

ε − 1
.

Obviously the lemma is true in the case |α| ≤ w = S0.
Now, assume that every |α| ≤ Sl can be written in the form (6.1). In view of induction on l

we want to show that for each Sl < |α| ≤ Sl+1 we can find integers a, a′ and E with |a| ≤ w − 1,
|a′| ≤ 1 and E ≥ 0 such that

|α − εl+1(a + a′ε′E)| < Sl.

Without loss of generality we may assume that α > 0. Moreover, we choose a such that either
|α − εl+1a| < Sl or Sl < α − εl+1a ≤ Sk + εl+1. In the first case we are done (choose a′ = 0 and
E = 0). Therefore we may assume Sl < α̃ ≤ Sl + εl+1, with α̃ = α − εl+1a.

For the next step in our proof we choose |a′| = 1 and we want to find an integer E ≥ 0 such
that |α̃ − a′εl+1(ε′)E | < Sl and 0 < a′εl+1(ε′)E , i.e. we want to find E ≥ 0 such that

(6.2) α̃ − Sl < εl+1|ε′|E < α̃ + Sl ≤ εl+1|ε′|E−1.
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If the choice E = 0 satisfies inequality (6.2) we are done. Hence, we assume that the choice
E = 0 is not suitable, i.e. we assume that

α̃ + Sl < εl+1.

If we can prove that for some E satisfying α̃ + Sl ≤ εl+1|ε′|E−1 also α̃ − Sl < εl+1|ε′|E holds,
we are done. Indeed, since εl+1|ε′|E → 0 as E → ∞ we must have for some E ≥ 0 the desired
inequality (6.2).

Therefore we are left to prove

εl+1|ε′|E > |ε′|(Sl + α̃) = α̃|ε′| + |ε′|·

=Sl
︷ ︸︸ ︷

w
εl+1 − 1

ε − 1
≥ α̃ − Sl.

Rewriting the right inequality we obtain

(6.3) 1 ≥ 1 − |ε′|
1 + |ε′| ·

α̃

Sl

.

Let us consider the term α̃
Sl

. By our assumption that α̃ ≤ Sl + εl+1 we get

α̃

Sl

≤ Sl + εl+1

Sl

= 1 +
εl+1(ε − 1)

w(εl+1 − 1)
≤ 1 +

ε

w
.

Therefore (6.5) is satisfied if

1 ≥ 1 − |ε′|
1 + |ε′|

(

1 +
ε

w

)

.

Solving this inequality for w yields

w ≥ ε · 1 − |ε′|
2|ε′|

which is true by the choice of w in Theorem 2.10. Hence there exists an E that satisfies (6.2) and
therefore we have proved our claim concerning the representation (6.1).

Since we know that an E exists we finally show that we can choose E ≤ B. In any case we can
choose E ≤ B for some B satisfying

εl+1|ε′|B < 2Sl < α̃ + Sl.

In order to keep B small we choose B such that εl+1|ε′|B−1 > 2Sl. In particular this yields

|ε′|B−1 > 2w
ε

, i.e. we obtain B = ⌊− log ε−log 2−log w
log |ε′| ⌋ + 1. �

Now, we are able to prove Theorem 2.10. Remember that the order of the conjugates of ε was
chosen such that σε = ε′ = ε(2) and σ−1ε = ε(r). In particular, this choice yields ε′(r) = σ−1(σε) =
ε. We also assume that w has been chosen according to Theorem 2.10. Given a constant δ > 0
we may assume |α(i)| < δ for i = 2, . . . , n. This can be achieved if we multiply α by εN with N
sufficiently large (cf. Section 4). Now we apply Lemma 6.1 to α and find a representation of α of
the form (6.1) for some β defined by (6.1). The rest of this section is devoted to the proof that
indeed β ∈ Bε,σ, which immediately yields Theorem 2.10.

Note that Lemma 6.1 yields |β| < 1/2 and we are left to consider the conjugates of β. Let us
estimate β(i) for 2 ≤ i ≤ r + s, but i 6= r. We obtain according to (6.1) and the assumptions on α

|β(i)| ≤ δ + |a0| +
m∑

j=1

|ε(i)|j(w − 1 + |ε′(i)|ej ) ≤ δ + w

∞∑

j=0

|ε(i)|j = δ +
w

1 − |ε(i)| ,

since |ε′(i)|ej ≤ 1 for i 6= r.
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In the case of i = r we have by definition ε′(r) = ε and we therefore obtain according to
representation (6.1)

|β(r)| ≤ δ +

N∑

j=0

|ε(r)|j(w − 1 + |ε|ej ) ≤ δ + w +

∞∑

j=1

|ε(r)|j(w − 1 + |ε|B)

= δ + w +
(w − 1 + |ε|B)|ε(r)|

1 − |ε(r)| .

