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Abstract. Let σ be a unimodular Pisot substitution over a d letter alphabet and let X1, . . . , Xd

be the associated Rauzy fractals. In the present paper we want to investigate the boundaries
∂Xi (1 ≤ i ≤ d) of these fractals. To this matter we define a certain graph, the so-called contact
graph C of σ. If σ satisfies a combinatorial condition called the super coincidence condition the
contact graph can be used to set up a self-affine graph directed system whose attractors are
certain pieces of the boundaries ∂X1, . . . , ∂Xd. From this graph directed system we derive an
easy formula for the fractal dimension of ∂Xi in which eigenvalues of the adjacency matrix of C
occur.

An advantage of the contact graph is its relatively simple structure, which makes it possible
to construct it for large classes of substitutions at once. In the present paper we construct the
contact graph explicitly for a class of unimodular Pisot substitutions related to β-expansions
with respect to cubic Pisot units. In particular, we deal with substitutions of the form

σ(1) = 1 . . . 1| {z }
b times

2, σ(2) = 1 . . . 1| {z }
a times

3, σ(3) = 1

where b ≥ a ≥ 1. It is well known that these substitutions satisfy the above mentioned super
coincidence condition. Thus we can give an explicit formula for the fractal dimension of the
boundaries of the Rauzy fractals related to these substitutions.

1. Introduction

In 1982 Rauzy [34] studied the Tribonacci substitution

σ(1) = 12, σ(2) = 13, σ(3) = 1.

He proved that the dynamical system generated by this substitution is measure-theoretically con-
jugate to an exchange of domains X1, X2, X3 in a compact tile X = X1 ∪X2 ∪X3. The set X has
fractal boundary. However, it is homeomorphic to a closed disk (cf. [30, Subsection 4.1]). Fur-
thermore, the essentially disjoint basic tiles X1, X2, X3 satisfy a self-similar graph directed system
in the sense of Mauldin and Williams [28]. The set X is now called the classical Rauzy fractal.

More generally, it is possible to attach a Rauzy fractal to each unimodular Pisot substitution.
However, the structure of these fractals is more complicated in the general case. Arnoux and Ito [6]
(compare also [4, 5, 11, 12, 40]) proved that the dynamical system associated to a unimodular Pisot
substitution over a d letter alphabet admits a conjugacy to an exchange of domains X1, . . . , Xd in
the compact set X = X1 ∪ . . .∪Xd provided that a certain combinatorial condition, the so-called
strong coincidence condition is true. It is conjectured that this condition holds for each unimodular
Pisot substitution. The topological structure of X can be difficult. There exist substitutions over
three letters whose Rauzy fractals are neither connected nor simply connected.

There are different ways to define the Rauzy fractal associated to a given unimodular Pisot
substitution σ over a d letter alphabet. One possibility is via certain projections of a set of points
related to a periodic point of σ (see for instance [20, Chapter 8]). Another approach runs via
so-called one dimensional “geometric realizations” of σ and makes use of the duality principle of
linear algebra (cf. [6]). Furthermore, Mosse [31] defined a certain “desubstitution map” on the
dynamical system Ω associated to σ. With help of this map we can define a graph (the prefix-suffix
automaton) that reveals a certain self-affinity property of Ω. This reflects to a self-affinity property
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of the Rauzy fractal X which allows to define X by a graph directed system. This graph directed
system is satisfied by the basic tiles X1, . . . , Xd and is directed by the prefix-suffix automaton. All
these definitions are equivalent and will be reviewed in Sections 2 and 3.

The fractal structure of the boundary of Rauzy fractals has been investigated firstly by Ito and
Kimura [24]. They calculated the Hausdorff dimension of the boundary of the classical Rauzy
fractal. Recently, Feng et al. [19] gave estimates for the Hausdorff dimension of Rauzy fractals
associated to arbitrary unimodular Pisot substitutions. The approach used by Ito and Kimura in
their dimension calculations makes use of two dimensional geometric realizations of the Tribonacci
substitution. This construction has been considerably generalized and extended in Sano et al. [35]
where a kind of Poincaré duality is established for higher dimensional geometric realizations of
substitutions and their duals. Messaoudi [29, 30] studied geometric and topological properites of
the classical Rauzy fractal.

