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Abstract. Let α = −2+
√
−1 be a root of the polynomial p(x) = x

2 +4x+5. It is well known
that the pair (p(x), {0, 1, 2, 3, 4}) forms a canonical number system, i.e., that each x ∈ Z[α]
admits a finite representation of the shape x = a0 + a1α + · · · + aℓα

ℓ with ai ∈ {0, 1, 2, 3, 4}.
The set T of points with integer part 0 in this number system

T :=

(
∞X

i=1

aiα
−i

, ai ∈ {0, 1, 2, 3, 4}
)

is called the fundamental domain of this canonical number system. It has been studied exten-
sively in the literature. Up to now it is known that it is a plane continuum with nonempty

interior which induces a tiling of the C. However, its interior is disconnected. In the present
paper we describe some of (the closures of) the components of its interior as attractors of
graph-directed self-similar sets. The associated graph can also be used in order to determine

the Hausdorff dimension of the boundary of these components. Amazingly, this dimension is
strictly smaller than the Hausdorff dimension of the boundary of T .

1. Introduction and basic definitions

We are interested in describing the topology of a plane self-similar set with disconnected interior
that is related to a quadratic canonical number system (see Figure 1). More precisely, we want
to describe the closure of some components of its interior by a graph directed self-similar set.
Moreover, we are able to calculate the Hausdorff dimension of the boundary of these components.

Figure 1. Tile associated to the base −2 +
√
−1 with interior component con-

taining 0.

In general, it seems to be difficult to study fine topological properties of self-similar fractals. This
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paper aims to present a paradigm1 and we hope that the methods we used will be capable of being
generalized to admit a more systematic study of components of self-similar sets.

We start with the necessary definitions. It is known (see [9, 14, 15]) that the root α = −2+
√
−1

of the polynomial x2 + 4x+ 5 together with N := {0, 1, 2, 3, 4} forms a canonical number system
(or CNS ) (α,N ), i.e., each element x ∈ Z[α] has a unique representation

x =

ℓ(x)
∑

i=0

aiα
i

for some non-negative integer ℓ(x) and ai ∈ N with aℓ(x) 6= 0 for x 6= 0. We define the natural
embedding

Φ : C → R2

x 7→ (ℜ(x),ℑ(x)).

Then the multiplication by α can be represented by the 2× 2 matrix

A :=

(
−2 −1
1 −2

)

,

i.e., for every x ∈ C,

Φ(αx) = AΦ(x).

The set T of points of integer part zero in the base α embedded into the plane is defined by

(1.1) T :=

{
∞∑

i=1

Φ(α−iai), (ai)i∈N ∈ NN

}

=

{
∞∑

i=1

A−iΦ(ai), (ai)i∈N ∈ NN

}

and is depicted in Figure 1. T is often called the fundamental domain of the number system
(α,N ). Thus each point of this set can be represented by an infinite string w = (a1, a2, a3, . . .)
with ai ∈ N . The set T satisfies the equation

(1.2) T =

4⋃

i=0

ψi(T ),

where ψi, (i = 0, . . . , 4) are contractions defined via the matrix A and the embedding Φ by

(1.3) ψi(x) = A−1 (x+ Φ(i)) , x ∈ R2 (0 ≤ i ≤ 4).

T is a self-similar connected compact set (or continuum) with nonempty interior (see [13]). It
induces a tiling of the plane by its translates. We recall that a tiling (cf. [11, 25]) of the plane
is a decomposition of R2 into sets whose interiors are pairwise disjoint (so-called non-overlapping
sets), each set being the closure of its interior and having a boundary of Lebesgue measure zero.
Properties of tiles and tilings can be found for instance in [3, 7, 16, 23, 26]. It was shown in [13]
that the family of sets

(1.4) {T + Φ(ω), ω ∈ Z[α]}
is a tiling of the plane. We call T the central tile of this tiling.

Remark 1.1. This tile is an example of the large class of tiles associated to a root β of a quadratic
polynomial p(x) = x2 +Ax+B. Indeed, if p(x) satisfies the conditions

−1 ≤ A ≤ B, B ≥ 2,

then (β, {0, 1, . . . , B − 1}) is a CNS (see e.g. [5, 6, 14, 15]). One can associate a tile to these CNS
in the same way as we did for the special case A = 4, B = 5. It is shown in [1] that for 2A−B ≥ 3,
which is also the case for our tile T , these tiles have disconnected interior.

1see also Bailey et al. [2] where the components of the interior of the Lévy dragon are studied; interestingly,
their structure is totally different from the ones studied in the present paper.
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Some research on the structure of the components of the interior of self-similar and self-affine
tiles has already been done. In Bailey et al. [2] investigate the interior of the Lévy dragon, which is
a self-affine continuum with disconnected interior providing a tiling of the plane. They stated many
conjectures concerning the geometrical shape of the connected components of the interior. Ngai
and Nguyen [19] study the components of the Heighway dragon. Moreover, Ngai and Tang [20, 21]
gave general results on components of the interior of self-affine tiles. As an example they consider
our tile T in [20]. They prove that the closure of each component of its interior is homeomorphic
to a closed disk.

The aim of our paper is to describe the closure C0 of the connected component containing Φ(0)
(or 0, for short) of the interior of T . To make this precise we need some notations: a finite digit
string is a finite sequence w = (a1, . . . , an) with n ∈ N and ai ∈ N . The integer n is then called
the length of the string w (we write |w| = n). For a finite string w = (a1, . . . , an) we define the
map ψw by

(1.5) ψw(x) := ψa1
◦ . . . ◦ ψan

(x) = A−nx+
n∑

i=1

A−iΦ(ai), x ∈ R2.

The set ψw(T ) is called an n-th level subpiece of T . So by definition, it contains all the points
represented by an infinite string of the shape (a1, . . . , an, d1, d2, . . .) with di ∈ N .

Note that iterating (1.2) we have for every n ≥ 1 the subdivision principle

(1.6) T =
⋃

w,|w|=n

ψw(T ).

Our description of C0 will be in terms of n-th level subpieces with n ≥ 0. Indeed, it will be
shown that C0 can be obtained as the closure of the union of such subpieces; the strings w involved
in this union will be read off from a graph G presented in the next section. The set C0 can be
viewed as the attractor of a graph-directed construction (see Definition 2.1).

A similar description will be obtained in a forthcoming paper for a large class of tiles associated
to quadratic number systems; nevertheless, this class will not contain the present example.

2. Statement of the main results

As indicated at the end of the previous section, the description of C0 will be given via a graph
G. We will present this graph in the present section, explain how the set C0 can be derived from
this graph, and state our main theorems together with a sketches of the proofs.

2.1. Graph G. This graph is depicted in Figure 2. For the so-called accepting state ◦, there is by

convention an edge ◦ a−→ ◦ for every a ∈ N .

We note here that we found this graph with help of computer calculations. More precisely, we
approximated C0 from inside by subpieces of T . Listing the addresses of these subpieces we found
some repetitions that led us to the construction of the graph G.

We state some definitions and make some remarks about this graph. The graph G is right
resolving, i.e., each walk of G is uniquely defined by its starting state together with its labeling.
Thus we will write w = (A; a1, . . . , an) for a walk w starting in A with labeling (a1, . . . , an). For
subsets of the walks in G we adopt the following notations:

p set of all walks in G,
pn set of all walks in G having length n,

p(A1) set of walks in p starting at node A1,
pn(A1) set of walks in pn starting at node A1,

p(A1, A2) set of walks in p(A1) ending at node A2,
pn(A1, A2) set of walks in pn(A1) ending at node A2.
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Figure 2. Graph G of the closure of the interior component of T containing 0.

If w is a walk in G with labeling (a1, . . . , an), then we denote the walk which corresponds to w
in the transposed graph GT by wT (backwards walk). Its labeling is obviously (an, . . . , a1). The
terminal state of a walk w in G shall be denoted by t(w). If w1 and w2 are two walks in G and
w2 starts at the terminal state of w1 then we write w1&w2 for the concatenation of these two
walks. If we emphasize on the labeling (a1, . . . , an) of a walk w we will write w = (a1, . . . , an).
For instance, if we concatenate w1 = (A1; a1, . . . , an) and w2 = (A2; b1, . . . , bm) we will often
write (A1, a1, . . . an)&(b1, . . . , bm) because the starting state of w2 is defined via w1. For a walk
w of length n and k ≤ n we denote by w|k the walk consisting of the first k edges of w, i.e.,
(a1, . . . , an)|k = (a1, . . . , ak). If v = w|k we write v ≺ w.
If A is a state of G, we call A′ its dual. By convention we set F ′ = F , ◦ = ◦′ and A′′ = A for all

the other states of G. Note that in G, every edge A1
a−→ A2 has a dual edge A′

1
4−a−−→ A′

2.

2.2. Graph directed sets. The graph G can be used to describe the set C0. We recall to this
matter the notion of graph directed self-affine (self-similar) sets.
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Definition 2.1. A geometric graph directed construction of Rd consists of

(1) finitely many compact subsets J1, . . . , Jq of Rd such that each Ji has nonempty interior;
(2) a directed graph G(V,E) with set of vertices V = {1, . . . , q} and to each edge e ∈ E a

uniform contraction Te having the following properties:
a) Each vertex has outgoing edges.
b) Let Eij be the set of edges leading from i to j. Then

⋃

j{Te(Jj) | e ∈ Eij} is a
non-overlapping family and

(2.1) Ji ⊃
⋃

j

{Te(Jj) | e ∈ Eij} (i ∈ {1, . . . , q}).

A very similar definition can be found in Mauldin and Williams [17] (cf. also [4] and [8]).
Despite the definition of geometric graph directed construction in [17] is more restrictive in some
regards the following result is still valid with the same proof.

Proposition 2.2 ([17, Theorem 1]). There exists a unique vector (K1, . . . ,Kq) of compact subsets
of Rd such that for each i ∈ {1, . . . , q}

(2.2) Ki =
⋃

j

{Te(Kj) | e ∈ Eij}

holds. (K1, . . . Kq) is called a system of graph directed sets. If the Ki are affinities the system is
called self-affine, if they are similarities, it is called self-similar.

By attaching the contraction ψa defined in (1.3) to each edge labelled by a in G, the graph G
leads to a system of graph directed sets. For each state A of G let

(2.3) M(A) :=






x =

∑

i≥1

A−iΦ(ai), w = (a1, a2, . . .) infinite walk of p(A)






.

Then we have the following result.

Proposition 2.3. The vector {M(A), A ∈ G} together with the graph G defines a system of graph
directed sets. It is even a system of self-similar graph directed sets.

Proof. We have to verify the conditions in Definition 2.1 and Proposition 2.2. M(A) is obviously
bounded. The fact that it is closed follows by a Cantor diagonal argument very similar to the one
used in Kátai [12].

The family
⋃

B{ψe(M(B)) | e ∈ EAB} is non-overlapping because M(B) ⊂ T and G is right
resolving (note that (α,N ) admits unique representations). Furthermore, it is easy to see that
{M(A) |A ∈ G} fulfills (2.2). �

In particular,

M := M(F )

is a compact set and M ⊂ T . This paper aims at showing that M = C0, as stated in our main
result.

2.3. Main results.

Theorem 2.4. Let (α = −2+
√
−1, N = {0, 1, 2, 3, 4}) be the quadratic canonical number system

related to the polynomial x2 + 4x + 5. Let T be the fundamental domain associated to (α,N ).
Then Int(M) is the component of Int(T ) containing 0. Moreover, M is the closure of its interior,
hence M = C0, the closure of the component of Int(T ) containing 0.