Because of the discreteness of o we deduce as in the proof of Theorem 2.1 that

β ∈ T

(
1

2
,

w

1 − |ε(2)| , . . . ,
w

1 − |ε(r−1)| , w +
(w − 1 + |ε|B)|)|ε(r)|

1 − |ε(r)| ,

w

1 − |ε(r+1)| , . . . ,
w

1 − |ε(r+s)|

)

,

hence β ∈ Bε,σ as claimed.

7. Simplest cubic fields

This section is devoted to the additive properties of the unit structure of Shank’s simplest cubic
fields in order to demonstrate how Theorems 2.1 and 2.10 work. In view of our purposes these
fields provide interesting instances.

First, let us remind some facts about simplest cubic fields (see [19] and for the last statement
see [7]):

Lemma 7.1. Let α be a root of the polynomial fa = X3 − (a − 1)X2 − (a + 2)X − 1. Then we
have:

(1) The polynomials fa are irreducible for all a ∈ Z. Moreover all roots of fa are real.
(2) The number fields K = Q(α) are cyclic Galois extensions of degree three of Q for all a ∈ Z.
(3) The roots of fa are permuted by the map α 7→ −1 − 1

α
.

(4) Any two of α(1), α(2), α(3) form a fundamental system of units of the order Z[α].
(5) The asymptotic expansions of the conjugates of α are

α(1) =a +
2

a
− 1

a2
− 3

a3
+

5

a4
+

10θ1

a5
,

α(2) = − 1 − 1

a
+

2

a3
− 1

a4
+

8θ2

a5
,

α(3) = − 1

a
+

1

a2
+

1

a3
− 4

a4
+

18θ3

a5
,

valid for all a ≥ 8, with |θi| < 1 for i = 1, 2, 3.

The family of cubic fields Q(α) in Lemma 7.1 is called the family of Shank’s simplest cubic fields.
Note that X3fa(1/X) = f−a−1(X) and therefore the fields Q(α) and orders Z[α] are isomorphic
for a and −a − 1. Therefore one may consider only the case a ≥ 0. We start with computing the
quantity w in Theorem 2.10.

Lemma 7.2. For all a ∈ Z we can choose the parameters in Theorem 2.10 such that we obtain
w = 1.

Proof. We choose ε = |1/α(3)| and ε′ = |1/α(2)|. Moreover, we note that α(3) = − 1
α(1)+1

and

α(2) = −1 − 1
α(1) . This yields

w =

⌊

ε · 1 − |ε′|
2|ε′|

⌋

+ 1 =

⌊

−α(2)

2

⌋

+ 1 = 1,

hence we deduce w = 1 provided |α(2)| < 2, which is true by Lemma 7.2 at least for a ≥ 8. In
the case of 0 ≤ a < 8 we obtain by direct numeric computations that indeed |α(2)| < 2 for all
a ≥ 0. �
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This immediately leads to the following conjecture.

Conjecture 7.3. Let α be a root of X3 − (a− 1)X2 − (a + 2)X − 1. Then for all a ∈ Z we have
ω(Z[α]) = 1.

In order to prove this conjecture we are left to compute the finite sets Bε,σ and consider their
elements. Unfortunately these sets lie in a ”parallelotop” (we think of Z[α] to be embedded into
the Minkowski space) with volume growing exponential with a. Hence, with our methods we are
limited to verify Conjecture 7.3 only for small values of a, i.e. a ≤ 4. First, let us note that for
a = 0, 1 Theorem 2.1 is sufficient to verify Conjecture 7.3.

Indeed, let us choose ε = | 1
α(3) |. In the case of a = 0 we obtain

Bε = {0,±α(3),±α(3)(α(3) + 1),±(1 + α(3))2}.

Since α(1) = −α(3)+1
α(3) we get

Bε = {0,±α(3),±α(1)(α(3))2,±(α(1))2(α(3))2}
and no element of Bε is of the form ±(α(3))j with j ≤ 0 and contributes to the sum in (2.1). In
the case of a = 1 we obtain Bε = {0,±α(3)} and this case is also proved.