Ito and Rao [25] investigate unimodular Pisot substitutions that admit the definition of tilings
(see also Thurston [42]). In their paper they describe three different types of tilings which one
can obtain using translates of basic tiles of Rauzy fractals. The existence of these tilings again
depends on a combinatorial condition, the so-called super coincidence condition. Up to now it is
not known whether this condition is satisfied for all unimodular Pisot substitutions or not. The
tilings considered in [25], especially the aperiodic one, form the starting point of the present paper.
We want to extend the notion of contact matrix (cf. [22]) and contact graph (cf. [37]) to the case
of Rauzy fractals in order to study their boundaries. To this matter we use the above mentioned
prefix-suffix automaton. In detail, this paper has the following aims.

In Section 2 we recall basic notations and give different equivalent definitions of the Rauzy
fractal X = X1 ∪ . . . ∪Xd associated to a given unimodular Pisot substitution σ over a d letter
alphabet. Furthermore, we give relations between substitutions and a well-known notion of radix
representations, the β-expansions. At the end of this section we define a tiling induced by translates
of the basic tiles of a Rauzy fractal.

The main object of the present paper, the contact graph associated to a unimodular Pisot
substitution, is defined in Section 3. We give a detailed discussion of the contact graph and
illustrate it by some examples. In the setting of self-affine lattice tiles, the contact graph and its
adjacency matrix (the contact matrix) have been used in order to derive tiling properties of these
tiles and to investigate their boundaries (cf. [22, 37]).

From Section 4 onwards we assume that the substitutions under consideration satisfy the super
coincidence condition (cf. Definition 4.1). We use the contact graph in order to represent the
boundaries ∂X and ∂Xi of a Rauzy fractal X = X1 ∪ . . . ∪ Xd as a graph directed system
(Theorem 4.3). In Feng et al. [19] as well as Siegel [39] other graph directed systems for the
boundary of Rauzy fractals are given. However, it turns out that our construction is simpler than
theirs and can be used to characterize the boundaries of whole classes of Rauzy fractals.

In Section 5 the above mentioned representation of ∂Xi (1 ≤ i ≤ d) is used to derive an easy
formula for the box counting dimension of ∂X in which eigenvalues of the contact matrix occur
(Theorem 5.9). In some cases we can even prove that the box counting dimension agrees with the
Hausdorff dimension.

The main advantage of the contact graph is its relatively easy shape. In Section 6 we will
calculate the contact graph for the substitutions

σ(1) = 1 . . . 1︸ ︷︷ ︸
b times

2, σ(2) = 1 . . . 1︸ ︷︷ ︸
a times

3, σ(3) = 1

where b ≥ a ≥ 1. It turns out that it has roughly the same shape for each substitution from this
class (cf. Theorem 6.4). The knowledge of the contact graphs of these substitutions enables us to
establish an explicit formula for the Hausdorff dimension of the boundary of the associated Rauzy
fractals (cf. Theorem 6.7).

The calculation of the fractal dimension of ∂X and ∂Xi is not the only possible application of
the contact graph. In a forthcoming paper we will apply it in order to set up an algorithm which
decides whether a given substitution satisfies the above mentioned super coincidence condition.
Also the problem of addition in β-expansions seems to be related to the contact graph.
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2. Basic notions

2.1. Substitutions. For d ≥ 2 set A := {1, . . . , d}. Let A∗ be the set of all finite words on
the alphabet A and let AZ be the set of doubly infinite sequences. As usual, AZ shall carry the
product topology of the discrete topology on A. The cylinder sets

[u1.u2] := {w = (. . . w−1.w0w1 . . .) : w−|u1| . . . w−1.w0w1 . . . w|u2|−1 = u1.u2} (u1, u2 ∈ A∗)
form a basis of this topology (if u1 is empty the cylinder set is denoted just by [u2], if u2 is empty
we will write [u1.]).

A substitution σ is an endomorphism of the free monoid A∗ which satisfies limn→∞ |σn(i)| = ∞
for at least one i ∈ A. A substitution naturally extends to AZ by setting

σ(. . . w−2w−1.w0w1w2 . . .) := . . . σ(w−2)σ(w−1).σ(w0)σ(w1)σ(w2) . . . .

The adjacency matrix of σ is the d× d matrix defined by

E0(σ) := (aij)

where aij is the number of occurrences of the letter i in σ(j). If E0(σ) is a primitive matrix, we
call σ a primitive substitution.