Remark 2.5. Note that the above mentioned result of Ngai and Tang [20] implies that C0 is
homeomorphic to a closed disk.
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For the proof of this theorem we will consider approximations of the set M in terms of finite
walks of the graph G.
Definition 2.6. For some n ∈ N and some state A of G let W ⊂ pn(A) be a set of walks. Then
we set

M(W ) :=
⋃

w∈W

ψw(T ).

Here, according to (1.5), ψw(T ) is the subpiece associated to the labeling of w. The approxi-
mating sets are obtained by taking for W the sets

(2.4) Gn := pn(F, ◦) (n ≥ 3)

It is easy to see that for every n > 3,M(Gn−1) ⊂M(Gn) ⊂M. Note that there exists no walk in
pn(F, ◦) if n < 3. This means that there are no subpieces ψw(T ) with |w| < 3 entirely contained
in M.

We will show that M = C0 in the following way. First we show that the interior of M is
connected and contained in the interior of T , hence Int(M) ⊂ Int(C0). In a second step we show
that its boundary lies on the boundary of T , which implies that C0 ⊂M. By proving that M is
the closure of its interior, i.e., Int(M) = M, this will finally yield M = C0.

The connectivity of Int(M) will be obtained by considering the approximations M (Gn) for
n ≥ 3, since we will show that

Int(M) ⊂
⋃

n≥3

M (Gn) .

Using this fact, we will be able to connect a point from Int(M) to 0 by a path going from subpiece
to subpiece with increasing size (i.e., over subpieces ψw(T ) with decreasing |w|) within Int(T ).

The second main result concerns the Hausdorff dimension of the boundary of the interior com-
ponent containing zero. It reads as follows.

Theorem 2.7. Let (α = −2+
√
−1, N = {0, 1, 2, 3, 4}) be the quadratic canonical number system

related to the polynomial x2 + 4x+ 5. Let T be the fundamental domain associated to (α,N ) and
denote by C0 the component of Int(T ) containing 0. Then

dimH ∂C0 =
2 log 3

log 5
= 1.36521 . . . .

Remark 2.8. Since it is well-known (cf. e. g. Gilbert [10]) that the Hausdorff dimension of ∂T
is given by

dimH ∂T =
2 log β

log 5
= 1.60858 . . .

where β is the dominant root of the polynomial x3 − 3x2 − x+ 5 we have that

dimH ∂C0 < dimH ∂T.

The proof of Theorem 2.7 is essentially done by standard techniques from fractal geometry.

The remaining part of this paper is organized as follows. In Section 3 we present an automaton
B0 which is helpful to determine whenever subpieces intersect each other. This leads to the
definition of an action of B0 on G in a way that is stated in this section too. Sections 4 and 5 will
be helpful for the proof of the connectivity of Int(M). Section 6 shows that the boundary of M

is contained in the boundary of T . Section 7 is devoted to the construction of connected paths
within the interior of T together with some of its neighbors, that will be also used to show the
connectivity of Int(M) inside Int(T ). Section 8 contains the proof of Theorem 2.4 and in Section 9
we prove Theorem 2.7.

3. Counting automaton B0 and its action on the graph G

We define a counting automaton and an action of this automaton on the preceding graph G.
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3.1. Counting automaton B0. The counting automaton B0 is given in [22, 24] for bases of
quadratic canonical number systems in general and reproduced in Figure 3 for α = −2 +

√
−1.

P Q

R −Q

−R −P

0 1
...

...
3 4

0 3
1 4

2 0
3 1
4 2

0 2
1 3
2 4

4 0 0 1
...

...
3 4

4 0

0 4

1 0
...

...
4 3

3 0
4 1

0 4

1 0
...

...
4 3

Figure 3. Counting automaton B0.

Its states are defined by

±P := ±Φ(1), ±Q := ±Φ(3 + α), ±R := ±Φ(−4− α),

and ◦ denotes the accepting state 0.

The edges of B0 are defined as follows. There exists an edge from a state S to a state S′ in B0

labelled by a|a′ with a, a′ ∈ N if and only if

S + Φ(a) = AS′ + Φ(a′).

In particular, since ◦ denotes 0, there is an edge ◦ a|a−−→ ◦ for each a ∈ N (these edges are not
represented in Figure 3).

The numbers a and a′ in a label a|a′ are called input and output digits respectively.

Remark 3.1. Note that B0 is right resolving: to any state S and any input digit a ∈ N , there is
exactly one state S′ and one output digit a′ such that the addition in the graph can be performed,

i.e., such that S
a|a′

−−→ S′ ∈ B0.

Thus the automaton B0 can also perform the addition of S +
∑n−1

i=0 AiΦ(an−i) for S ∈ B0 and
ai ∈ N , simply by feeding B0 with the input digit string (an, . . . , a1) from left to right starting
from S and collecting the output digit string (a′n, . . . , a

′
1) and the landing state S′: to

(3.1) S
an|a′

n−−−−→ S1

an−1|a
′

n−1−−−−−−−→ · · · a1|a
′

1−−−→ S′

corresponds the addition

(3.2) S +

n−1∑

i=0

AiΦ(an−i) =

n−1∑

i=0

AiΦ(a′n−i) + AnS′.
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Note that for S′ = 0, i.e., for a walk leading from S to 0 in B0, the term AnS′ vanishes. In this
case the automaton produces from the string (an, . . . , a1) corresponding to the “A-adic” expansion

of z =
∑n−1

i=0 AiΦ(an−i) the string (a′n, . . . , a
′
1) which is the string of the “A-adic” expansion of

z + S.

Remark 3.2. By Remark 3.1, the outputs S′ and (a′n, . . . , a
′
1) are uniquely defined by the inputs

S and (an, . . . , a1).

The automaton emerging from B0 by leaving away the accepting state is called B. It is helpful
in order to characterize the boundary of T , as the following results show.

Proposition 3.3 (Scheicher and Thuswaldner [23]). The following equation holds for the boundary
∂T of T :

(3.3) ∂T =
⋃

S∈B

(T ∩ (T + S)).

Thus, even if T has more neighbors than the six presented here (see [1]), these neighbors are
sufficient to describe the whole boundary.

Proposition 3.4 (Müller et al. [18]). For S ∈ {±P,±Q,±R} let BS := T ∩ (T + S). Then
BS 6= ∅. Furthermore, if there exists an infinite walk

S
a1|a

′

1←−−− S1
a2|a

′

2←−−− . . .
in B such that x =

∑

i≥1 A−iΦ(ai) then x ∈ BS.

As a consequence of these propositions and of the definition of B0, we have the following way
to characterize that two n-th level subpieces of T have common points.

Characterization 3.5. Let n ∈ N and w = (a1, . . . , an), w′ = (a′1, . . . , a
′
n) be two strings of

length n. If there is a walk

Sn

an|a′

n−−−−→ Sn−1 . . .
a1|a

′

1−−−→ ◦
in B0, then

ψw(T ) ∩ ψw′(T ) 6= ∅.

3.2. Graph action of B0 on G. The structure of M will be understood with the help of the
following graph action of B0 on the graph G.
Definition 3.6. Let S be a state in B0, A a state of G and let w = (A; a1, . . . , an) ∈ pn(A). Take
(an, . . . , a1) as the input string for the automaton B0 with starting state S and denote the output
string by (a′n, . . . , a

′
1). Then we define ΨS(w) := (A; a′1, . . . a

′
n). ΨS is called the addition of S. If

the automaton B0 rests in ◦ after reading (an, . . . , a1) and if ΨS(w) ∈ pn(A) then we say that the
addition of S is admissible for w. Note that for a walk w = (A) of length zero only Ψ◦(w) = w is
admissible.

Remark 3.7. By Characterization 3.5, the admissible addition of S to a string w produces a
string w′ := ΨS(w) such that ψw(T ) ∩ ψw′(T ) 6= ∅.
Definition 3.8. Fix n ∈ N, a state A ∈ G and let w1, w2 ∈W ⊂ pn(A). Let ψw1

(T ) and ψw2
(T )

be the corresponding subsets of T . We say that w1 and w2 are W -equivalent to each other, if there
exist finitely many states S1, . . . , Sm of B such that the following conditions hold with admissible
additions ΨSj

.

ΨSm
◦ · · · ◦ΨS1

(w1) = w2 and

ΨSj
◦ · · · ◦ΨS1

(w1) ∈ W (1 ≤ j ≤ m).

We denote this by w1 ∼ w2 (W ) or simply by w1 ∼ w2 if the underlying set W is clear from the
context. In this case we also call the corresponding sets ψw1

(T ) and ψw2
(T ) W -equivalent and

use the same notation ψw1
(T ) ∼ ψw2

(T ).

If w1 = ΨS(w2) we also write in a slight abuse of notation w1 ∼S w2 or w2 S ∼ w1.
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It is easy to check that ∼ is an equivalence relation.

Remark 3.9. We want to give some comments on these definitions.

1) Let w = (A; a1, . . . , an) ∈ pn(A) be a walk and assume that ΨSn
with Sn ∈ B0 is an

admissible addition for w. Then from Definition 3.6 it follows that there exists a walk

Sn

an|a′

n−−−−→ Sn−1

an−1|a
′

n−1−−−−−−−→ . . .
a2|a

′

2−−−→ S1
a1|a

′

1−−−→ ◦
in B0 such that w′ = (A; a′1, . . . , a

′
n) ∈ pn(A). Furthermore, we can perform this addition

“digit wise”, i.e.,

ΨSn
(A; a1, . . . , an) = ΨSj

(A; a1, . . . , aj)&(a′j+1, . . . , a
′
n) = (A; a′1, . . . , a

′
n).

Note that from this we easily see that

ψΨSn (w)(T ) = ψw(T + Sn).

We even have, if S
(1)
n , . . . , S

(m)
n are m states of B0 such that the additions Ψ

S
(j)
n
◦ · · · ◦

Ψ
S

(1)
n

(w) are admissible for 1 ≤ j ≤ m, that:

ψΨ
S

(m)
n
◦ · · · ◦Ψ

S
(1)
n

(w)(T ) = ψw(T + S(m)
n + . . .+ S(1)

n ).

2) Let w1, w2 be W -equivalent for some W ⊂ pn(A). Then there exist v1, . . . , vm with
v1 := w1 and vm := w2 such that

ψvj
(T ) ∩ ψvj+1

(T ) 6= ∅ (1 ≤ j ≤ m− 1).

This follows immediately from Remark 3.7 together with Definition 3.8.
3) Let W ⊂ pn(A) and let k < n be integers. Let w1, w2 ∈ W such that w1|k = w2|k =: σ.

Then there exist
τ1, τ2 ∈Wσ := {τ |σ&τ ∈W}

such that wi = σ&τi (i = 1, 2). If τ1 and τ2 are equivalent in Wσ then w1 and w2 are
equivalent in W . This follows from the following fact together with Definition 3.8. Let
τ, τ ′ ∈Wσ and S ∈ B0. Then

ΨS(τ) = τ ′ =⇒ ΨS(σ&τ) = Ψ◦(σ)&τ ′ = σ&τ ′.

This implies that

τ ∼ τ ′(Wσ) =⇒ σ&τ ∼ σ&τ ′(W ),

and this means that in order to examine equivalences of walks it often suffices to examine
equivalences of their tails.

Definition 3.10. Fix n ∈ N and let W ⊂ pn(A) be a set of strings. Then W and the set

M(W ) := {ψw(T ) | w ∈W}
are called transitive if we have w1 ∼ w2(W ) for each two w1, w2 ∈W .

Remark 3.11. Since the subpiece ψw(T ) is arcwise connected for every string w (remember
that T is arcwise connected), by definition of the equivalence relation in W , a transitive set
W ⊂ pn(F, ◦) yields an arcwise connected subset M(W ) of M.

We end this section with a last definition.

Definition 3.12. Let A be a node of G and S a state of B0. If ΨS is admissible for all walks in
p(F,A) then we call ΨS an admissible graph action for A on G, or an A-action, for short.

