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Abstract. Recently, Akiyama et al. introduced so-called shift radix systems. These simple
dynamical systems form a common generalization of several well-known notions of number
systems like beta numeration and canonical number systems. In the present paper we generalize
shift radix systems as follows: for (r1, . . . , rd) ∈ Cd we study mappings Z[i]d → Z[i]d given by

(x1, . . . , xd) 7→ (x2, . . . , xd,−⌊r1x1 + · · ·+ rdxd⌋),

where for x ∈ C we set ⌊x⌋ = ⌊ℜx⌋ + i⌊ℑx⌋. We study basic dynamical properties of this class
of mappings and relate them to known notions of number systems.

1. Introduction

In 2005 Akiyama et al. [1] defined shift radix systems. Before recalling the definition of these
objects we define the floor function which assigns to each y ∈ R the largest integer that is less
than or equal to y and is denoted by ⌊y⌋. The shift radix system related to a vector r ∈ Rd is
given by the function τr : Z

d → Zd, x = (x1, . . . , xd) 7→ (x2, . . . , xd,−⌊rx⌋), where rx denotes the
scalar product of r and x. Shift radix systems have many interesting dynamical properties and
are related to several notions of numeration (see [1] for details). In the recent years, they have
been investigated extensively.

Figure 1. An approximation of Pethő’s Loudspeaker G
(0)
1 .

The aim of the present note is to study a variant of shift radix systems for Gaussian integers.
To this matter, the floor function is extended to x ∈ C by the complex floor function which is
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defined by

⌊x⌋ := ⌊ℜx⌋+ i⌊ℑx⌋,

i.e., by applying the floor function to the real and imaginary part of x separately. With the help
of this function we define Gaussian shift radix systems as follows. Let r ∈ Cd be given. With r we
associate the mapping γr : Z[i]

d → Z[i]d which is given by

x = (x1, . . . , xd) 7→ (x2, . . . , xd,−⌊rx⌋).

This mapping is called the Gaussian shift radix system (GSRS) associated with r. We say that γr
has the finiteness property if all orbits of γr end up in zero, i.e., if for each x ∈ Z[i] there exists a
positive integer k such that the kth iterate of γr applied to x satisfies γk

r
(x) = 0 .

As for classical shift radix systems, GSRS have relations to number systems defined in rings
of algebraic integers. In particular, we will see that Gaussian numeration systems in the sense of
Jacob and Reveilles [6] are special cases of GSRS. Moreover, the symmetric number systems in
imaginary quadratic fields studied in Kátai [8] are strongly related to them.

In the present paper we will study basic properties of γr. We will discuss their relation to
numeration and give first descriptions of the parameters r that give rise to the finiteness property.
We describe an algorithm that allows to decide whether certain small parameter regions admit the
finiteness property. Especially the case d = 1 will be studied in some detail. This case deserves
special interest. Indeed, for classical shift radix systems the case d = 1 can easily be treated while
in case d = 2 the according problems become already very hard and are not completely solved up
to now. The one-dimensional case of GSRS seems to be of an intermediate level of difficulty on
the one side and reveals new interesting properties on the other side.

In analogy to classical shift radix systems, the following sets will be of importance in our
investigations:

G
(0)
d := {r ∈ C

d : γr has the finiteness property} and

Gd := {r ∈ C
d : each orbit of γr is ultimately periodic}.

The fact that the case d = 1 is already of interest in the context of GSRS is illustrated by

Figure 1 which shows an approximation of the set G
(0)
1 (observe its irregular structure on the right

hand side). Because of its shape and in honor of Attila Pethő we call this set Pethő’s Loudspeaker.

