On a variant of the Kakeya problem in \mathbb{R}

Yu-long Deng, Caihong Hu, Shunchao Long, Tai-Man Tang, Jörg Thuswaldner and Lifeng Xi

Abstract

We prove that the sharp lower bounds of the Minkowski and Hausdorff dimensions of circular Kakeya sets in \mathbb{R} are $1 / 2$ and 0 respectively.

Mathematics Subject Classification (2010). Primary 28A80.
Keywords. circular Kakeya set; Hausdorff dimension; Minkowski dimension.

1. Introduction

A circular Kakeya set in \mathbb{R}^{d} is a closed set $E \subset \mathbb{R}^{d}$ of measure zero that contains a $(d-1)$-sphere of every radius in a nondegenerate interval of \mathbb{R}. Besicovitch and Rado [1] and Kinney [8] have constructed such sets in \mathbb{R}^{2}. The Besicovitch-Rado construction also works in \mathbb{R}^{d} for $d \geq 3$. See [9] for an exposition of this construction. Similar to the original Kakeya problem on the minimal dimension of a measure zero set containing a unit segment in every direction [4], a problem is to determine the minimal dimension of circular Kakeya sets, called the circular Kakeya problem in this paper. Kolasa and Wolff [9] show that circular Kakeya sets in \mathbb{R}^{d} with $d \geq 3$ has Hausdorff dimension d while a circular Kakeya set in \mathbb{R}^{2} has Hausdorff dimension at least $11 / 6$. The last result has been improved to full dimension by Wolff in [11].

We observe that in contrary to the original Kakeya problem, the circular Kakeya problem make sense for $d=1$ and apparently has not been answered. Let \mathbb{S}^{d} be a d-dimensional sphere and \mathbb{S}_{r}^{d} denotes a d-dimensional sphere of radius r. If the center m of the sphere is relevant, we write $\mathbb{S}_{r}^{d}(m)$. Notice that a sphere \mathbb{S}_{r}^{0} is a set of two points of distance $2 r$ apart. Hence a circular Kakeya set in \mathbb{R} is a closed set E of measure zero with its distance set $D(E)=$ $\{|x-y|: x, y \in E\}$ containing an interval (or equivalently, its difference set $\Delta(E)=E-E$ containing an interval).

[^0]One can ask whether circular Kakeya sets in \mathbb{R} exists, and if so determine their minimal Minkowski and Hausdorff dimensions. Research on this problem has appeared in the form of difference sets. It is well-known that that middle-third Cantor set C has difference set $\Delta(C)=[-1,1]$ (see e.g. [7, p.87]). Therefore C is a circular Kakeya set in \mathbb{R} of Hausdorff and Minkowski dimension $\log 2 / \log 3$. This implies that the minimal dimension of such sets in \mathbb{R} is less than one, different from the \mathbb{R}^{d} cases for $d \geq 2$. There are conditions on independent copies of certain random Cantor sets $[2,3,6]$ and dynamically generated Cantor sets [10] that results in their difference set containing an interval. However, apparently the minimal dimension of circular Kakeya sets in \mathbb{R} has not been discussed. Our main results are as follows.

Theorem 1.1. Let E be a circular Kakeya set in \mathbb{R} such that its Minkowski dimension $\operatorname{dim}_{B} E$ exists. Then $\operatorname{dim}_{B} E \geq 1 / 2$. This lower bound is sharp.

Theorem 1.2. There is a circular Kakeya set F in \mathbb{R} with Hausdorff dimension $\operatorname{dim}_{H} F=0$.

We prove Theorem 1.1 in Section 2, proving the sharpness of the lower bound by explicitly constructing a circular Kakeya set of Minkowski dimension $1 / 2$. Theorem 1.2 is deduced from a classical result in fractal geometry in Section 3.

2. The Minkowski dimension of circular Kakeya sets

Proof of Theorem 1.1. We first show that $\operatorname{dim}_{B} E \geq \frac{1}{2}$. Since the surjective $f: E \times E \rightarrow D(E)$ given by $f(x, y):=|x-y|$ is Lipschitz, a basic property of Minkowski dimension (see e.g. [5, p.44]) implies that

$$
\operatorname{dim}_{B} E+\operatorname{dim}_{B} E=\operatorname{dim}_{B}(E \times E) \geq \operatorname{dim}_{B} D(E)=1
$$

giving $1 / 2$ as a lower bound of the Minkowski dimension.
We prove the sharpness of this bound by explicitly constructing a circular Kakeya set in \mathbb{R} with Minkowski dimension $1 / 2$ using the BesicovitchRado construction. We will construct a closed set E of measure zero containing an S_{r}^{0} for every $r \in[1 / 4,1 / 2]$.