If ΨS is an A-action then we call

F (ΨS , A) := {t(w′) |w′ = ΨS(w) for a walk w ∈ p(F,A)}
the ending set of (ΨS , A).

Remark 3.13. Let the assertion : ΨS is an A-action with ending set F (ΨS , A), then we define
the dual assertion : Ψ−S is an A′-action with ending set {Z ′, Z ∈ F (ΨS , A)}.



10 BENOIT LORIDANT AND JÖRG M. THUSWALDNER

4. Admissibility of all the additions for a class of walks in G

This section is devoted to the proof of the following result.

Proposition 4.1. Let w be a finite walk in p(F, ◦). Then for each state S of B the addition
ΨS(w) is admissible for w.

Remark 4.2. By Remarks 3.7 and 3.9.1 , this implies that for w ∈ pn(F, ◦), all the sets ψw(T +S)
with S ∈ B0 are subpieces of T that have non-empty intersection with ψw(T ).

Suppose that w is a finite walk in p(F, ◦). Then w is of the shape

(4.1) F
a1−→ A1

a2−→ · · · ak−→ Ak

ak+1−−−→ ◦ ak+2−−−→ · · · an−−→ ◦ (Ak 6= ◦)
for some 2 ≤ k < n. Let Sn := S. Note that Sn together with the labels (a1, . . . , an) defines
uniquely the walk

(4.2) Sn

an|a′

n−−−−→ Sn−1

an−1|a
′

n−1−−−−−−−→ · · · ak+2|a
′

k+2−−−−−−→ Sk+1

ak+1|a
′

k+1−−−−−−→ Sk

ak|a
′

k−−−→ · · · a1|a
′

1−−−→ S0

in B0 (recall that B0 is right resolving by Remark 3.1). By the definition of ΨS this walk yields
the identities

(4.3) ΨS(w) = ΨSj
(a1, . . . , aj)&(a′j+1, . . . , a

′
n) = ΨSk

(a1, . . . , ak)&(a′k+1, . . . , a
′
n).

We want to show that ΨS(w) is a walk in p(F ) and that S0 = ◦ for all states S of B. We first
need the following lemma.

Lemma 4.3. ΨS is an A-action in the following cases :

(L,-Q): Ψ−Q is an L-action with F (Ψ−Q, L) ⊂ {◦, L′,K ′}.
(L,R): ΨR is an L-action with F (ΨR, L) ⊂ {◦, I ′, J ′, L′,M ′}.
(L,P): ΨP is an L-action with F (ΨP , L) ⊂ {L,M, I,N ′}.

(L,-P): Ψ−P is an L-action with F (Ψ−P , L) ⊂ {L,H, J}.
(M,-Q): Ψ−Q is an M -action with F (Ψ−Q,M) ⊂ {◦, J ′}.
(M,R): ΨR is an M -action with F (ΨR,M) ⊂ {◦, L′}.
(M,P): ΨP is an M -action with F (ΨP ,M) ⊂ {◦}.

(M,-P): Ψ−P is an M -action with F (Ψ−P ,M) ⊂ {L}.
(H,-Q): Ψ−Q is an H-action with F (Ψ−Q,H) ⊂ {I ′,K}.
(H,P): ΨP is an H-action with F (ΨP ,H) ⊂ {I, L}.

(H,-P): Ψ−P is an H-action with F (Ψ−P ,H) ⊂ {G}.
(I,-Q): Ψ−Q is an I-action with F (Ψ−Q, I) ⊂ {H ′, J}.
(I,R): ΨR is an I-action with F (ΨR, I) ⊂ {◦, L′,K, I ′}.
(I,-P): Ψ−P is an I-action with F (Ψ−P , I) ⊂ {H,L}.
(J,Q): ΨQ is an J-action with F (ΨQ, J) ⊂ {I,K ′}.

(J,-Q): Ψ−Q is an J-action with F (Ψ−Q, J) ⊂ {◦, J ′,M ′}.
(J,R): ΨR is an J-action with F (ΨR, J) ⊂ {◦, L′}.
(J,P): ΨP is an J-action with F (ΨP , J) ⊂ {L}.

(J,-P): Ψ−P is an J-action with F (Ψ−P , J) ⊂ {◦,K}.
(K,Q): ΨQ is an K-action with F (ΨQ, J) ⊂ {H,J ′}.

(K,-Q): Ψ−Q is an K-action with F (Ψ−Q,K) ⊂ {◦, L′}.
(K,-R): Ψ−R is an K-action with F (Ψ−R,K) ⊂ {◦, I}.
(K,P): ΨP is an K-action with F (ΨP ,K) ⊂ {◦, J}.

Moreover, the duals of these assertions are also true, that is to say: if for some pair S ∈ B and
A ∈ G

(A,S): ΨS is an A-action with F (ΨS , A) ⊂ {A1, . . . , Ak}
holds then also the dual statement

(A’,-S): Ψ−S is an A′-action with F (Ψ−S , A
′) ⊂ {A′

1, . . . , A
′
k}

holds.
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Remark 4.4. Note that Ψ◦ is an A-action (with set of ending states {A}) for every A ∈ G.

Proof. The statement will be proved by induction on the length of the walks w ∈ p(F ). The
assertion (A,S)n stands for: (A,S) holds for all walks up to length n. If there is no walk in
pk(F,A) for k ≤ n, then (A,S)n is true.
For n ≤ 1 the statements (A,S)n for the pairs (A,S) in the proposition are all true.
Suppose now that (A,S)n−1 is true for all pairs (A,S) of the proposition and their duals. We
show that all (A,S)n’s and their duals are also true. We will show how to proceed for the case of
(L,−Q)n and sum up the results for all the cases in a table.
We have to show that Ψ−Q is an L-action for all walks w of length at most n with ending set
F (Ψ−Q, L) ⊂ {◦, L′,K ′}. Let w = (a1, . . . , an) such that there is a walk

A
a1−→ A1

a2−→ . . .
an−2−−−→ An−2

an−1−−−→ An−1
an−−→ L

in G. Then by Remark 3.1 the input digits (an, . . . , a1) define a unique walk in B0 starting from
−Q:

−Q an|a′

n−−−−→ Sn−1

an−1|a
′

n−1−−−−−−−→ Sn−2

an−2|a
′

n−2−−−−−−−→ . . .
a1|a

′

1−−−→ S0.

First suppose that an ∈ {0, 1, 2}, i.e., by B0, Sn−1 = Q. Then

Ψ−Q(w) = ΨQ(w|n−1)&(a′n).

According to G, since w ends up in L and an ∈ {0, 1, 2}, w|n−1 can end up in H ′,K ′, I ′, L′ or M ′,
i.e., An−1 ∈ {H ′,K ′, I ′, L′,M ′}. If An−1 = H ′, then an = 2, because the edge leading from H ′

to L in G has only the labels {2, 3}, and we assumed an ∈ {0, 1, 2}. Thus a′n = 4, as indicated by

the edge −Q 2|4−−→ Q of B0. Moreover, by (H ′, Q)n−1, which is the dual of (H,−Q)n−1, we have

Q
w|Tn−1−−−−→ ◦ in B0 and ΨQ(w|n−1) ends up in {I,K ′}. Thus −Q wT

−−→ ◦, i.e., S0 = ◦, and Ψ−Q(w)

ends up in {◦}, because of the edges I
4−→ ◦ and K ′ 4−→ ◦ in G. We can argue along the same lines

if An−1 ∈ {K ′, I ′, L′,M ′}. All these cases lead to walks Ψ−Q(w) ending in ◦, K ′ or L′.

Secondly, suppose that an ∈ {3, 4}, i.e., by B0, Sn−1 = −P . Then

Ψ−Q(w) = Ψ−P (w|n−1)&(a′n).

According to G, since w ends up in L and an ∈ {3, 4}, w|n−1 can only end up in H ′, L′,M ′ or N ′,
i.e., An−1 ∈ {H ′, L′,M ′, N ′}. The first three cases can be treated as above and lead to Ψ−Q(w)
ending in ◦ or L′, so let us assume that An−1 = N ′. Then, the only edge in G leading from N ′ to

L being N ′ 4−→ L, we have an = 4, and since there is only one edge landing in N ′ (I ′
3−→ N ′), we

even have An−2 = I ′ and an−1 = 3. Thus, by the edges −Q 4|1−−→ −P 3|2−−→ ◦ of B0, we read a′n = 1,

a′n−1 = 2 and Sn−2 = ◦. Consequently, we have ◦ w|Tn−2−−−−→ ◦, and Ψ◦(w|n−2) = w|n−2 ends up in
{I ′}. Thus again S0 = ◦ and

Ψ−Q(w) = Ψ◦(w|n−2)&(a′n−1, a
′
n) = w|n−2&(2, 1)

ends up in {L′}, as it can be checked on G by considering the edges I ′
2−→ L

1−→ L′.

Thus in all cases Ψ−Q(w) is a walk in p(F ) ending up in {◦, L′,K ′}. Thus (L,−Q)n is true and
we are done.

All the other assertions can be treated likewise. The occurring cases are summed up in Tables 1
and 2 from which the complete proof can be read off easily. In these tables, An−2, a

′
n−1 and Sn−2

are given if they are needed, and in this case we use i = 2 in the 6-th column, otherwise i = 1. �

Proposition 4.1 will be proved inductively: let w be a finite walk in p(F, ◦) and j ≥ k+1, where
k is defined by (4.1). We will show that for every j ≥ k + 1, the addition ΨS(w|j) is admissible
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(A,S)n an An−1 (An−2) a′n (a′n−1) Sn−1 (Sn−2) end of ΨSn−i
(w|n−i) end of ΨS(w)

(L,−Q)n 0, 1, 2 H ′ 4 Q I,K ′ ◦
K ′ 2 ◦, L ◦, L′

I ′ 4 H,J ′ K ′

L′ 4 ◦, L,K ◦, L′

M ′ 4 ◦, J ◦
3, 4 H ′ 0 −P I ′, L′ ◦

L′ 0 I ′, L′,M ′, N ◦, L′

M ′ 0, 1 ◦ ◦
N ′ (I ′) 1 (2) −P (◦) I ′ L′

(L,R)n 0, 1, 2, 3 H ′ 3, 4 Q I,K ′ ◦, J ′

K ′ 1 ◦, L ◦, L′

L′ 3, 4 ◦, L,K ◦, J ′,M ′, L′

I ′ 3 H,J ′ ◦, J ′

M ′ 3, 4 ◦, J ◦
4 M ′ 0 −P ◦ ◦

N ′ 0 (2) −P (◦) I ′ I ′

(L,P )n 0, 1, 2, 3 H ′ 3, 4 ◦ H ′ I, L
K ′ 1 K ′ M
L′ 3, 4 L′ L, I
I ′ 3 I ′ N ′

M ′ 3, 4 M ′ L
4 M ′ (K) 0 (4) R (Q) H,J ′ L

N ′ (I ′) 0 (4) J ′,H L
(L,−P )n 1, 2, 3, 4 H ′ 1, 2 ◦ H ′ J, L

L′ 1, 2 L′ J, L
I ′ 1 I ′ J
M ′ 1, 2, 3 M ′ J, L
N ′ 3 N ′ H

0 K ′ (J ′) 4 (3) −R (−Q) I ′,K L
(M,−Q)n 1 K ′ 3 Q ◦, L ◦, J ′

(M,R)n 1 K ′ 2 Q ◦, L ◦, L′

(M,P )n 1 K ′ 2 ◦ K ′ ◦
(M,−P )n 1 K ′ 0 ◦ K ′ L
(H,−Q)n 3 N ′ (I ′) 0 (2) −P (◦) I ′ I ′

G′ (F ;G,N) 0 (0; 1) −P (◦) F,G,N I ′,K
(H,P )n 3 N ′, G′ 4 ◦ N ′, G′ L, I

(H,−P )n 3 N ′, G′ 2 ◦ N ′, G′ G
(I,−Q)n 4 H ′ 1 −P I ′, L′ J

L′ I ′,M ′, L′, N J,H ′

G′ (F ;G,N) 1 (0; 1) −P (◦) F,G,N H ′, J
(I,R)n 4 H ′ 0 −P I ′, L′ ◦, L′

L′ I ′,M ′, L′, N ◦, L′

G′ (F ;G,N) 0 (0; 1) −P (◦) F,G,N I ′,K
(I,−P )n 4 G′, L′,H ′ 3 ◦ G′, L′,H ′ H,L
(J,Q)n 1 H ′ 4 P G′ I

M ′ L′ I
I ′ H ′, L′ I
L′ H ′, L′, J ′ I,K ′

(J,−Q)n 1 H ′ 3 Q K ′, I ◦, J ′

M ′ ◦, J ◦
I ′ H,J ′ ◦, J ′

L′ ◦, L,K ◦, J ′,M ′

Table 1. Proof of Lemma 4.3.
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(A,S)n an An−1 (An−2) a′n (a′n−1) Sn−1 (Sn−2) end of ΨSn−i
(w|n−i) end of ΨS(w)