2. Orbits of γr

Let r ∈ Cd be given and consider the mapping γr. If we take x = (x1, . . . , xd) ∈ Z[i]d as a
starting point then, according to the definition of γr, we have

(2.1) γr((x1, . . . , xd)) = (x2, . . . , xd+1) ⇐⇒











0 ≤ ℜ
(

(
∑d

j=1 rjxj

)

+ xd+1

)

< 1 and

0 ≤ ℑ
(

(
∑d

j=1 rjxj

)

+ xd+1

)

< 1.

Thus, calculating γr for a given value x amounts to solving a finite system of linear inequalities.
Let x1 = (x1, . . . , xd) be contained in a cycle π of γr. This means that there is a positive integer

p such that γp
r (x1) = x1, i.e., x1 is γr-periodic. Thus, there exist x2, . . . ,xp such that

(2.2) x1
γr

−→ x2
γr

−→ · · ·
γr

−→ xp
γr

−→ x1

where each arrow indicates an application of the mapping γr. According to the definition of γr
there exist xd+1, . . . , xd+p−1 ∈ Z[i] such that

xℓ = (xℓ, . . . , xℓ+d−1) (1 ≤ ℓ ≤ p).

Moreover, the fact that (2.2) is a cycle implies that xp+ℓ = xℓ for ℓ ∈ {1, . . . , d − 1}. Thus, the
cycle in (2.2) is completely characterized by the sequence x1, . . . , xp. Therefore we write this cycle
as

(2.3) π =

{

(x1, . . . , xd), if p ≤ d,

(x1, . . . , xd)xd+1, . . . , xp, otherwise.
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The cycle 0
γr

−→ 0 occurs for each r ∈ Cd. It is called the trivial cycle. Each other cycle is called
nontrivial.

The set G
(0)
d can be constructed starting from the set Gd by removing all points r that correspond

to some non trivial cycle π. For this reason, as in the case of classical SRS we define

P(π) = {r ∈ Gd : π occurs as a cycle for the mapping γr}.

We will now show that, as in the classical case, the sets P(π) are polyhedra. In particular, let1

π = (x1, . . . , xd)xd+1, . . . , xp be a given cycle. According to (2.1) a parameter r is contained in
P(π) if and only if

(2.4) 0 ≤ ℜ





( d
∑

j=1

rjxℓ−1+j

)

+ xℓ+d



 < 1 and 0 ≤ ℑ





( d
∑

j=1

rjxℓ−1+j

)

+ xℓ+d



 < 1

holds for all ℓ ∈ {1, . . . , p} (here we set xp+ℓ = xℓ for ℓ ∈ {1, . . . , d}). Since P(π) is defined by the
linear inequalities in (2.4) we see that it is a (half-open and possibly degenerated) polyhedron.

3. Fundamental properties of GSRS

For a matrix M ∈ Cd×d we denote its spectral radius by ρ(M). We need the following result.

Lemma 3.1. Let d ∈ N, f : Cd → Cd a bounded function and M ∈ Cd×d with ρ(M) > 1.
Furthermore, let

F (x) = MxT + f(x)

for x ∈ Cd. Then there exists some x ∈ Cd such that the sequence (Fn(x))n∈N given by the iterates
of F is not ultimately periodic.

Proof. The proof of [1, Lemma 4.1] can easily be adapted. �

Remark 3.2. Note that Lemma 3.1 was established by Gilbert [5, Proposition 3] for real diagonal-
izable matrices. In particular, Gilbert showed this statement for a bounded function f : Rd → Rd

and F : Rd → Rd defined by x 7→MxT + f(x) where M is a real diagonalizable d× d matrix.

For r = (r1, . . . , rd) ∈ Cd let

(3.1) Rr :=

















0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1
−r1 −r2 · · · · · · −rd

















∈ C
d×d.

Lemma 3.3. Let r ∈ Cd. The n-th iterate γn
r (x) of the vector x ∈ Z[i]d is

(3.2) γn
r (x)

T = Rn
rx

T +

n
∑

k=1

Rn−k
r vT

k

with vectors vk = (0, . . . , 0, {rγk−1
r (x)}) ∈ C

d and {z} := z − ⌊z⌋ for z ∈ C.