Let $P=1 / 2$. Start with $E_{1}=\left[0, \frac{1}{4}\right] \cup\left[\frac{3}{4}, 1\right]$, which contains a sphere $\mathbb{S}_{r}^{0}(P)$ of every radius $r \in\left[\frac{1}{4}, \frac{1}{2}\right]$. Divide it into two bunches of circles, the outer bunch $\left[0, \frac{1}{8}\right] \cup\left[\frac{7}{8}, 1\right]$ and the inner bunch $\left[\frac{1}{8}, \frac{1}{4}\right] \cup\left[\frac{3}{4}, \frac{7}{8}\right]$, and shift the later to the left by $\frac{1}{8}$. The resulting set is $E_{2}=\left[0, \frac{1}{8}\right] \cup\left[\frac{5}{8}, \frac{3}{4}\right] \cup\left[\frac{7}{8}, 1\right]$, still containing a circle of every radius in $\left[\frac{1}{4}, \frac{1}{2}\right]$. In the next step, divide each of the two bunches into the inner and outer halves, and shift each of the the inner halves to the right by $\frac{1}{16}$ and get $E_{3}=\left[0, \frac{1}{16}\right] \cup\left[\frac{1}{8}, \frac{3}{16}\right] \cup\left[\frac{11}{16}, \frac{3}{4}\right] \cup\left[\frac{15}{16}, 1\right]$. Repeat this process, shifting to the left and right alternatingly, shifting a suitable half of E_{n} by $2^{-(n+2)}$ to get $E_{n+1}, n=1,2, \ldots$ Precisely, E_{n} consists of intervals of length $2^{-(n+1)}$. For $n=2 k-1, k=1,2, \ldots, E_{2 k-1}$ has 2^{k-1} intervals to
the left of P and a same number of intervals to the right, namely

$$
\begin{align*}
& 2^{-2 k}\left[\sum_{i=1}^{k-1} \varepsilon_{i} 2^{2 i-1}, \sum_{i=1}^{k-1} \varepsilon_{i} 2^{2 i-1}+1\right] \text { and } \tag{2.1}\\
& 2^{-2 k}\left[2^{2 k}-\sum_{i=1}^{k-1} \varepsilon_{i} 2^{2 i}-1,2^{2 k}-\sum_{i=1}^{k-1} \varepsilon_{i} 2^{2 i}\right] \tag{2.2}
\end{align*}
$$

respectively, where $\varepsilon_{i} \in\{0,1\}$ for $i=1, \ldots, k-1$, and the empty sum for $k=1$ is interpreted as 0 . For $n=2 k, k=1,2, \ldots, E_{2 k}$ has 2^{k-1} intervals to the left of P and 2^{k} to the right, namely

$$
\begin{aligned}
& 2^{-(2 k+1)}\left[\sum_{i=1}^{k-1} \varepsilon_{i} 2^{2 i}, \sum_{i=1}^{k-1} \varepsilon_{i} 2^{2 i}+1\right] \text { and } \\
& 2^{-(2 k+1)}\left[2^{2 k+1}-\sum_{i=1}^{k} \varepsilon_{i} 2^{2 i-1}-1,2^{2 k+1}-\sum_{i=1}^{k} \varepsilon_{i} 2^{2 i-1}\right]
\end{aligned}
$$

respectively, where the $\varepsilon_{i} \in\{0,1\}$. This can be proved by induction on n. Notice that $E_{n+2} \subset E_{n} \cup E_{n+1}$ and each E_{n} contains an \mathbb{S}_{r}^{0} of every radius $r \in\left[\frac{1}{4}, \frac{1}{2}\right]$.

Let E be the limit set of $\left\{E_{n}\right\}$, by definition the set consisting of all points p for which there is a sequence $\left\{p_{n}\right\}$ converging to it, $p_{n} \in E_{n}$. From a simple limit argument, E contains an \mathbb{S}_{r}^{0} for every $r \in\left[\frac{1}{4}, \frac{1}{2}\right]$. To see that E has measure 0, construct a sequence of coverings of E as follows. As $E_{n+2} \subset$ $E_{n} \cup E_{n+1}, E \subset E_{n} \cup E_{n+1}$ for every n and it suffices to construct coverings \mathcal{C}_{n} for $E_{n} \cup E_{n+1}$. For $n=2 k-1$, let $\mathcal{C}_{2 k-1}$ consists of $3 \cdot 2^{k-1}$ intervals of length $2^{-(n+1)}$, including those making up $E_{2 k-1}$ in (2.1)-(2.2) and in addition the intervals of the same length (for simplicity) immediately to the left of those in (2.2), namely,