(J,R)n 1 H ′ 2 Q K ′, I ◦, L′

M ′ ◦, J ◦
I ′ H,J ′ ◦, L′

L′ ◦, L,K ◦, L′

(J, P )n 1 H ′,M ′, I ′, L′ 2 ◦ H ′,M ′, I ′, L′ L
(J,−P )n 1 H ′,M ′, I ′, L′ 0 ◦ H ′,M ′, I ′, L′ ◦,K
(K,Q)n 0 H ′ 3 P G′ H

J L J ′

(K,−Q)n 0 H ′, J 2 Q K ′, I ◦, L′

(K,−R)n 0 H ′ 4 P G′ I
J L ◦

(K,P )n 0 H ′, J 1 ◦ H ′, J ◦, J
Table 2. Proof of Lemma 4.3: end of the preceding table.

for each state S of B: taking for j the length n of w will yield the result. Lemma 4.5 will contain
the induction start, Lemma 4.6 the induction step.

Lemma 4.5. Suppose that w is a walk of the shape (4.1). Then the following assertions hold.

(i) ΨP (w|k+1) ends in {◦,M ′,K ′, J}.
(ii) ΨQ(w|k+1) ends in {◦, J,K,L}.
(iii) ΨR(w|k+1) ends in {◦, L′, J ′, I ′,K}.
(iv) w|k+1 ends in {◦}.

Their associated duals also hold (“ ΨS(w|k+1) ends in the set of states A” has the dual “ Ψ−S(w|k+1)
ends in A′ ”).

In particular, ΨS(w|k+1) is a walk in p(F ) for all S ∈ B0. Moreover, S
w|Tk+1−−−−→ ◦ for all S ∈ B0.

That is to say, ΨS(w|k+1) is admissible for all S ∈ B0.

Proof. Let S ∈ B0. Note that the following edges exist:

(4.4)
Ak

ak+1−−−→ ◦ in G by definition of k and

S
ak+1|a

′

k+1−−−−−−→ S′ in B for some S′ ∈ B0

(the second edge is uniquely defined by S and ak+1). We recall the identity:

(4.5) ΨS(w|k+1) = ΨS′(w|k)&(a′k+1).

To (i): S = P . Depending on ak+1, the edge P
ak+1|a

′

k+1−−−−−−→ S′ of (4.4) in B0 implies that S′ = ◦ or
R, which fix the range of a′k+1 (a′k+1 = 0 if S′ = R and a′k+1 ∈ {1, . . . , 4} if S′ = ◦). The possible

states Ak are also determined by ak+1 via the existence of the edge Ak

ak+1−−−→ ◦ in G (see (4.4)).
Using the corresponding assertion (Ak, S

′) of Lemma 4.3 it is then easy to get the possible endings
of ΨS′(w|k). Now if Y ∈ G is such an ending, then, by (4.5), with the range of a′k+1 one obtains

the possible endings Z of ΨS(w|k+1) by looking for all edges Y
a′

k+1−−−→ Z in G. Let us consider an

example: if ak+1 = 4, we are considering the edge P
4|0−−→ R in B0, thus S′ = R and a′k+1 = 0.

Moreover, Ak ∈ {K ′, L, J, I,M} because these states are the only starting states of edges in G
labelled by 4 and leading to ◦. For Ak = K ′, using (K ′, R) of Lemma 4.3 we get that ΨR(w|k)

ends up in ◦ or I ′. Consequently, since a′k+1 = 0, ΨP (w|k+1) ends up in ◦: indeed, we have ◦ 0−→ ◦

and I ′
0−→ ◦ in G. Note that (K ′, R) also implies R

w|Tk−−→ ◦ in B0, thus P
w|Tk+1−−−−→ ◦.

The results for the other values of ak+1 are given in Table 3.
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S ak+1 S′ Ak end of ΨS′(w|k) a′k+1 end of ΨS(w|k+1)
P 0, 1, 2, 3 ◦ L′ L′ 1 J

J J 2, 3, 4 ◦
J ′ J ′ 1, 2, 3, 4 ◦,K ′

K K 1, 2, 3 ◦,M ′

K ′ K ′ 3, 4 ◦
M ′ M ′ 3, 4 ◦

4 R J ◦, L′

I ◦, I ′,K, L′

L ◦, J ′, L′,M ′, I ′ 0 ◦
K ′ ◦, I ′
M ◦, L′

Q 0, 1 P K ◦, J 3, 4 ◦
L′ H ′, J ′, L′ 3 ◦, L
J L 4 ◦
M ′ L′ 3 L
I ′ ◦,K ′ 3, 4 L
J ′ ◦,K ′ 3, 4 ◦

2, 3, 4 −Q K ′ H ′, J 0, 1, 2 ◦,K, J, L
L ◦, L′,K ′ 2 ◦, L
K ◦, L′ 0 ◦
J ′ K, I ′ 0, 1 ◦
I H ′, J 2 ◦, L
J ◦,M ′, J ′ 0, 1, 2 ◦, J, L
M ◦, J ′ 2 ◦

R 0, 1, 2, 3 Q K H,J ′ 1, 2, 3 ◦, L′

K ′ ◦, L 3, 4 ◦, J ′

L′ ◦, L,K 1 ◦, L′

J I,K ′ 2, 3, 4 ◦, L′, J ′

J ′ ◦,M, J 1, 2, 3, 4 ◦, J ′, L′

I ′ H,J ′ 1 ◦, L′

M ′ ◦, J 1 ◦

4 −P K ′ ◦, J ′ ◦, L′

L H, J, L I ′,K
J ◦,K 0 ◦
I H,L I ′

M L I ′

Table 3. Proof of Lemma 4.5.

The proof is the same for the other cases (S = Q,S = R) and their duals, it is summed up in
Table 3 for S = Q and S = R. Item (iv) is clear. �

Again, let w be a finite walk in p(F, ◦) and j ≥ k + 1, where k is defined by (4.1). We call
(Bj) the assertion: for all S ∈ B0,ΨS(w|j) is a walk in p(F ) with possible ending states given in

Table 4. Moreover, S
w|Tj−−→ S0 = ◦ in B0. In particular, (Bj) states that ΨS(w|j) is admissible for

all S ∈ B0.
By Lemma 4.5, (Bk+1) already holds. The induction step is contained in the following lemma.
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walk possible ending states
Ψ◦(w|j) {◦}
ΨP (w|j) {◦,M ′,K ′, J}
Ψ−P (w|j) {◦,M,K, J ′}
ΨQ(w|j) {◦, J,K,L,M}
Ψ−Q(w|j) {◦, J ′,K ′, L′,M ′}
ΨR(w|j) {◦, L′, J ′, I ′,M ′,K}
Ψ−R(w|j) {◦, L, J, I,M,K ′}
Table 4. Table of statement (Bj).

Sj+1 Sj a′j+1 end of ΨSj
(w|j) end of ΨSj+1

(w|j+1)

P ◦ 1, 2, 3, 4 ◦ ◦
R 0 ◦, J ′, L′, I ′,M ′,K ◦

Q P 3, 4 ◦, J,K ′,M ′ ◦, L
−Q 0, 1, 2 ◦, L′,K ′, J ′,M ′ ◦, J, L,M

R Q 1, 2, 3, 4 ◦, L,K, J,M ◦, L′, J ′,M ′

−P 0 ◦, J ′,K,M ◦, L′

Table 5. Proof of Lemma 4.6.

Lemma 4.6. If (Bj) holds for some j ≥ k + 1, then (Bj+1) holds too.

Proof. First we deal with the case of S = P . Then there is an edge P
aj+1|a

′

j+1−−−−−−→ S′ in B0, thus
S′ ∈ {◦, R}. Remember that ΨP (w|j+1) = ΨS′(w|j)&(a′j+1).

By assumption (Bj), S
′

w|Tj−−→ ◦, thus P
aj+1|a

′

j+1−−−−−−→ S′ w|jT

−−−→ ◦, i.e., P
w|j+1T

−−−−−→ ◦ in B0.

Moreover, if S′ = ◦, then ΨP (w|j+1) = w|j&(a′j+1) is a walk in p(F ) that ends at ◦: indeed,
w|j is in p(F ) and j ≥ k + 1, so by (4.1) w|j already ends at ◦; its concatenation with (a′j+1)

remains in p(F ), because ◦
a′

j+1−−−→ ◦.

If S′ = R, then the edge P
aj+1|a

′

j+1−−−−−−→ R in B0 indicates that a′j+1 = 0. Hence ΨP (wj+1) =
ΨR(w|j)&(a′j+1), with ΨR(w|j) walk in p(F ) ending at Y ∈ {◦, L′, J ′, I ′,M ′,K} by assumption
(Bj) (see Table 4 for the endings). Now we can check on G that there is an edge starting from
each Y ∈ {◦, L′, J ′, I ′,M ′,K} and labelled by 0. They all lead to ◦.

The other cases (S = Q,S = R) as well as their duals are treated in a similar way (see Table 5
for S = Q,S = R). �

Proof of Proposition 4.1. Let w be a walk in pn(F, ◦) of the shape (4.1) and the resulting walk in
B0 given by (4.2). If n = k + 1, then w|k+1 = w and Lemma 4.5 gives the result immediately.
Otherwise, starting from the same lemma and going on with Lemma 4.6 from j = k+ 1 to j = n,
we also obtain the statement of Proposition 4.1. �

5. Equivalences of paths in p(F, ◦)

The main result of this section, Proposition 5.2, will be used in Section 8 to construct arcs
inside Int(M) from arbitrary points contained in a subpiece ψw(T ), where w ∈ p(F, ◦), to the
point 0 (contained in ψ(0,0,0)(T )).
In the following, the equivalences of walks from the set Gk defined as in (2.4) for some k ∈ N will
take place in Gk. First we note the following fact about the walks of length 3.

Remark 5.1. We have G3 = {(F ; 0, 0, 0), (F ; 1, 4, 4)} and these walks are equivalent in G3.
Namely, (F ; 1, 4, 4) = Ψ−P ((F ; 0, 0, 0)). In other words, G3 is transitive.
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Proposition 5.2. Let n ≥ 4 and w ∈ Gn. Then there is a walk w′ ∈ Gn+1 such that w′|n−1 ∈
Gn−1 and w&d ∼ w′ for some d ∈ {0, . . . , 4}.