Proof. Using induction this is an immediate consequence of the definitions. �

If γr satisfies the finiteness property then each x ∈ Z[i]d admits a representation of the form

(3.3) xT =

n
∑

k=1

R−k
r (−vT

k ) =

n−1
∑

k=0

R−k
r (−R−1

r vT
k+1) =

n−1
∑

k=0

R−k
r (−R−1

r (0, . . . , 0, {rγk
r (x)})

T ).

This is reminiscent of a radix representation with base R−1
r

and digits −R−1
r

(0, . . . , 0, {rγk
r
(x)})T .

We will come back to this interpretation in Section 5.
In the next proposition we formulate some results on Gd.

1For a general cycle π we always use the second alternative of the notation introduced in (2.3). This should
cause no confusion.
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Proposition 3.4. The following assertions hold.

(i) Let r ∈ Cd. If the spectral radius ρ(Rr) of Rr is less than 1 then r ∈ Gd and the set of
γr-periodic elements is finite. More precisely, for every norm || · || on Cd there exists a
constant c ∈ R such that ‖a‖ ≤ c for every γr-periodic a ∈ Z[i]d.

(ii) We have Ed ⊆ Gd ⊆ cl(Ed) where cl denotes the topological closure and Ed is the set of all
parameters r ∈ Cd satisfying ρ(Rr) < 1.

(iii) The boundary of Gd is given by ∂Gd = {r ∈ Cd : ρ(Rr) = 1}.

Proof. (i) For r = 0 the assertion is trivially true. Thus we may assume that 0 < ρ(Rr) < 1. In
this case we may choose ρ̃ ∈ (ρ(Rr), 1) and construct a norm || · ||ρ̃ on Cd with the property

||Rrx
T ||ρ̃ ≤ ρ̃||x||ρ̃

(see e.g. [9, formula (3.2)]). Using Lemma 3.3, the proof of the first part of [1, Lemma 4.2] shows

‖γk
r
(x)‖ρ̃ ≤ ρ̃k‖x‖ρ̃ +

1

1− ρ̃
.

for k ∈ N, hence, there is some k > 0 such that

(3.4) ‖γk
r (x)‖ρ̃ ≤

1

1− ρ̃
+ 1.

In view of the equivalence of norms on C
d the proof can easily be completed.

(ii) The first inclusion follows from (i) while the second one is an immediate consequence of
Lemma 3.3 (with n = 1) and Lemma 3.1.

(iii) This follows in the same way as [1, Lemma 4.3]. Just take complex instead of real polyno-
mials. �

Because of this result we will concentrate on contracting polynomials. More precisely, we see
that the set Gd is intimately related to the set of all parameters r whose accompanying matrix Rr

(see (3.1)) has spectral radius less than 1. Looking at the characteristic polynomial of Rr these
parameters are given by the Schur-Cohn region, i.e., the set Ed defined in Proposition 3.4 (ii) can
be written as

Ed = {(r1, . . . , rd) ∈ C
d : all roots of Xd + rdX

d−1 + · · ·+ r1 are inside the unit circle}.

This region has been characterized by Schur [12] as follows.

Proposition 3.5 ([12, Satz XVII]). The zeros of the polynomial

Xd + rdX
d−1 + · · ·+ r2X + r1 ∈ C[X ]

are all contained in the unit disk if and only if

det





























1 0 . . . 0 r1 r2 . . . rν+1

rd 1 . . . 0 0 r1 . . . rν
...

. . .
...

. . .
...

rd−ν+1 rd−ν+2 · · · 1 0 0 · · · r1
r1 0 . . . 0 1 rd . . . rd−ν+1

r2 r1 . . . 0 0 1 . . . rd−ν+2

...
. . .

...
. . .

...
rν+1 rν · · · r1 0 0 · · · 1





























> 0 (0 ≤ ν ≤ d− 1).