$$
\begin{equation*}
2^{-2 k}\left[2^{2 k}-\sum_{i=1}^{k-1} \varepsilon_{i} 2^{2 i}-2,2^{2 k}-\sum_{i=1}^{k-1} \varepsilon_{i} 2^{2 i}-1\right] \tag{2.3}
\end{equation*}
$$

with ε_{i} as specified above. The size of $\mathcal{C}_{2 k-1}$ is $\left(3 \cdot 2^{k-1}\right)\left(2^{-2 k}\right)$, which gets arbitrarily small as k increases. Hence E is of measure 0 .

It remains to show that the Minkowski dimension $\operatorname{dim}_{B} E$ is $1 / 2$. We estimate the upper and lower Minkowski dimensions $\overline{\operatorname{dim}}_{B} E$ and $\operatorname{dim}_{B} E$ as follows (see e.g. [5, p.43, e.g. 3.3]). Let $N_{\delta}(E)$ be the smallest number of sets of diameter at most δ which can cover E. Recall from the last paragraph that $E \subset E_{2 k-1} \cup E_{2 k}$ can be covered by $3 \cdot 2^{k-1}$ intervals of length $2^{-2 k}$. Then for $\delta \in\left(2^{-2 k}, 2^{-2 k+2}\right], k=1,2,3, \ldots, N_{\delta}(E) \leq 3 \cdot 2^{k-1}$. Notice that we already get an upper estimate of $N_{\delta}(E)$ for every $\delta \in(0,1]$ without considering the n even cases. Hence

$$
\overline{\operatorname{dim}}_{B} E=\underset{\delta \rightarrow 0}{\limsup } \frac{\log N_{\delta}(E)}{-\log \delta} \leq \limsup _{k \rightarrow \infty} \frac{\log \left(3 \cdot 2^{k-1}\right)}{-\log 2^{-2 k+2}}=\frac{1}{2} .
$$

Again for odd $n=2 k-1$, consider the collection of intervals contained in those in (2.1), (2.2) and (2.3) but of half their sizes, namely

$$
\begin{align*}
& 2^{-2 k}\left[\sum_{i=1}^{k-1} \varepsilon_{i} 2^{2 i-1}, \sum_{i=1}^{k-1} \varepsilon_{i} 2^{2 i-1}+\frac{1}{2}\right] \tag{2.4}\\
& 2^{-2 k}\left[2^{2 k}-\sum_{i=1}^{k-1} \varepsilon_{i} 2^{2 i}-\frac{1}{2}, 2^{2 k}-\sum_{i=1}^{k-1} \varepsilon_{i} 2^{2 i}\right] \text { and } \tag{2.5}\\
& 2^{-2 k}\left[2^{2 k}-\sum_{i=1}^{k-1} \varepsilon_{i} 2^{2 i}-\frac{3}{2}, 2^{2 k}-\sum_{i=1}^{k-1} \varepsilon_{i} 2^{2 i}-1\right] \tag{2.6}
\end{align*}
$$

Notice that there are $3 \cdot 2^{k-1}$ of them, any two of them are at least $2^{-2 k-1}$ apart and each of them contains at least a point in E : the left end points of those in (2.4) and the right end points of those in (2.5) and (2.6) are in E. It follows that for $\delta \in\left[2^{-2 k-3}, 2^{-2 k-1}\right.$), a set of diameter at most δ can intersect at most one of these intervals. Therefore $N_{\delta}(E) \geq 3 \cdot 2^{k-1}$. Hence

$$
\underline{\operatorname{dim}}_{B} E=\liminf _{\delta \rightarrow 0} \frac{\log N_{\delta}(E)}{-\log \delta} \geq \lim _{k \rightarrow \infty} \frac{\log \left(3 \cdot 2^{k-1}\right)}{-\log 2^{-2 k-3}}=\frac{1}{2}
$$

Hence $\operatorname{diam}_{B} E=1 / 2$. The theorem is proved.