In view of Remark 3.9.2 this proposition says the following. Let w be a walk in Gn and let
ψw(T ) be the associated subset of T . Then ψw(T ) contains a subpiece ψw&d(T ) with the following
property. There exist walks w&d = v1, v2, . . . , vk = w′ in Gn+1 such that the associated subpieces
satisfy

ψvj
(T ) ∩ ψvj+1

(T ) 6= ∅ (1 ≤ j ≤ k − 1).

Since w′′ := w′|n−1 ∈ Gn−1, this means that one can draw an arc from each piece ψw(T ) ofM(Gn)
to a piece ψw′′(T ) ofM(Gn−1). By induction on n this will lead to a proof of the connectivity of
M because it allows to draw arcs from each point of M to the connected set ψ(F ;0,0,0)(T ) ⊂M.

Remark 5.3. 1) If w&d ∼ w′ for w ∈ Gn and d ∈ {0, . . . , 4}, then by using Ψ±P we even
have w&d ∼ w′ for every d ∈ {0, . . . , 4}.

2) If two walks w and w′ of Gn are equivalent, then there exist d, d′ ∈ {0, . . . , 4} with
w&d ∼ w′&d′. This means that two intersecting pieces ψw(T ) and ψw′(T ) (i.e., such that
ψw(T )∩ψw′(T ) 6= ∅) contain intersecting subpieces ψw&d(T ) and ψw′&d′(T ). In particular
it is sufficient to find a walk w′ ∈ Gn with w′|n−1 ∈ Gn−1 and w ∼ w′. In this case w will
automatically fulfil Proposition 5.2.

3) For p ∈ N, we introduce the notation w Sp ∼ w′: this means that w′ is obtained after
applying ΨS to w for p times.

Proposition 5.2 will be shown via the following lemmata. By Remark 3.9.3, we just have to
concentrate on the tails of the walks. Moreover, the lemmata correspond to the following classes
of walks:

En(A) := {w ∈ Gn, w contains the edge A→ ◦ } (a ∈ G \ {◦}).
Sloppily spoken the walks contained in En(A) are those walks of Gn which reach the accepting
state via the state A. Note that

(5.1) Gn =
⋃

A∈G

En(A).

Lemma 5.4. Let n ≥ 4 and w ∈ En(K) ∪ En(K ′). Then there is a walk w′ ∈ Gn+1 such that
w′|n−1 ∈ Gn−1 and w&d ∼ w′ for some d ∈ {0, . . . , 4}.

Proof. Let us consider w ∈ En(K). If w|n−1 ∈ En−1(K), we are ready. We suppose it is not the
case. We have the following cases for the tails τ of w = σ&τ (σ is fixed by w and τ).

(1) τ = (J ; 0, a) with a ∈ {0, 1, 2}. Then

(J ; 0, 2) −P ∼ (J ; 0, 1) −P ∼ (J ; 0, 0) Q ∼ (J ; 1, 3) ≺ (J ; 1),

which ends at ◦. Thus w ∼ σ&(J ; 1, 3) with σ&(J ; 1) ∈ Gn−1, and we are ready by
Remark 5.3.2.

(2) τ = (A; d, 1, 0, a) with (A, d) ∈ C := {(F, 0), (G′, 2), (N ′, 2), (I, 1)} and a ∈ {0, 1, 2}. Then
for all constellations (A, d) ∈ C, we have

(A; d, 1, 0, 0) P ∼ (A; d, 1, 0, 1) P ∼ (A; d, 1, 0, 2) Q ∼ (A; d+ 1, 4, 2, 0) Q ∼ (A; d+ 1, 4, 3, 3)

(−P )3 ∼ (A; d+ 1, 4, 3, 0) Q ∼ (A; d+ 1, 4, 4, 3) ≺ (A; d+ 1, 4, 4),

which ends at ◦. Thus w ∼ σ&(A; d + 1, 4, 4, 3) with σ&(A; d + 1, 4, 4) ∈ Gn−1, and we
are ready by Remark 5.3.2.

One can proceed identically for w ∈ En(K ′) by considering the dual walks of the previous ones.
Thus Lemma 5.4 is proved. �

Lemma 5.5. Let n ≥ 4 and w ∈ En(J) ∪ En(J ′). Then there is a walk w′ ∈ Gn+1 such that
w′|n−1 ∈ Gn−1 and w&d ∼ w′ for some d ∈ {0, . . . , 4}.
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Proof. Let us consider w ∈ En(J). If w|n−1 ∈ En−1(J), we are ready. We suppose it is not the
case. Then the tail τ of w = σ&τ has the form τ = (A; 1, a) with A ∈ A := {L′,M ′, I ′,H ′} and
a ∈ {1, 2, 3, 4}. We have the following equivalences for A ∈ A:

(A; 1, 1) P ∼ (A; 1, 2) P ∼ (A; 1, 3) P ∼ (A; 1, 4) −Q ∼ (A; 0, 1).

For A ∈ {L′,M ′, I ′}, ∼ (A; 0, 1) ≺ (A; 0), which ends at ◦. Thus w ∼ σ&(A; 0, 1) with σ&(A; 0) ∈
Gn−1, and we are ready by Remark 5.3.2.

For A = H ′, we have w = σ&(H ′; 0, 1) which is now a walk belonging to En(K), thus we obtain
the required result by using Lemma 5.4.

One can proceed identically for w ∈ En(J ′), thus Lemma 5.5 is proved. �

Lemma 5.6. Let n ≥ 4 and w ∈ En(L) ∪ En(L′). Then there is a walk w′ ∈ Gn+1 such that
w′|n−1 ∈ Gn−1 and w&d ∼ w′ for some d ∈ {0, . . . , 4}.

Proof. Let us consider w ∈ En(L′). If w|n−1 ∈ En−1(L
′), we are ready. We suppose it is not the

case. Then w belongs to one of the following classes of tails τ of w = σ&τ (σ is fixed by w and τ).

(1.i) τ = (L; 2, 0). Then (L; 2, 0) Q ∼ (L; 3, 3) which leads to a walk σ&(L; 3, 3) equivalent to
w which belongs to En(J ′), treated in Lemma 5.5.

(1.ii) τ = (L; 1, 0). We subdivide this class into the following smaller classes:
A. (A; d, 1, 0) with (A, d) ∈ CA := {(K ′, 0), (H ′, a), (L′, a), a ∈ {2, 3}}.
B. (K; 3, d, 1, 0) with d ∈ {2, 3, 4}.
C. (I ′; 3, 4, 1, 0).
D. (A; d, 0, (3, 4, 0)p, 2, 1, 0) for some p ∈ N and

(A, d) ∈ CD := {(F, 0), (K ′, 0), (I ′, 2), (M ′, 4),
(G′, a), (N ′, a), (H ′a), (L′, a), (M ′, a), a ∈ {2, 3}}.

Here (3, 4, 0)p inside the walk means that the sequence of digits (3, 4, 0) has to be read p
times before going on to the digit 2. This corresponds to the cycle I ′ → N ′ → L→ I ′ in
the graph of Figure 2.
A. We have for (A, d) ∈ CA: (A; d, 1, 0) −Q ∼ (A; d+ 1, 4, 2) ≺ (A; d+ 1, 4), which ends

at ◦.

B. We have for d = 3, 4 that (K; 3, d, 1, 0) −P ∼ (K; 2, d− 3, 0, 4) ≺ (K; 2), which ends
at ◦, and (K; 3, 2, 1, 0) −Q ∼ (K; 3, 3, 4, 2) ≺ (K; 3, 3, 4), which ends at ◦.

C. We have (I ′; 3, 4, 1, 0) −P ∼ (I ′; 2, 1, 0, 4) ≺ (I ′; 2, 1, 0), which ends at ◦ too.

D. The following chain holds for every (A, d) ∈ CD \ {(M ′, 4)} and p ≥ 0:

(A; d, 0, (3, 4, 0)p, 2, 1, 0) −P ∼ (A; d+ 1, (3, 4, 0)p, 3, 4, 0, 4) ≻ (A; d+ 1, (3, 4, 0)p, 3, 4, 0, 4, 4)

Q ∼ (A; d+ 1, (3, 4, 0)p, 3, 4, 0, 3, 1) P 2 ∼ (A; d+ 1, (3, 4, 0)p, 3, 4, 0, 3, 3)

−Q ∼ (A; d+ 1, (3, 4, 0)p, 3, 4, 0, 2, 0)(−Q)3 ∼ (A; d, 0, (3, 4, 0)p, 2, 2, 0, 2)
≺ (A; d, 0, (3, 4, 0)p, 2, 2, 0),

which is of type (L; 2, 0) treated in Item (1.i).

If (A, d) happens to be (M ′, 4), we go into smaller classes by considering the tails
(A′; 1, 0, 3, 4, 0, (3, 4, 0)p, 2, 1, 0) with A′ ∈ A := {G,N,H ′,M ′, L′, I ′} and we have the
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similar chain for A′ ∈ A:

(A′; 1, 0, 3, 4, 0, (3, 4, 0)p, 2, 1, 0) −P ∼ (A′; 2, 3, 4, 0, (3, 4, 0)p, 3, 4, 0, 4)
≻ (A′; 2, 3, 4, 0, (3, 4, 0)p, 3, 4, 0, 4, 4)

Q ∼ (A′; 2, 3, 4, 0, (3, 4, 0)p, 3, 4, 0, 3, 1)

P 2 ∼ (A′; 2, 3, 4, 0, (3, 4, 0)p, 3, 4, 0, 3, 3)

−Q ∼ (A′; 2, 3, 4, 0, (3, 4, 0)p, 3, 4, 0, 2, 0)

(−Q ∼ (A′; 1, 0, 3, 4, 0, (3, 4, 0)p, 2, 2, 0, 2)
≺ (A′; 1, 0, 3, 4, 0, (3, 4, 0)p, 2, 2, 0),

which is again of type (L; 2, 0) treated in Item (1.i).

(2) τ ∈ {(I, 2), (M, 0), (M,a), (H, a), a ∈ {1, 2}}. Then

(A; 2, 0) Q ∼ (S; 3, 3) ∈ En(J ′)

for A ∈ {I,M,H}, and for the other cases one can consider the smaller classes:
• for A ∈ {G′, N ′},

(A; 3, 1, 0) Q ∼ (A; 4, 4, 2) ≺ (A; 4, 4),

which ends at ◦.
• for d ∈ {0, 1},

(K ′; 1, d, 0) −Q ∼ (K ′; 2, d+ 3, 2) ≺ (K ′; 2),

which ends at ◦.
(3) τ = (N ; 0, 0). Then w must end in the form (I; 1, 0, 0), and the following chain holds:

(I; 1, 0, 0) ≻ (I; 1, 0, 0, 0) Q ∼ (I; 1, 0, 1, 3) P ∼ (I; 1, 0, 1, 4)

Q ∼ (I; 2, 3, 3, 2)

(−P )2 ∼ (I; 2, 3, 3, 0) Q(I; 2, 3, 4, 3) ≺ (I; 2, 3, 4),

which is of type (L′; 3, 4): this is the dual of the tail (L; 1, 0), thus it can be treated as in
Item (1.ii).

(4) τ = (K; 4, 0). Then the walk w ends in the following way: (A; d, 1, 0, (4, 1, 0)p, 4, 0) for
some p ∈ N and

(A, d) ∈ C := {(F, 0), (G′, 2), (N ′, 2), (I, 1),
(G, 1), (N, 1), (K, 3), (G, 0), (L, 0), (H, 0),
(I, 2), (N, 0), (M, 0), (M,a), (L, a), (H, a), a ∈ {1, 2}}.

