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Abstract. We prove that the sharp lower bounds of the Minkowski and
Hausdorff dimensions of circular Kakeya sets in R are 1/2 and 0 respec-
tively.
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1. Introduction

A circular Kakeya set in Rd is a closed set E ⊂ Rd of measure zero that
contains a (d − 1)-sphere of every radius in a nondegenerate interval of R.
Besicovitch and Rado [1] and Kinney [8] have constructed such sets in R2.
The Besicovitch-Rado construction also works in Rd for d ≥ 3. See [9] for
an exposition of this construction. Similar to the original Kakeya problem
on the minimal dimension of a measure zero set containing a unit segment
in every direction [4], a problem is to determine the minimal dimension of
circular Kakeya sets, called the circular Kakeya problem in this paper. Kolasa
and Wolff [9] show that circular Kakeya sets in Rd with d ≥ 3 has Hausdorff
dimension d while a circular Kakeya set in R2 has Hausdorff dimension at
least 11/6. The last result has been improved to full dimension by Wolff in
[11].

We observe that in contrary to the original Kakeya problem, the circular
Kakeya problem make sense for d = 1 and apparently has not been answered.
Let Sd be a d-dimensional sphere and Sd

r denotes a d-dimensional sphere of
radius r. If the center m of the sphere is relevant, we write Sd

r(m). Notice
that a sphere S0

r is a set of two points of distance 2r apart. Hence a circular
Kakeya set in R is a closed set E of measure zero with its distance set D(E) =
{|x − y| : x, y ∈ E} containing an interval (or equivalently, its difference set
∆(E) = E − E containing an interval).
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One can ask whether circular Kakeya sets in R exists, and if so deter-
mine their minimal Minkowski and Hausdorff dimensions. Research on this
problem has appeared in the form of difference sets. It is well-known that
that middle-third Cantor set C has difference set ∆(C) = [−1, 1] (see e.g. [7,
p.87]). Therefore C is a circular Kakeya set in R of Hausdorff and Minkowski
dimension log 2/ log 3. This implies that the minimal dimension of such sets in
R is less than one, different from the Rd cases for d ≥ 2. There are conditions
on independent copies of certain random Cantor sets [2, 3, 6] and dynami-
cally generated Cantor sets [10] that results in their difference set containing
an interval. However, apparently the minimal dimension of circular Kakeya
sets in R has not been discussed. Our main results are as follows.

Theorem 1.1. Let E be a circular Kakeya set in R such that its Minkowski
dimension dimB E exists. Then dimB E ≥ 1/2. This lower bound is sharp.

Theorem 1.2. There is a circular Kakeya set F in R with Hausdorff dimension
dimH F = 0.

We prove Theorem 1.1 in Section 2, proving the sharpness of the lower
bound by explicitly constructing a circular Kakeya set of Minkowski dimen-
sion 1/2. Theorem 1.2 is deduced from a classical result in fractal geometry
in Section 3.

2. The Minkowski dimension of circular Kakeya sets

Proof of Theorem 1.1. We first show that dimBE ≥ 1
2 . Since the surjective

f : E × E → D(E) given by f(x, y) := |x− y| is Lipschitz, a basic property
of Minkowski dimension (see e.g. [5, p.44]) implies that

dimBE + dimBE = dimB(E × E) ≥ dimBD(E) = 1,

giving 1/2 as a lower bound of the Minkowski dimension.
We prove the sharpness of this bound by explicitly constructing a cir-

cular Kakeya set in R with Minkowski dimension 1/2 using the Besicovitch-
Rado construction. We will construct a closed set E of measure zero contain-
ing an S0

r for every r ∈ [1/4, 1/2].
Let P = 1/2. Start with E1 = [0, 1

4 ] ∪ [ 34 , 1], which contains a sphere
S0

r(P ) of every radius r ∈ [ 14 , 1
2 ]. Divide it into two bunches of circles, the

outer bunch [0, 1
8 ] ∪ [ 78 , 1] and the inner bunch [18 , 1

4 ] ∪ [ 34 , 7
8 ], and shift the

later to the left by 1
8 . The resulting set is E2 = [0, 1

8 ] ∪ [ 58 , 3
4 ] ∪ [ 78 , 1], still

containing a circle of every radius in [14 , 1
2 ]. In the next step, divide each of the

two bunches into the inner and outer halves, and shift each of the the inner
halves to the right by 1

16 and get E3 = [0, 1
16 ]∪ [ 18 , 3

16 ]∪ [ 1116 , 3
4 ]∪ [ 1516 , 1]. Repeat

this process, shifting to the left and right alternatingly, shifting a suitable half
of En by 2−(n+2) to get En+1, n = 1, 2, . . .. Precisely, En consists of intervals
of length 2−(n+1). For n = 2k − 1, k = 1, 2, . . ., E2k−1 has 2k−1 intervals to
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the left of P and a same number of intervals to the right, namely

2−2k

[
k−1∑

i=1

εi22i−1,
k−1∑

i=1

εi22i−1 + 1

]
and (2.1)