3. The Hausdorff dimension of circular sets

Proof of Theorem 1.2. Recall that there are sets $A, B \subset \mathbb{R}$ with $\operatorname{dim}_{H} A=$ $\operatorname{dim}_{H} B=0$ such that $A-B=(0,1)$ (see for example [5, p. 97]). We include the details for completeness. Precisely, let $\left\{m_{k}\right\}_{k=0}^{\infty}$ be a rapidly increasing sequence of integers, to be specified precisely soon, with $m_{0}=0$. Let A be the set of numbers in $(0,1)$ with its r-th decimal place equals 0 whenever $m_{k}+1 \leq r \leq m_{k+1}, k$ even. Let B be the negative of a similar set with k odd. For $k>0$ even, let $j_{k}=\left(m_{2}-m_{1}\right)+\cdots+\left(m_{k}-m_{k-1}\right)$ and for k odd, let $j_{k}=m_{1}+\left(m_{3}-m_{2}\right)+\cdots+\left(m_{k}-m_{k-1}\right)$. Then each of A and B can be covered by $10^{j_{k}}$ intervals of length $10^{-m_{k+1}}$. Now choose m_{k} increasing so fast that

$$
\lim _{k \rightarrow \infty} \log 10^{j_{k}} /-\log 10^{-m_{k+1}}=\lim _{k \rightarrow \infty} j_{k} / m_{k+1}=0
$$

Hence $\operatorname{dim}_{H} A \leq \underline{\operatorname{dim}}_{B} A=0$ and $\operatorname{dim}_{H} B \leq \underline{\operatorname{dim}}_{B} B=0$. Also, $A-B$ contains $(0,1)$.

Let $F=A \cup B$. Then $\operatorname{dim}_{H} F=0$ and $F-F$ contains $(0,1)$, proving Theorem 1.2.

Remark 3.1. This does not contradict Theorem 1.1 as the box dimension of F is not well-defined. This fact can also be deduced from the two theorems.

References

[1] A. S. Besicovitch and R. Rado, A plane set of measure zero containing circumferences of every circle, J. Lond. Math. Soc. (2) 43 (1968), 717-719.
[2] M. Dekking and K. Simon, On the size of the algebraic difference of two random Cantor sets, Random Structures Algorithms 32 (2008), 205-222.
[3] M. Dekking, K. Simon and B. Szekely, The algebraic difference of two random Cantor sets: the Larsson family, Ann. Probab. 39 (2011), 549-586.
[4] K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, Cambridge, 1985.
[5] K. J. Falconer, Fractal Geometry, John Wiley and Sons, Chichester, New York, Brisbane, Toronto, Singapore, 1990.
[6] P. Larsson, The difference set of two Cantor sets, Ph.D. thesis, U.U.D.M. Report 1991:11, Uppsala Univ., Uppsala, Sweden.
[7] B. R. Gelbaum and M. H. Olmsted, Counterexamples in Analysis, Holden-Day, San Francisco, 1964.
[8] J. R. Kinney, A thin sets of circles, Amer. Math. Monthly 75 (1968), 1077-1081.
[9] L. Kolasa and T. Wolff, On some variants of the Kakeya problem, Pacific J. Math. 190 (1999), 111-154.
[10] C. G. T. de A. Moreira and J.-C. Yoccoz, Stable intersections of regular Cantor sets with large Hausdorff dimensions, Ann. of Math. (2), 154 (2001), 45-96, 2001.
[11] T. Wolff, A Kakeya-type problem for circles, Amer. J. Math. 119 (1997), 9851026.

[^1]Lifeng Xi
Institute of Mathematics, Zhejiang Wanli University, Ningbo 315100, P. R. China
e-mail: xilf@zwu.edu.cn

[^0]: The work is supported by the National Natural Science Foundation of China 61202463.

[^1]: Yu-long Deng
 Institute of Computational Mathematics, Department of Mathematics,
 Hunan University of Science and Engineering, Yongzhou, Hunan 425199, P. R. China
 e-mail: yuldeng@163.com
 Caihong Hu
 Zhangjiajie College, Jishou University, Zhangjiajie, Hunan 427000, P. R. China
 e-mail: hchas226@sohu.com
 Shunchao Long
 School of Mathematics and Computational Sciences,
 Xiangtan University, Xiangtan, Hunan 411105, P. R. China
 e-mail: sclong@xtu.edu.cn
 Tai-Man Tang
 School of Mathematics and Computational Sciences,
 Xiangtan University, Xiangtan, Hunan 411105, P. R. China
 e-mail: taimantang@gmail.com;tmtang@xtu.edu.cn
 Jörg Thuswaldner
 Institut für Mathematik und Informationstechnologie, Montanuniversität Leoben, A-8700 Leoben, Austria
 e-mail: joerg.thuswaldner@mu-leoben. at