For (A, d) ∈ C, the following chain holds:

(A; d, 1, 0, (4, 1, 0)p, 4, 0) ≻ (A; d, 1, 0, (4, 1, 0)p, 4, 0, 0) Q ∼ (A; d, 1, 0, (4, 1, 0)p, 4, 1, 3)

P ∼ (A; d, 1, 0, (4, 1, 0)p, 4, 1, 4) Q ∼ (A; d+ 1, (4, 1, 0)p, 4, 2, 2, 3, 2)

(−P )2 ∼ (A; d+ 1, (4, 1, 0)p, 4, 2, 2, 3, 0) Q ∼ (A; d+ 1, (4, 1, 0)p, 4, 2, 2, 4, 3).

If now p = 0 and (A, d) ∈ {(G′, 2), (N ′, 2), (I, 2), (M, 2), (L, 2), (H, 2)}, then we have

(A; d+ 1, (4, 1, 0)p, 4, 2, 2, 4, 3) ≺ (A; d+ 1, 4, 2),

which ends at ◦; otherwise

(A; d+ 1, (4, 1, 0)p, 4, 2, 2, 4, 3) ≺ (A; d+ 1, (4, 1, 0)p, 4, 2, 2, 4),

which is of type (L′; 3, 4), i.e., of the dual of the tail (L; 1, 0), that can be treated similarly
as in Item (1.ii).

Proceeding identically for w ∈ En(L), we obtain Lemma 5.6. �

Lemma 5.7. Let n ≥ 4 and w ∈ En(M) ∪ En(M ′). Then there is a walk w′ ∈ Gn+1 such that
w′|n−1 ∈ Gn−1 and w&d ∼ w′ for some d ∈ {0, . . . , 4}.
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Proof. Let us consider w ∈ En(M ′). If w|n−1 ∈ En−1(M
′), we are ready. We suppose it is not

the case. Then w belongs to the following classes of tails τ of w = σ&τ : (A; d, 1, 0, (4, 1, 0)p), 3, 0)
for some p ∈ N and

(A, d) ∈ C := {(F, 0), (G′, 2), (N ′, 2), (I, 1),
(G, 1), (N, 1), (K, 3), (G, 0), (L, 0), (H, 0),
(I, 2), (N, 0), (M, 0), (M,a), (L, a), (H, a), a ∈ {1, 2}}.

For (A, d) ∈ C, we have the equivalence

(A; d, 1, 0, (4, 1, 0)p), 3, 0) −P ∼ (A; d+ 1, (4, 1, 0)p, 4, 2, 2, 4).

If now p = 0 and (A, d) ∈ {(G′, 2), (N ′, 2), (I, 2), (M, 2), (L, 2), (H, 2)}, then we have

(A; d+ 1, (4, 1, 0)p, 4, 2, 2, 4) ≺ (A; d+ 1, 4, 2)

which ends at ◦, otherwise the tail of the equivalent walk is of type (L; 4) which was treated in
Lemma 5.6.

We can proceed similarly for the dual case, and Lemma 5.7 is proved. �

Lemma 5.8. Let n ≥ 4 and w ∈ En(I) ∪ En(I ′). Then there is a walk w′ ∈ Gn+1 such that
w′|n−1 ∈ Gn−1 and w&d ∼ w′ for some d ∈ {0, . . . , 4}.

Proof. Let us consider w ∈ En(I). If w|n−1 ∈ En−1(I), we are ready. We suppose it is not the
case. Then w belongs to the following classes of tails τ of w = σ&τ : (A; d, 4, (1, 0, 4)p), 4) for some
p ∈ N and

(A, d) ∈ C := {(G, 1), (N, 1), (F, 1), (G, 2), (N, 2)
(I, 2), (K, 4), (M, 0), (M,a), (L, a), (H, a), a ∈ {1, 2}}.

For (A, d) ∈ C \ {(M, 0)}, we have the equivalence

(A; d, 4, (1, 0, 4)p), 4) P ∼ (A; d− 1, (1, 0, 4)p, 0, 0).

We consider the following cases:

• for p = 0 and (A, d) = (F, 1), then w = (F ; 1, 4, 4) ∈ G3 has length n = 3;
• for p = 0 and (A, d) ∈ {(G, 2), (N, 2)}, (A; d − 1, 0, 0) is the tail of a walk belonging to
En(K), treated in Lemma 5.4;

• for p = 0 and (A, d) = (I, 2), (I; 1, 0, 0) is the tail of a walk in En(L′), treated in Lemma 5.6;
• otherwise (A; d− 1, (1, 0, 4)p, 0, 0) ≺ (A; d− 1, (1, 0, 4)p, 0), which ends at ◦.

For (A, d) = (M, 0), we go into the smaller classes (A′; 3, 4, 1, 0, 4, (1, 0, 4)p, 4) with p ≥ 0 and
A′ ∈ {G′,X ′, I,M,L,H}. In these cases,

(A′; 3, 4, 1, 0, 4, (1, 0, 4)p, 4) P ∼ (A′; 2, 1, 0, 4, (1, 0, 4)p, 0, 0) ≺ (A′; 2, 1, 0, 4, (1, 0, 4)p, 0),

which ends at ◦.

Dealing with the walks of En(I ′) in the same way, we obtain Lemma 5.8. �

Proposition 5.2 now follows from Lemmata 5.4 to 5.8 together with the equation (5.1).

6. Boundary of M

As will be seen later, the last two sections assure the connectivity of the subset of M consisting
of the union of the subpieces ψw(T ) where w is a walk of G starting at F and ending at the
accepting state ◦. By definition, this subset is dense in M. The present section now uses the
walks of p(F ) that do not end at ◦ to prove that the boundary ∂M of M lies in the boundary of
T .
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Proposition 6.1. Let w0 := (a1, . . . , an) be a walk in p(F ) which does not end at ◦. Then

ψw0
(T ) ∩ ∂T 6= ∅.

For w0 as in the proposition, we will show that w := (0, 4)&w0 satisfies ψw(T )∩BQ 6= ∅. Note
that then ψw(T ) = ψ0 ◦ ψ4 ◦ ψw0

(T ); we will see that this piece stays in contact with ∂T after
application of the inverse of ψ0 ◦ ψ4. We need the following lemma.

For A a state of G, S a subset of B and n ≥ 3, let (Bn) be the following assertion:

If w0 is a walk of length n−2 in p(F ) ending at A 6= ◦, then wT := ((0, 4)&w0)
T

is the labelling
of a walk in B starting at S and ending at Q for every S ∈ S, where (A,S) are given in the Table 6
(the duals have to be added, they associate A′ to −S).
Lemma 6.2. The assertion (Bn) holds for every n ≥ 3.

Proof. For n = 3 we have w = (0, 4, 0) and A = G, or w = (0, 4, 1) and A = G′. It is easily seen

on B0 that S
wT

−−→ Q for all S in the corresponding S.

Let us suppose (Bn) to be true for an n ≥ 3. We show that (Bn+1) also holds. Let w =
(0, 4, a3, . . . , an+1) with (F ; a3, . . . , an+1) =: w0 ∈ p(F ).

If w0 ends up in A = G, then u := (a3, . . . , an) ends up in G′ or N ′ and an+1 = 2, because

G′ 2−→ G and N ′ 2−→ G are the only edges of G leading to G (the case F
an+1−−−→ G is not possible, since

there would be no edge labelled by an leading to F ). If u ends up in G′, then by assumption we

have S
w|Tn−−→ Q for all S ∈ {Q,−Q,R,−R}. Since R

2−→ S = Q, −Q 2−→ S = Q and −R 2−→ S = −Q,

Q
2−→ S = −Q all exist in B, we obtain for every S′ ∈ {±Q,±R}: S′ 2−→ S

w|Tn−−→ Q, i.e., S′ wT

−−→ Q.

If u ends up in N ′, then by assumption we have S
w|Tn−−→ Q for all S ∈ {Q,−Q, }. Thus one can

use the preceding walks in B: R
2−→ S = Q, −Q 2−→ S = Q and −R 2−→ S = −Q, Q

2−→ S = −Q all

exist in B, hence for every S′ ∈ {±Q,±R}, S′ 2−→ S
w|Tn−−→ Q, i.e., S′ wT

−−→ Q.

The results for the other possible endings A of w0 are summed up in Table 7 (the duals can be
treated likewise). �

Proof of Proposition 6.1. Let w := (0, 4)&w0 with w0 a walk in p(F ) that does not end at ◦. Then

ψw(T ) ∩BQ 6= ∅.
Indeed, by Proposition 3.4, it suffices to show that there exists a walk Q

w←− S in B. This is what
Lemma 6.2 does. Now recall that ψw(T ) = ψ0 ◦ ψ4 ◦ ψw0

(T ). Thus again by Proposition 3.4

there exists an infinite walk Q
0←− S

4←− S′ w0←−− . . . in B. This implies that S′ ∈ {P,Q,−R}, as

can be checked on B0. Thus there is an infinite walk S′ w0←−− . . . in B with S′ ∈ B, and therefore
ψw0

(T ) ∩ ∂T 6= ∅, as assured by Proposition 3.4. �

A S
G {Q,−Q,R,−R}
H {Q,R,−R}
I {P,Q}
J {−R}
K {−P}
L {Q,−R}
M {Q}
N {Q,−Q}

Table 6. Table for assertion (Bn).
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A end of w|n an+1 S′ an+1−−−→ S

G G′, N ′ 2
R,−Q −→ Q
−R,Q −→ −Q

H G′, N ′ 3
R −→ Q

−R,Q −→ −Q
I H ′, G′, L′ 4

P −→ R
Q −→ −Q

J H ′,M ′, I ′ 1 −R −→ −Q
K H ′, J 0 −P −→ −R
L H ′, L′ 2, 3

Q −→ −Q
−R −→ −Q

M ′ 2, 3, 4
Q −→ −Q
−R −→ −Q

N ′ 4
Q −→ −Q
−R −→ −Q

K ′ 0
Q −→ P
−R −→ P

M K ′ 1 Q −→ P

N I 1
Q −→ P
−Q −→ Q

Table 7. Proof of Lemma 6.2.

In what follows we will use the following notations. We fix a metric dist(·, ·) on R2, and denote
the diameter of a compact set C, defined as the maximal distance between two points of C, by
diam(C).

Proposition 6.3. The boundary of M is contained in the boundary of T .

Proof. Let x ∈ ∂M. We will show that for every ε > 0, we have dist(x, ∂T ) < ε. This will imply
that x ∈ ∂T , since ∂T is a closed set. We consider two cases.

Case 1. For every n ≥ 3, x /∈ M(Gn) (see Definition 2.6). The element x belonging to M,
we can write x =

∑∞
i=1 A−iΦ(ai) with wn := (a1, . . . , an) ∈ pn(F ). In our assumption, for every

n ≥ 3, we have wn /∈ pn(F, ◦). Let ε > 0 and n0 such that for n ≥ n0, diam(ψw(T )) < ε for every
w of length |w| = n. Then

x ∈ ψwn0
(T ) with

{
wn0
∈ pn0

(F ) (by definition)
wn0

/∈ pn0
(F, ◦) (by assumption)

.

By Proposition 6.1, ψwn0
(T ) ∩ ∂T 6= ∅, thus dist(x, ∂T ) < ε since diam(ψwn0

(T )) < ε.

Case 2. There is an n0 ≥ 3 with x ∈ M(Gn0
). Because of Equation (1.2), we even have

x ∈M(Gn) for all n ≥ n0.
We denote by Br(0) the open ball {y ∈ R2, dist(0, y) < r}. By compactness of T , it is possible to
find r1 > 0 such that

(6.1) T ⊂ Br1
(0).

Since {P,Q} is a basis of the lattice Φ(Z[α]) by (1.4), there exist positive integers m1,m2 such
that

(6.2) Br1
(0) ⊂

⋃

n1 ∈ {−m1, . . . ,m1}
n2 ∈ {−m2, . . . ,m2}

(T + n1P + n2Q) ⊂ Br2
(0).