In particular, in this case |rk| <
(

d
k−1

)

holds for each k ∈ {1, . . . , d}.
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Obviously, E1 = {r ∈ C : |r| < 1}. Moreover, one checks that

E2 = {(r1, r2) ∈ C
2 : |r1| < 1 and (1− |r1|

2)2 + 2ℜ(r1r
2
2) > (1 + |r1|

2)|r2|
2}.

Now we turn to results on G
(0)
d . We will need the following notation. For s = (s1, . . . , sd) ∈ Cd

let s = (s1, . . . , sd) be the vector containing the complex conjugates of the entries of s.
We start with the following symmetry lemma.

Lemma 3.6. Let r = (r1, . . . , rd) ∈ Gd. Then r ∈ G
(0)
d if and only if r ∈ G

(0)
d .

Proof. Let x1 = (x1, . . . , xd) and x2 = (x2, . . . , xd+1) and assume that γr(x1) = x2 then, according
to (2.1), we have

(3.5) 0 ≤ ℜ





( d
∑

j=1

rjxj

)

+ xd+1



 < 1 and 0 ≤ ℑ





( d
∑

j=1

rjxj

)

+ xd+1



 < 1.

If we replace rj (1 ≤ j ≤ d) and xk (1 ≤ k ≤ d+ 1) in (3.5) by rj and ixk, respectively, the first
chain of inequalities in (3.5) becomes the second one and vice versa. Indeed,

ℜ





( d
∑

j=1

rjixj

)

+ ixd+1



 = ℜ





( d
∑

j=1

(ℜrj − iℑrj)(ℑxj + iℜxj)

)

+ ℑxd+1 + iℜxd+1





=

( d
∑

j=1

(ℜrjℑxj + ℑrjℜxj)

)

+ ℑxd+1

= ℑ





( d
∑

j=1

rjxj

)

+ xd+1





shows that the first chain becomes the second one by this replacement. The fact that the second
one transforms to the first one is shown likewise. Thus

γr(x1) = x2 ⇐⇒ γr(ix1) = ix2.

In particular, the cylce (x1, . . . , xd)xd+1, . . . , xp is a nontrivial cycle for γr if and only if the cycle
(ix1, . . . , ixd)ixd+1, . . . , ixp is nontrivial for γr. Thus γr admits a nontrivial cycle if and only if γr
does. This implies the lemma. �

Remark 3.7. Figure 1 shows that r ∈ G
(0)
d does not imply that ℑr belongs to D

(0)
d (see [1, p. 211]).

We use Lemma 3.6 for a result on G
(0)
1 .

Lemma 3.8. If r ∈ G
(0)
1 then ℜr ≥ 0.

Proof. In view of Lemma 3.6 it suffices to exhibit a nontrivial period of γr for each r = s+ it with
−1 < s < 0 and 0 ≤ t < 1. Since for these r we have ⌊r⌋ = −1 we get γr(1) = −⌊r⌋ = 1. Thus
1→ 1 is a nontrivial period and the lemma is proved. �

4. Algorithms

In this section we present algorithms that allow to exhibit points and small regions in Gd which

belong to G
(0)
d . We start with an efficient algorithm to decide whether γr has the finiteness property

for a given vector r ∈ Cd. It is an obvious generalization of the analogous result in [1, Theorem 5.1].
For convenience we denote by e1, . . . , ed the canonical basis vectors of Cd considered as a vector
space over C. Furthermore, we use the notations

(4.1) S1f(x) = f(x), S2f(x) = −f(−x), S3f(x) = f(x), S4f(x) = −f(−x).

Theorem 4.1. Let r ∈ Cd and denote by Zr the set of elements in Z[i]d whose orbits of γr end
up in zero. Suppose that there exists a subset V of Zr satisfying the following two properties.
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(i) V contains the 4d-element set

V1 = {±e1, . . . ,±ed,±ie1, . . . ,±ied}.(4.2)

(ii) For each a ∈ V the elements Sℓγr(a) (1 ≤ ℓ ≤ 4) belong to V .