2−2k

[
22k −

k−1∑

i=1

εi22i − 1, 22k −
k−1∑

i=1

εi22i

]
(2.2)

respectively, where εi ∈ {0, 1} for i = 1, . . . , k − 1, and the empty sum for
k = 1 is interpreted as 0. For n = 2k, k = 1, 2, . . ., E2k has 2k−1 intervals to
the left of P and 2k to the right, namely

2−(2k+1)

[
k−1∑

i=1

εi22i,
k−1∑

i=1

εi22i + 1

]
and

2−(2k+1)

[
22k+1 −

k∑

i=1

εi22i−1 − 1, 22k+1 −
k∑

i=1

εi22i−1

]

respectively, where the εi ∈ {0, 1}. This can be proved by induction on n.
Notice that En+2 ⊂ En ∪ En+1 and each En contains an S0

r of every radius
r ∈ [ 14 , 1

2 ].
Let E be the limit set of {En}, by definition the set consisting of all

points p for which there is a sequence {pn} converging to it, pn ∈ En. From
a simple limit argument, E contains an S0

r for every r ∈ [ 14 , 1
2 ]. To see that E

has measure 0, construct a sequence of coverings of E as follows. As En+2 ⊂
En∪En+1, E ⊂ En∪En+1 for every n and it suffices to construct coverings Cn

for En∪En+1. For n = 2k−1, let C2k−1 consists of 3 ·2k−1 intervals of length
2−(n+1), including those making up E2k−1 in (2.1)-(2.2) and in addition the
intervals of the same length (for simplicity) immediately to the left of those
in (2.2), namely,

2−2k

[
22k −

k−1∑

i=1

εi22i − 2, 22k −
k−1∑

i=1

εi22i − 1

]
(2.3)

with εi as specified above. The size of C2k−1 is (3 · 2k−1)(2−2k), which gets
arbitrarily small as k increases. Hence E is of measure 0.

It remains to show that the Minkowski dimension dimBE is 1/2. We
estimate the upper and lower Minkowski dimensions dimBE and dimBE as
follows (see e.g. [5, p.43, e.g. 3.3]). Let Nδ(E) be the smallest number of sets
of diameter at most δ which can cover E. Recall from the last paragraph that
E ⊂ E2k−1∪E2k can be covered by 3 ·2k−1 intervals of length 2−2k. Then for
δ ∈ (2−2k, 2−2k+2], k = 1, 2, 3, . . ., Nδ(E) ≤ 3 · 2k−1. Notice that we already
get an upper estimate of Nδ(E) for every δ ∈ (0, 1] without considering the
n even cases. Hence

dimBE = lim sup
δ→0

log Nδ(E)
− log δ

≤ lim sup
k→∞

log(3 · 2k−1)
− log 2−2k+2

=
1
2
.
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Again for odd n = 2k − 1, consider the collection of intervals contained in
those in (2.1), (2.2) and (2.3) but of half their sizes, namely

2−2k

[
k−1∑

i=1

εi22i−1,
k−1∑

i=1

εi22i−1 +
1
2

]
, (2.4)

2−2k

[
22k −

k−1∑

i=1

εi22i − 1
2
, 22k −

k−1∑

i=1

εi22i

]
and (2.5)

2−2k

[
22k −

k−1∑

i=1

εi22i − 3
2
, 22k −

k−1∑

i=1

εi22i − 1

]
. (2.6)

Notice that there are 3 · 2k−1 of them, any two of them are at least 2−2k−1

apart and each of them contains at least a point in E: the left end points
of those in (2.4) and the right end points of those in (2.5) and (2.6) are in
E. It follows that for δ ∈ [2−2k−3, 2−2k−1), a set of diameter at most δ can
intersect at most one of these intervals. Therefore Nδ(E) ≥ 3 · 2k−1. Hence

dimBE = lim inf
δ→0

log Nδ(E)
− log δ

≥ lim
k→∞

log(3 · 2k−1)
− log 2−2k−3

=
1
2
.

Hence diamBE = 1/2. The theorem is proved. ¤

3. The Hausdorff dimension of circular sets

Proof of Theorem 1.2. Recall that there are sets A,B ⊂ R with dimH A =
dimH B = 0 such that A−B = (0, 1) (see for example [5, p. 97]). We include
the details for completeness. Precisely, let {mk}∞k=0 be a rapidly increasing
sequence of integers, to be specified precisely soon, with m0 = 0. Let A be
the set of numbers in (0, 1) with its r-th decimal place equals 0 whenever
mk + 1 ≤ r ≤ mk+1, k even. Let B be the negative of a similar set with k
odd. For k > 0 even, let jk = (m2 −m1) + · · ·+ (mk −mk−1) and for k odd,
let jk = m1 + (m3 −m2) + · · · + (mk −mk−1). Then each of A and B can
be covered by 10jk intervals of length 10−mk+1 . Now choose mk increasing so
fast that

lim
k→∞

log 10jk/− log 10−mk+1 = lim
k→∞

jk/mk+1 = 0.

Hence dimHA ≤ dimBA = 0 and dimHB ≤ dimBB = 0. Also, A−B contains
(0, 1).

Let F = A ∪ B. Then dimH F = 0 and F − F contains (0, 1), proving
Theorem 1.2. ¤

Remark 3.1. This does not contradict Theorem 1.1 as the box dimension of
F is not well-defined. This fact can also be deduced from the two theorems.
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