Now let us consider the cases a = 2, a = 3 and a = 4. As in the proof of Lemma 7.2 we choose
ε = − 1

α(3) and ε′ = − 1
α(2) . In the case of a = 2 we have |Bε,σ| = 23, in the case of a = 3 we have

|Bε,σ| = 187 and in the case of a = 4 we have |Bε,σ| = 1195. Let us call a unit admissible if it is of

the form ±(α(3))j(α(2))k such that not both j and k are negative nor k = 0 and j ≤ 0. In the case
of a = 2 we compute all admissible units such that |j|, |k| ≤ 2 and call this set of units U2. Now
we compute every sum of 3 distinct units ∈ U2 (these are 3276 sums) and call this set of sums S2.
Comparing the sets Bε,σ and S2 we obtain S2 ⊃ Bε,σ, hence ω(Z[α]) = 1.

The case a = 3 runs analogously. In this case we compute all admissible units such that
|j|, |k| ≤ 3 and call this set U3. Now computing every sum of 4 distinct units ∈ U3 (these are
316251 sums) we obtain the set S3 and comparing the sets Bε,σ and S3 yields S3 ⊃ Bε,σ. Again
we deduce ω(Z[α]) = 1.

In the case of a = 4 we proceed similar as in the cases a = 2 and a = 3. In particular, we
compute all admissible units such that |j| ≤ 4 and |k| ≤ 3 and denote this set by U4. Now the
set S4 containing all sums consisting of 5 distinct units ∈ U4 covers again the set of critical points
Bε,σ \{0} (note that S4 contains 10424128 elements), hence we have verified Conjecture 7.3 in this
case too.

Now let us consider the case a = 5. It is hopeless to try to proof the conjecture in this case by
”brute-force” as in the cases a = 2, a = 3 and a = 4. But, we can apply to each element of Bε,σ

the following algorithm:
Let β ∈ Bε,σ and let U5 be the set of admissible units with |j|, |k| ≤ 5. Then we construct the

(finite) sequence β0 = β and βn = βn−1 − un−1, where un−1 is chosen such that a2
1 + a2

2 + a2
3 is

minimal, where a1 + a2α + a3α
2 = βn−1 − un−1 and un−1 ∈ U5 \ {u0, . . . , un−2}. If no un−1 exists

such that a2
1 + a2

2 + a2
3 ≤ b2

1 + b2
2 + b2

3 with βn−1 = b1 + b2α + b3α
2 we terminate the process and

return the value βn−1.
Note that |Bε,σ| = 69265 and so this reduction algorithm can be applied to each element in

a reasonable amount of time (some hours on a common work station). However, applying the

reduction algorithm to each element of Bε,σ we obtain the set B̃ of 71 “reduced“ elements. On
this set we apply our brute force strategy as in the cases a = 2, a = 3 and a = 4. In particular,
we take the set Ũ5 which consists of all units of the form (α(1))j(α(2))k with |j|, |k| ≤ 3 (not

necessarily admissible) and let S̃5 be the set of all distinct sums of 4 units ∈ Ũ5. Then we see that

B̃ \ S̃5 = ∅. Therefore we have shown that each element is a sum of units, where each unit occurs
at most two times, i.e. the unit sum height is at most 2.

The computations described above lead us to the following theorem:

Theorem 7.4. Let α be a root of X3 − (a− 1)X2− (a+2)X− 1, then for a = 0, 1, 2, 3, 4, 6, 13, 55
we have ω(Z[α]) = 1. For a = 5 we have ω(Z[α]) ≤ 2.
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Proof. The cases a = 0, 1, 2, 3, 4, 5 are due to the computations above. The cases a = 6, 13, 55 are
due to Belcher’s theorem [6], which states that a UG order in which the Diophantine equation
u1 + u2 = 2 has a non-trivial solution has unit sum height 1, and the following computational
result:

The unit equation u1 + u2 = 2 has a non-trivial solution over Z[α] only for a = 0, 1, 4, 6, 13, 55
in the range 0 ≤ a ≤ 1000.

This computational result was established by using the computer algebra system MAGMA [8].
�

Remark 7.5. Note that in case of a = 2, a = 3 Theorem 2.1 would yield ω(Z[α]) ≤ 2 and in case
of a = 4 or a = 5 we would obtain ω(Z[α]) ≤ 3.
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