Then r ∈ G
(0)
d .

Proof. We follow the proofs of [1, Theorem 5.1] and [13, Theorem 2.6] and observe that

⌊x+ y⌋ ∈
{

⌊x⌋+ ⌊y⌋ , ⌊x⌋ − ⌊−y⌋ , ⌊x⌋+ ⌊y⌋, ⌊x⌋ − ⌊−y⌋
}

= {⌊x⌋+ Sℓ(⌊y⌋) : 1 ≤ ℓ ≤ 4}

for x, y ∈ C. Using the definition of γr we deduce

γr(a+ b) ∈ {γr(a) + Sℓγr(b) : 1 ≤ ℓ ≤ 4}

for a,b ∈ Z[i]d. Therefore, by (ii) for all a ∈ Z[i]d and b ∈ V there is some c ∈ V such that

γr(a + b) = γr(a) + c.

Using induction, for every n ∈ N we find some c ∈ V with

γn
r (a + b) = γn

r (a) + c.

Now let a ∈ Zr. Then there exists n ∈ N with γn
r
(a) = 0 and, hence,

γn
r
(a + b) ∈ V,

and we deduce a+ b ∈ Zr. By (i) the proof can now easily be completed inductively. �

Let us assume that all roots of the polynomial

Xd + rdX
d−1 + rd−1X

d−2 + · · ·+ r1 ∈ C[X ]

lie inside the open unit disk, i.e., ρ(Rr) < 1 with r = (r1, . . . , rd) ∈ Cd. Then similarly as explained

in [1, p. 223 f.] our results provide an efficient algorithm to determine whether r belongs to G
(0)
d

or not: define inductively

Vn+1 = Vn ∪ {Sℓγr(a) : a ∈ Vn, 1 ≤ ℓ ≤ 4}

with V1 given by (4.2). Set mn := max{||v|| : v ∈ Vn}. Observe that, choosing ρ̃ as in the proof
of Proposition 3.4 (i), we get

(4.3) max {||Sℓγr(v)|| : v ∈ Vn, 1 ≤ ℓ ≤ 4} ≤ ρ̃mn +
1

1− ρ̃
.

Thus mn+1 ≤ max{mn, ρ̃mn+
1

1−ρ̃} which implies that the sequences (mn) and (Vn) are uniformly

bounded. Thus there must be some n such that Vn+1 ⊆ Vn . Now, if Vn ⊂ Zr then we know r ∈ G
(0)
d

by Theorem 4.1, otherwise Vn contains a nonzero γr-periodic element, and we conclude r /∈ G
(0)
d .

This algorithm was used to construct the approximation of G
(0)
1 in Figure 1. According to

Lemmas 3.6 and 3.8 it suffices to consider only parameters whose real and imaginary parts are
greater than or equal to zero. By (2.4) each explicitly given nontrivial period π cuts out a polygon
form G1. For instance, the period

π : 1− i→ −1→ 1 + i→ 1− i

cuts out the set

P(π) = {r = s+ it ∈ C : s2 + t2 ≤ 1, 1− s ≤ t < 2− s, s < t < 1 + s}

from G1. Thus this set has empty intersection with G
(0)
1 .

Analogously as in [1, Section 5] we generalize Theorem 4.1 and provide an efficient method to

determine a small subregion of G
(0)
d contained in a given convex polyhedron inside the interior of

Gd.
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Theorem 4.2. Let r1, . . . , rk be points of Gd and denote by H = conv(r1, . . . , rk) the convex hull
of r1, . . . , rk. If H is contained in the interior of Gd and if the diameter of H is sufficiently small
then there exists an algorithm to create a finite digraph (V,E) with vertices V ⊂ Z[i]d and edges
E ∈ V × V with the following properties:

(i) V ⊃ V1 with V1 as defined in (4.2).
(ii) For each pair (v,v′) ∈ V 2 there exists an edge from v to v′ if and only if there is some

h ∈ H with
v′ ∈ {Sℓγh(v) : 1 ≤ ℓ ≤ 4} ,

where Sℓ is defined as in (4.1).