The second inclusion follows again from the compactness of T , r2 > 0 is simply chosen large
enough.
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Let now ε > 0, n ≥ n0 such that diam(ψw(Br2
(0))) < ε for every w of length |w| = n, and let

w ∈ pn(F, ◦) = Gn such that x ∈ ψw(T ). Then using (6.1) and (6.2), the following inclusions
hold:

x ∈ ψw(T ) ⊂ ψw(Br1
(0)) ⊂ ψw










⋃

n1 ∈ {−m1, . . . ,m1}
n2 ∈ {−m2, . . . ,m2}

(T + n1P + n2Q)










︸ ︷︷ ︸

=
⋃

n1 ∈ {−m1, . . . ,m1}
n2 ∈ {−m2, . . . ,m2}

ψw(T + n1P + n2Q)

⊂ ψw(Br2
(0)).

Our aim is to find a y ∈ ∂T in the union above. Since x and y will then both belong to ψw(Br2
(0)),

which has diameter less than ε, we will be done. Note that ψw(Br1
(0)) is a neighborhood of x, a

point of ∂M, hence this neighborhood has nonempty intersection with the complement of M in
R2.

Remember that w is a walk of pn(F, ◦). Now we make the following assumption:

• Each of the following additions is admissible,
• Each of the following additions yields a walk that is contained in p(F, ◦).

W1 := {Φn1P ◦ Φn2Q(w) | 0 ≤ n1 ≤ m1; 0 ≤ n2 ≤ m2},
W2 := {Φn1(−P ) ◦ Φn2Q(w) | 0 ≤ n1 ≤ m1; 0 ≤ n2 ≤ m2},
W3 := {Φn1P ◦ Φn2(−Q)(w) | 0 ≤ n1 ≤ m1; 0 ≤ n2 ≤ m2},
W4 := {Φn1(−P ) ◦ Φn2(−Q)(w) | 0 ≤ n1 ≤ m1; 0 ≤ n2 ≤ m2}.

Set W := W1 ∪W2 ∪W3 ∪W4. With a slight abuse of notation we may write

W := {Φn1P ◦ Φn2Q(w) | −m1 ≤ n1 ≤ m1; −m2 ≤ n2 ≤ m2}.
By assumption all walks of W are contained in Gn = pn(F, ◦). Thus

ψw(Br1
(0)) ⊂

⋃

n1,n2

ψw(T + n1P + n2Q)

=
⋃

n1,n2

ψΦn1P ◦Φn2Q(w)(T ) (by Remark 3.9.1)

⊂ M(Gn)

⊂ M,

which contradicts the fact that ψw(Br1
(0)) contains points of the complement R2 \M. So our

assumption is wrong.

Therefore one of the following alternatives must hold:

• at least one of the additions in W is not admissible or
• at least one element w0 ∈W does not belong to Gn.

In view of Proposition 4.1 we conclude that at least one w0 ∈W does not belong to Gn = pn(F, ◦).
Proposition 4.1 also shows that all additions are admissible for each element of Gn, i.e., starting
from a word in Gn, each addition Ψ±P ,Ψ±Q leads to a word in pn(F ). Thus, starting at w, by a
sequence of admissible additions we can reach a word w0 ∈W which belongs to pn(F ) \ pn(F, ◦).
Let us write

w0 = Φn1P ◦ Φn2Q(w) ∈ pn(F ) \ pn(F, ◦)
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for some n1 ∈ {−m1, . . . ,m1}, n2 ∈ {−m2, . . . ,m2}. (Note that by Remark 3.9.1

ψw(T + n1P + n2Q) = ψw0
(T )

because we have a sequence of admissible additions from w to w0.) For this choice of w0 we have

• ψw0
(T ) ⊂ ψw(Br2

(0)) by assumption,
• ψw0

(T ) ∩ ∂T 6= ∅ by Proposition 6.1.

This implies that ψw(Br2
(0)) contains x as well as some point of ∂T , hence dist(x, ∂T ) < ε.

Consequently, in both cases for every ε > 0, dist(x, ∂T ) < ε, thus x ∈ ∂T , and this holds for
every x ∈ ∂M, hence, ∂M ⊂ ∂T . �

7. Generalized fundamental inequality and consequences

This section is devoted to a generalization of the fundamental inequality found in [1]. This will
lead to the construction of an arcwise connected skeleton inside the interior of the tile T together
with some of its neighbors. We denote by S the set of elements of Q[α] with integer part zero
with respect to the basis α and the digits N = {0, 1, 2, 3, 4}:

S :=

{
l∑

i=1

Φ(α−iai), l ∈ N, (ai)1≤i≤l ∈ N l

}

.

Consequently we have Φ(S) = T .

Remark 7.1. We recall that the tile T is symmetric with respect to the point Φ(c) := Φ

(
4

2(α− 1)

)

(see [1, Lemma 3.2]).

Proposition 7.2 (Generalized fundamental inequality). There is an ε > 0 such that for any
x ∈ S + 2α we have

ℑ(x) > ℑ(c) + ε.

Proof. This follows from the minoration

ℑ(
l∑

i=1

aiα
−i) ≥ −

∣
∣
∣
∣
∣

l∑

i=1

aiα
−i

∣
∣
∣
∣
∣
≥ − 4

|α− 1| ,

so that for x ∈ S + 2α we have ℑ(x) > 0 > I(c) = −1

5
. �

Corollary 7.3. Let γ ∈ Z[α] and put γ = u + vα with u, v in Z. Then there exists a constant
ε > 0 such that for any x ∈ S,

{

ℑ(x) + ℑ(γ) > ℑ(c) + ε if v ≥ 2

ℑ(x) + ℑ(γ) < ℑ(c)− ε if v ≤ −2.

Proof. This is proved in the same way as in [1, Lemma 4.3]. �

We will now construct a generalized version of the skeleton constructed in [1] where the tiles
were disk-like. To this matter set the backbone

L := {Φ(c) + wΦ(1) |w ∈ [0, 4]} .
Furthermore, let

V0 :=
⋃

S∈B0

(T + S).

Then the following lemma holds.

Lemma 7.4. We have L ⊂ Int(AV0).
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Proof. Note that

Int(A(V0)) = R2 \
⋃

x∈Z2\B0

(A(T + x))

= R2 \
(

⋃

u∈Z, |v|≥2

(T + Φ(u+ vα)) ∪

⋃

v=1, u≤−1 or u≥10

(T + Φ(u+ vα)) ∪
⋃

v=0, u≤−6 or u≥10

(T + Φ(u+ vα)) ∪

⋃

v=−1, u≤−6 or u≥5

(T + Φ(u+ vα))

)

.

Thus we have to show that (T + Φ(u + vα)) ∩ L = ∅ for all constellations (u, v) occurring in
the above unions.
Let first γ = u+vα with u ∈ Z and |v| ≥ 2. Then Corollary 7.3 and the fact that Φ(S) = T imply
that (T + Φ(γ)) ∩ L = ∅.
For the pairs of the shape (u, 0), u ≤ −6 or u ≥ 10 we see that (T + Φ(γ)) ∩ L = ∅ in exactly the
same way as in [1, Lemma 4.4].
If now v = −1, suppose first that u ≤ −6. If x ∈ α−1(S − α2) + u, then αx ∈ S + 5 + (u+ 4)α.
From u+ 4 ≤ −2 and by Corollary 7.3, we can write ℑ(αx) < ℑ(c)− ε, and consequently:

∀j ∈ {0, . . . , 4}, ℑ(αx) = ℑ(αx+ j) = ℑ(α(x+ α−1j)) < ℑ(c)− ε,
thus

∀j ∈ {0, . . . , 4}, ∀x ∈ α−1(S − α2 + j) + u, ℑ(αx) < ℑ(c)− ε.
From Φ(S) = T , we conclude that this inequality also holds if we replace S by T , and from the
set equation of T we obtain, taking the union over j ∈ {0, . . . , 4},

∀Φ(x) ∈ T + Φ(u− α), ℑ(αx) ≤ ℑ(c)− ε.
On the other hand, for an element of L, i.e., Φ(x) = Φ(c) + wΦ(1), w ∈ [0, 4], we have

ℑ(αx) = w + ℑ(αc) ≥ ℑ(αc) = −1/5 = ℑ(c),

which implies that (T + Φ(u− α)) ∩ L = ∅ for all u ≤ −6.
Suppose secondly that u ≥ 5. If again x ∈ α−1(S − α2) + u, then αx ∈ S + 5 + (u+ 4)α. From
u ≥ 5 and by Corollary 7.3, we have ℑ(αx) > ℑ(c) + ε + 4ℑ(α), and consequently, by a similar
reasoning as above, we obtain

∀Φ(x) ∈ T + Φ(u− α), ℑ(αx) ≥ ℑ(c) + ε+ 4.

On the other hand, for Φ(x) ∈ L, we have ℑ(αx) ≤ ℑ(c) + 4, thus again (T + Φ(u− α)) ∩ L = ∅
for all u ≥ 5.

The remaining case v = 1 is treated likewise, thus the proof is complete. �

Composing small pieces of backbones, let us define the n-skeleton by

Kn =
n⋃

m=1




⋃

(a1,a2,...am)

m∑

i=1

A−iΦ(ai) + A−m−1(L)



 .

Lemma 7.5. Kn is arcwise connected and Kn ⊂ Int(V0).
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Proof. The arcwise connectivity can be shown as in [1, Lemma 4.6].
For the second part, note that for every (a1, . . . , am), by Lemma 7.4 we have for the small pieces

m∑

i=1

A−iΦ(ai) + A−1−mL ⊂
m∑

i=1

A−iΦ(ai) + Int
(
A−mV0

)
.

Now remember that using the automaton B0 one can compute for S ∈ B0 that
∑m

i=1 A−iΦ(ai) + A−mS = A−m
(

S +
∑m−1

i=0 A−iΦ(am−i)
)

= A−m
(

AmS′ +
∑m−1

i=0 A−iΦ(a′m−i)
)

(by (3.2))

=
∑m

i=1 A−iΦ(a′i) + S′

with S′ ∈ B0 and a′i ∈ N . From this we can conclude that

m∑

i=1

A−iΦ(ai) + A−mV0 ⊂ V0,

hence the union of the backbones remains in Int(V0). �

Remark 7.6. Note that the middle points
∑m

i=1 A−iΦ(ai) of the union of all backbones are dense
in T .

8. The component of Int(T ) containing 0

We are almost ready to prove Theorem 2.4 concerning the description of C0. We will first
construct an arc from an arbitrary point in Int(M) to zero entirely contained in Int(M).

Lemma 8.1. If x ∈ Int(M), then there is an n ≥ 3 such that x ∈M(Gn).

Proof. Let x =
∑

j≥1 Φ(α−jaj) ∈ Int(M). In particular, w = (aj)j≥1 is an infinite walk in p(F ).

Suppose x /∈ M(Gn) for any n ≥ 3, i.e., wn := (F ; a1, a2, . . . , an) ∈ pn(F ) does not end at ◦ for
any n ≥ 3. We show that x ∈ ∂T , which is a contradiction, since M ⊂ T , hence Int(M) ⊂ Int(T ).
We have by definition that x ∈ ψwn

(T ) for every n ≥ 3. Fix ε > 0, then for n large enough we
also have that {

diam(ψwn
(T )) < ε,

ψwn
(T ) ∩ ∂T 6= ∅ (by Lemma 6.1).

Thus for every ε > 0, dist(x, ∂T ) < ε, hence x ∈ ∂T , since ∂T is a closed set. �

Lemma 8.2. Let n ≥ 3, S ∈ B and v1, v2 ∈ Gn such that v2 = ΨS(v1). Then ψv1
(T ) ∩ ψv2

(T )
contains points of Int(T ).