(iii) H ∩ G
(0)
d = H \

⋃

π∈C P(π), where C is the set of all nonzero simple cycles2 of (V,E).

Proof. Since H ⊂ int(Gd), Proposition 3.4 implies the existence of a positive δ < 1 such that for
each h ∈ H the spectral radius of the matrix Rh is less than δ. Then for all h′ in a sufficiently
small neighborhood of h, the maps

z 7→ Sℓγh′(z) (1 ≤ ℓ ≤ 4)

are contractive with respect to a suitable norm (see the proof of Proposition 3.4 (i)). Therefore,
assuming that the diameter of H is sufficiently small we may choose a norm on Cd such that for
all h ∈ H the matrix Rh is contractive with respect to this norm.

For z = (z1, . . . , zd) ∈ Z[i]d we define

L(ℓ)
z

=
{

w ∈ Z[i]d : H(ℓ)
z

(w) 6= ∅
}

with H(ℓ)
z

(w) = {h ∈ H : Sℓγh(z) = w} (1 ≤ ℓ ≤ 4).

For convenience for a, b ∈ C we write a ≤ b if ℜa ≤ ℜb and ℑa ≤ ℑb. Moreover, we use the
notation

max{aj ∈ C : 1 ≤ j ≤ k} = max{ℜaj ∈ C : 1 ≤ j ≤ k}+ imax{ℑaj ∈ C : 1 ≤ j ≤ k}.

Note that it is easy to check that w = (z2, . . . , zd+1) ∈ L
(ℓ)
z implies

−M (ℓ)(−z) ≤ zd+1 ≤M (ℓ)(z)

where we set
M (ℓ)(z) = max{Sℓ(−⌊rjz⌋) : 1 ≤ j ≤ k}.

In other words, setting

K(ℓ)
z

= {(z2, . . . , zd, zd+1) : zd+1 ∈ Z[i], −M (ℓ)(−z) ≤ zd+1 ≤M (ℓ)(z)}

we get L
(ℓ)
z ⊆ K

(ℓ)
z . Thus

L(ℓ)
z = {w ∈ K(ℓ)

z : H(ℓ)
z (w) 6= ∅}.

As H
(ℓ)
z (w) is a polytope, the sets L

(ℓ)
z are effectively computable.

For n ≥ 1 we define inductively

Vn+1 = Vn ∪ {Sℓγh(a) : h ∈ H, a ∈ Vn, 1 ≤ ℓ ≤ 4} .

In the same way as in the remarks after the proof of Theorem 4.1 (see especially equation (4.3))
we get Vn+1 ⊆ Vn for some n. For this n we set V := Vn.

Now we define the edges E by (ii). Then it is clear that (V,E) is a finite digraph with properties
(i) and (ii).

We are left to show (iii). It is obvious that H \
⋃

π∈C P(π) ⊃ H ∩ G
(0)
d . Let h ∈ H . The

construction after Theorem 4.1 delivers a subgraph of (V,E). If h ∈ H \G
(0)
d then by Theorem 4.1

there exists a nontrivial simple cycle π in the graph (V,E) and h ∈ P (π). �

This theorem gives an effective algorithm to obtain H ∩ G
(0)
d for H being the convex hull of

finitely many points lying in the interior of Gd, see Algorithm 1. Observe that the number of
simple cycles of a finite digraph is finite (see e.g. [7] for an algorithm that finds all simple cycles
of a finite digraph).

2See [10, Definition 2.2.11] for the definition of a simple cycle.
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Algorithm 1 Determination of G
(0)
d ∩ conv{r1, . . . , rk}

Input: r1, . . . , rk ∈ Ed, overflow ∈ N.

Output: G := G
(0)
d ∩ conv{r1, . . . , rk} or “overflow”

H ← conv{r1, . . . , rk}
V1 ← {±e1, . . . ,±ed,±ie1, . . . ,±ied}
n← 1
repeat

W = ∅
for z = (z1, . . . , zd) ∈ Vn do

for ℓ = 1, . . . , 4 do

M (ℓ)(z)← max{Sℓ(−⌊rjz⌋) : 1 ≤ j ≤ k}; {Sℓ as in (4.1)}

K
(ℓ)
z ← {(z2, . . . , zd, zd+1) : zd+1 ∈ Z[i], −M (ℓ)(−z) ≤ zd+1 ≤M (ℓ)(z)}

for w ∈ K
(ℓ)
z do

H
(ℓ)
z (w)← {h ∈ H : Sℓγh(z) = w}

end for

L
(ℓ)
z ← {w ∈ K

(ℓ)
z : H

(ℓ)
z (w) 6= ∅}

end for

W ←W ∪ L
(1)
z ∪ L

(2)
z ∪ L

(3)
z ∪ L

(4)
z

end for

Vn+1 ← Vn ∪W
n← n+ 1

until Vn ⊆ Vn−1 or n > overflow
if Vn ⊆ Vn−1 then

V ← Vn

G← H
for π in the set of simple cycles in (V,E) do
G← G \P(π)

end for

return G
else

return “overflow”
end if

In practice, to apply Theorem 4.2, there is no need to take care of the “sufficiently small”
condition. Just choose a small convex hull inside the interior of Gd and try this algorithm to see
whether the emerging process terminates or yields “overflow” in a certain prescribed time. If it

terminates we get H ∩ G
(0)
d . If not, then we have to try again by a smaller convex hull.

5. Relations to Gaussian numeration systems

In the present section we show that our new notion of GSRS contains Gaussian numeration
systems in the sense of Jacob and Reveilles [6] as special cases. First we recall the definition of
these objects.

Let β ∈ Z[i] \ {0} be a Gaussian integer and set

(5.1) C =

{

c ∈ Z[i] :

⌊

c

β

⌋

= 0

}

.

The pair (β, C) is called a Gaussian numeration system if each x ∈ Z[i] can be written uniquely in
the form

(5.2) x = c0 + c1β + · · ·+ cnβ
n
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with ci ∈ C and cn 6= 0 for n 6= 0. Note that the digits ci are unique because C is a complete set
of representatives of cosets of Z[i]/βZ[i]. In [6, Theorem 3] the elements β ∈ Z[i] that give rise to
a Gaussian numeration system are characterized.

In the following lemma we show that for d = 1 certain GSRS mappings γr can be used to
calculate the digits in (5.2).

Proposition 5.1. Let β ∈ Z[i] \ {0} be given and define C as in (5.1). Then (β, C) is a Gaussian

numeration system if and only if −1/β ∈ G
(0)
1 . In particular, the digits in the representation (5.2)

of x are given by

(5.3) ck = β

{

−
1

β
γk
−1/β(−x)

}

(k ∈ N).

Note that ck = 0 for k > n.

Proof. Let − 1
β ∈ G

(0)
1 and x ∈ Z[i]. Then there exists n ∈ N such that γn+1

−1/β(−x) = 0. In view of

(3.3) we can write

(5.4) x =

n
∑

k=0

βk

(

β

{

−
1

β
γk
−1/β(−x)

})

=

∞
∑

k=0

βk

(

β

{

−
1

β
γk
−1/β(−x)

})

.