Proof. Since both subpieces ψv1
(T ) and ψv2

(T ) are subsets of T , points of their intersection that
are not in Int(T ) must be in ∂T . We show that there are at most countably many such points,
whereas ψv1

(T ) ∩ ψv2
(T ) is uncountable.

The uncountability of ψv1
(T )∩ψv2

(T ) follows from the fact that v2 = ΨS(v1), hence ψv2
(T ) =

ψv1
(T + S), with S ∈ B (see Remark 3.9.1). Since T ∩ (T + S) has uncountably many points for

S ∈ B (see [1, Section 9]), this remains true after applying the homeomorphism ψv1
.

On the other side, a point x of ψv1
(T ) ∩ ψv2

(T ) which lies on ∂T also belongs to a translate
T + S′ of T with S′ ∈ B, by the boundary equation (3.3). This translate is the union of the
subpieces ψw(T ) + S′ with |w| = |v1| =: n. Let us write v1 =: (a1, . . . , an) and w =: (b1, . . . , bn).
Then the point Anx belongs to the triple intersection

(

T +

n−1∑

i=0

AiΦ(an−i)

)

∩
(

T + S +

n−1∑

i=0

AiΦ(an−i)

)

∩
(

T + AnS′ +

n−1∑

i=0

AiΦ(bn−i)

)

,
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or, equivalently, the point Anx−∑n−1
i=0 Aian−i belongs to the triple intersection

T ∩ (S + T ) ∩ (S′′ + T ) =: V (S, S′′)

with S′′ := AnS′ +
∑n−1

i=0 AiΦ(bn−i) −
∑n−1

i=0 AiΦ(an−i). Note that S′′ /∈ {◦, S}. Indeed, us-
ing (3.1), (3.2) and Remark 3.2, S′′ = ◦ as well as S′′ = S would imply S′ = ◦.
Thus to each point x of ψv1

(T ) ∩ ψv2
(T ) ∩ ∂T corresponds exactly one point of V3, the set of

all triple points of T (i.e., where T meets with two other translates). Since V3 is at most count-
able (see [1, Theorem 10.1]), there are at most countably many points in ψv1

(T ) ∩ ψv2
(T ) ∩ ∂T .

Together with the first part of this proof this means that ψv1
(T )∩ψv2

(T )∩Int(T ) is not empty. �

Proposition 8.3. Let x ∈ Int(M) and an n ≥ 3 given by Lemma 8.1, i.e., such that x ∈M(Gn).
Then there is an arc p from x to an element y of Int(M(Gn−1)) with p ⊂ Int(T ).

Proof. In this proof we will often use the fact that T is the closure of its interior. This has
been shown in a more general context in Wang [26]. Let w ∈ Gn such that x ∈ ψw(T ). By
Proposition 5.2 there exists a finite chain of walks v1, . . . , vm ∈ Gn+1 with the following properties:

v1 = w&d for some d ∈ {0, . . . , 4},
ΨSi

(vi) = vi+1 for some Sj ∈ B (1 ≤ i ≤ m− 1),

vm |n−1 ∈ Gn−1.

Now choose xi ∈ Int(ψvi
(T )) arbitrary and set y := xm. Note that ψvm

(T ) ⊂ ψvm|n−1
(T ) ⊂

M(Gn−1), thus y has the required property. First we shall construct an arc p1 ⊂ Int(T ) from x
to x1. Without loss of generality, one can suppose that x ∈ ψv1

(T ) (see Remark 5.3.1).

Since x ∈ Int(M) there exists an ε > 0 such that Bε(x) ⊂ Int(M). Thus there is a z1 ∈
Bε(x) ∩ Int(ψv1

(T )). Connect x with z1 by a straight line segment ℓ1. Obviously, ℓ1 ⊂ Int(M).

Now x1, z1 ∈ Int(ψv1
(T )). Thus there exists ε2 > 0 such that

Bε2
(z1) ⊂ Int(ψv1

(T )),

Bε2
(x1) ⊂ Int(ψv1

(T )).

By Remark 7.6 at the end of the previous section there exists a j ∈ N such that ψv1
(Kj) contains

points z2, z3 with

z2 ∈ Bε2
(z1),

z3 ∈ Bε2
(x1).

Now connect z1 with z2 by the line segment ℓ2 and connect z3 with x1 by the line segment ℓ3.
Both of these line segments are obviously contained in Int(T ). Since Kj is arcwise connected
by Lemma 7.5 there exists an arc q1 ∈ ψv1

(Kj) connecting z2 with z3. We have to show that
q1 ⊂ Int(T ).

What we know from Lemma 7.5 is that

q1 ⊂ Int(ψv1
(V0)) = Int

(
⋃

S∈B0

ψv1
(T + S)

)

= Int

(
⋃

S∈B0

ψΨS(v1)(T )

)

.

We used here Remark 3.9.1). Indeed, since v1 ∈ Gn+1, all the additions ΨS(v1) with S ∈ B are
admissible by Proposition 4.1. So for all S ∈ B0, ψv1

(T + S) is contained in T , because it is a
subpiece of level n+1 of T . This implies that Int(ψv1

(V0)) ⊂ Int(T ). Thus q1 ⊂ Int(T ). Summing
up we have constructed an arc p1 := ℓ1ℓ2q1ℓ3 from x to x1 which is contained in Int(T ).

In the next step we construct an arc pi+1 from xi to xi+1, still inside Int(T ). Because ΨSi
(vi) =

vi+1 for some Si ∈ B, Lemma 8.2 implies the existence of a z1 ∈ ψvi
(T ) ∩ ψvi+1

(T ) which is
contained in Int(T ). Thus there exists an ε1 > 0 with Bε1

(z1) ⊂ Int(T ). Furthermore,

z1 ∈ ψvi
(T ) =⇒ ∃z2 ∈ Bε1

(z1) ∩ Int(ψvi
(T )),

z1 ∈ ψvi+1
(T ) =⇒ ∃z3 ∈ Bε1

(z1) ∩ Int(ψvi+1
(T )).
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Now connect z2 with z1 by the line segment ℓ1 and connect z1 with z3 by the line segment ℓ2.
Both of these line segments are obviously contained in Int(T ).

As above we can now construct using the n-skeletons an arc q1 ⊂ Int(T ) connecting xi with z2
and an arc q2 ⊂ Int(T ) connecting z3 with xi+1. The arc pi+1 := q1ℓ1ℓ2q2 ⊂ Int(T ) now connects
xi with xi+1.

Setting p := p1 . . . pm we have a path connecting x with y lying entirely in the interior of T . �

Proposition 8.4. Let x be a point of Int(M). Then there is an arc connecting x to 0.

Proof. By Lemma 8.1 there is an n ≥ 3 such that x ∈ M(Gn). By applying Proposition 8.3
n − 3 times we can construct an arc inside Int(T ) from x to some y ∈ Int(M(G3)). Since
M(G3) = ψ(0,0,0)(T ) = ψ(1,4,4)(T ) with (F ; 1, 4, 4) = Ψ−P ((F ; 0, 0, 0)) (see Remark 5.1), an arc
q′′ from y to 0 ∈ ψ(0,0,0)(T ) inside Int(T ) can be constructed in the same way as the arcs pi in
the proof of Proposition 8.3, using the n-skeletons.

Now q = q′q′′ does the job. �

We obtain directly from the above proposition the following result.

Corollary 8.5. The set Int(M) is a subset of the interior component of T containing 0.

The reverse inclusion is the purpose of the next proposition.

Proposition 8.6. The component of Int(T ) containing 0 is a subset of Int(M).

Proof. Let y be a point in Int(T ) such that there is an arc p : [0, 1] → Int(T ) connecting 0 and
y. Suppose that y does not belong to Int(M). Since ∂M ⊂ ∂T (see Proposition 6.3), y does not
belong to M. Let

t0 := inf{t ∈ [0, 1] | p(t) 6∈M}.
Then t0 ∈ (0, 1) and p(t0) ∈ ∂M, because every neighborhood of this point encounters M as well
as its complement. Since again ∂M ⊂ ∂T , we obtain that p(t0) ∈ ∂T , a contradiction to the
definition of p. �

Lemma 8.7. The set M is the closure of its interior, i.e., Int(M) = M.

Proof. Let x ∈M and ε > 0 be arbitrary. Let n ≥ 3 be large enough such that diam(ψw(T )) < ε
for each w ∈ pn(F ). There exists a walk v ∈ pn(F ) such that x ∈ ψv(T ). It can easily be read
off from the graph G that each v ∈ pn(F ) can be extended to a walk v′ = v&(b1, b2) ∈ Gn+2 =
pn+2(F, ◦). Thus

ψv′(T ) ⊂M =⇒ Int(ψv′(T )) ⊂ Int(M)

and

ψv′(T ) ⊂ ψv(T ).

Select y ∈ Int(ψv′(T )). Then the above inclusions imply that y ∈ Int(M) and dist(x, y) < ε.

Since ε can be arbitrarily small we have that x ∈ Int(M). �

Proof of Theorem 2.4. The first part of this theorem follows from Corollary 8.5 and Proposi-
tion 8.6. The second part is given by Lemma 8.7. �

9. Dimension calculations

The present section is devoted to the proof of Theorem 2.7. Let G′ be the graph that emerges
from G by removing the states ◦ and all edges leading to them. Then G′ defines system of graph
directed sets (δM(A))A where A runs through the states of G′. Let δM := δM(F ) be the set
corresponding to the state F . The following lemma shows that δM is very close to ∂C0.
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Lemma 9.1. The symmetric difference

δM△∂C0

is countable.

Proof. First note that Lemma 8.1 implies that δM ⊂ ∂C0.

Suppose now that x ∈ ∂C0 \ δM. Then the address of x corresponds to the labelling of a walk
which is contained in G but not in G′, i.e., there exists a walk w ∈ Gn for some n such that
x ∈ ψw(T ) and, a fortiori, x ∈ ∂ψw(T ). Since ∂C0 ⊂ ∂T holds by Proposition 6.3, x ∈ ∂T . Thus,
x has to lie in another tile of the tiling induced by T . However, in view of Proposition 4.1 and
the remark after it,

x ∈ ψw(T + S)

where S is a neighbor of T not contained in B. It is well known (see for instance [1, Chapters 9 to
11]) that there exist only countably many points in ∂ψw(T ) with this property. Since, moreover,
there are only countably many paths contained in

⋃

n≥3

Gn

we conclude that there exist only countably many points x in the set ∂C0 \ δM. �

Now from basic fractal geometry we get the following corollary.

Corollary 9.2.

dimH ∂C0 = dimH δM.

Thus calculating the Hausdorff dimension of ∂C0 is reduced to calculating the Hausdorff dimen-
sion of the GIFS attractor δM. However, calculating the Hausdorff dimension of a self similar GIFS
satisfying the open set condition can be performed by standard methods from fractal geometry
(cf. for instance [8, 17]). With that Theorem 2.7 is proved.

10. Concluding remarks

We have shown in this paper how to obtain the closure M of the interior component of T that
contains the point Φ(0). This component is depicted in Figure It is of natural interest to wonder
how the closure of the interior component of T containing a given point x could be computed. For
the other “big” components (see Figure 4), i.e., containing Φ(1),Φ(2) and Φ(3), the description is
similar: it suffices to replace the edges at the top of G in a way that can be seen in Figure 5.

Figure 4. Tile associated to the base −2 +
√
−1 with “big” interior components.

Thus the closure of these components are simply images of M by translations.
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F

G G′

d d+ 1

Figure 5. Top edges in G for the closure of the component containing Φ(d), d = 0, 1, 2, 3.

For other “smaller components”, we conjecture that there closure is also similar to M, the
similitude may be given by a pre-graph that would be connected to G via the state F .
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