Since
⌊{

− 1
β γ

k
−1/β(−x)

}⌋

= 0, the elements β
{

− 1
β γ

k
−1/β(−x)

}

belong to C. Thus, in view of the

uniqueness of the digit representation (5.2), the expansion in (5.4) is the one in (5.2) which proves
(5.3). Moreover, since x was arbitrary, this implies that (β, C) is a Gaussian numeration system.

Now assume that (β, C) is a Gaussian numeration system and x ∈ Z[i]. Then x has a represen-

tation of the form (5.2). We see by induction that γ
(n)
−1/β(−x) = 0. Indeed, note that

γ−1/β(−x) = γ−1/β(−c0 − c1β − · · · − cnβ
n) = −

⌊

c0 + c1β + · · ·+ cnβ
n

β

⌋

= −

⌊

c0
β

⌋

−
⌊

c1 + · · ·+ cnβ
n−1

⌋

= −c1 − · · · − cnβ
n−1.

Since x was arbitrary this implies − 1
β ∈ G

(0)
1 . �

Observe that G
(0)
d contains much more elements than those which are in correspondence with

Gaussian numeration systems.

6. Perspectives

In the present paper we started the investigations on GSRS by proving some basic results.
Many things remain to be done. In what follows, we list some further problems and possible
research directions related to this new class of dynamical systems.

(i) Is it true that (r1, . . . , rd) ∈ G
(0)
d implies that ℜr1 ≥ 0 ? Lemma 3.8 shows that this is

true for d = 1. In case of shift radix systems the analogous question has been answered
affirmatively in [3, Theorem 2.1]. In the case of GSRS the situation seems to be more
difficult.

(ii) Is 1 a critical point of G
(0)
1 ? If so, is it the only critical point? For a definition of a critical

point see [1, Section 7]. This definition carries over to GSRS in a natural way.

(iii) What can we say about the topology of G
(0)
d ? For instance, are these sets connected or

simply connected? These questions are already interesting for the case d = 1. In this

case there is some hope to get a complete description of G
(0)
1 .

(iv) What can we say about the geometry of G
(0)
d ? For instance, Figure 1 indicates that G

(0)
1

is starlike. What is the Hausdorff dimension of the boundary of G
(0)
d ?

(v) The interior of Gd is equal to the Schur-Cohn region Ed. However, it is not clear which
part of the boundary of Gd belongs to Gd. For classical shift radix systems the analogous
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problem was studied for instance in [2, 11]. In the classical case it is solved completely
only in dimension one.

(vi) Define and study GSRS tiles (see [4] for tiles related to shift radix systems). The example
r = 2

3 (1+i), x = −1+i shows that the preimage of γr can be empty, i.e., that γ−1
r (x) = ∅.

As this cannot occur for classical shift radix systems, it would be interesting to study the
effect of this property on the underlying tiles.

(vii) Lemma 3.3 and Proposition 5.1 indicate that GSRS are related to radix representations.
What kinds of numeration are hidden behind the notion of GSRS? In Section 5 we
established a relation to Gaussian numeration systems in the sense of [6]. This should
be generalized to higher dimensions. In particular, we think that GSRS are related to
number systems defined in the rings Z[i]/pZ[i] where p ∈ Z[i][X ] (see [1, Section 3] for the
relation between shift radix systems and canonical number systems). Moreover, it would
be interesting to find an analogue to beta numeration related to GSRS. Here we suggest
to study the complex beta transformation Tβ : C/Z[i]→ C/Z[i] defined by x 7→ {βx} for
each β ∈ C (see [1, Section 2] for shift radix systems and beta expansions).

(viii) Define and study generalizations of shift radix systems for other orders Z[α]. Moreover,
analogously to Surer [13] one can define and study “ε-GSRS”. It seems that for ε = 1/2
these generalized GSRS contain the number systems in imaginary quadratic fields studied
by Kátai [8].

The first author wishes to express his heartfelt thanks to the Chair of Mathematics and Statistics
of the University of Leoben for their hospitality during the preparation of this manuscript.
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