Substitutions give rise to certain dynamical systems. Fundamental properties of these dynamical
systems are surveyed in Queffélec [33]. Here we only need some simple facts about them. Let σ
be a substitution. We say that a doubly infinite sequence w is a periodic point of σ if there exists
a positive integer k with σk(w) = w. If we can choose k = 1 then w is called a fixed point of σ.
In Queffélec [33] it is shown that each substitution has at least one periodic point. Let τ be the
shift map on AZ. It is defined by τ((wi)i∈Z) = (wi+1)i∈Z. A sequence w ∈ AZ with τk(w) = w is
called τ -periodic (k ∈ N). The language L(w) of w ∈ AZ is the set of all finite words occurring
in w. Let Ω(w) := {w′ ∈ AZ : L(w′) ⊆ L(w)}. Then the pair (Ω(w), τ) is called the dynamical
system generated by w.

Let σ be primitive. Then Ω := Ω(w) is the same for each periodic point w of σ. Thus we call
(Ω, τ) the dynamical system generated by σ.

Definition 2.1. Let σ be a substitution with adjacency matrix E0(σ). If the characteristic poly-
nomial of E0(σ) is the minimal polynomial of a Pisot number λ, we call σ a Pisot substitution. If
λ is even a unit, we call σ a unimodular Pisot substitution.

In the present paper we will frequently use two very well known examples of unimodular Pisot
substitutions in order to illustrate our results. The Fibonacci substitution, which is defined by

σ(1) = 12, σ(2) = 1

and the Tribonacci substitution

σ(1) = 12, σ(2) = 13, σ(3) = 1.

The matrix E0(σ) has the form

E0(σ) =
(

1 1
1 0

)
and E0(σ) =




1 1 1
1 0 0
0 1 0




for the Fibonacci and Tribonacci substitution, respectively.
It is easy to see that each Pisot substitution σ is primitive (cf. for instance [12, Proposition 1.3]).

In the present paper we are concerned with unimodular Pisot substitutions. For the case of Pisot
substitutions which are not unimodular we refer to Berthé and Siegel [9] as well as Siegel [38],
where some of their properties are discussed.

Holton and Zamboni [23] showed that each fixed point of a Pisot substitution σ is not τ -periodic.
Thus the dynamical system (Ω, τ) generated by σ is infinite.
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2.2. The prefix-suffix automaton. The shift space Ω of a primitive substitution is recognizable
by a finite automaton. This automaton can be constructed with help of the desubstitution map
θ which we will define now (cf. Mossé [31]). In [31] it is shown that each w = (w`)`∈Z ∈ Ω
admits a unique representation of the shape w = τkσ(y) with y = (y`)`∈Z ∈ Ω and 0 ≤ k <
|σ(y0)|. Thus each w may be written in the form w = . . . σ(y−1)σ(y0)σ(y1) . . . with σ(y0) =
w−k . . . w−1.w0 . . . wl. We use the notations

p = w−k . . . w−1 (prefix of σ(y0)),
s = w1 . . . wl (suffix of σ(y0)).

Note that w is completely defined by y and the decomposition of σ(y0). Let

P := {(p, i, s) ∈ A∗ ×A×A∗ : there exists j ∈ A such that σ(j) = pis}
be the set of all possible decompositions of σ(y0). According to the above construction define the
desubstitution map θ and the partition map γ by

θ : Ω → Ω, w 7→ y such that w = τkσ(y) and 0 ≤ k < |σ(y0)|,
γ : Ω → P, w 7→ (p, w0, s) such that σ(y0) = pw0s and k = |p|.

With help of these maps we define the prefix-suffix development of w ∈ Ω by the map

G(w) = (γ(θ`w))`≥0 = (p`, i`, s`)`≥0.

Related to this map is the following automaton.

Definition 2.2. The prefix-suffix automaton Γσ associated to a substitution σ has
• Set of states A. Each of the states is an initial state.
• Set of labels P.
• There exists an edge from i to j labelled by e = (p, i, s) if and only if σ(j) = pis.

For a given substitution the prefix-suffix automaton can be constructed easily. For the Fibonacci
and the Tribonacci substitution we get the graphs in Figure 1.

1

(ε,1,2)

µµ

(ε,1,ε)

!!
2

(1,2,ε)

aa 1

(ε,1,2)

µµ (ε,1,3) !!

(ε,1,ε)

ÂÂ
2

(1,2,ε)

aa 3

(1,3,ε)

aa

Figure 1. The prefix-suffix automata corresponding to the Fibonacci (left) and
the Tribonacci substitution (right).

Let D ⊂ PN be the set of labels of infinite walks in Γσ. According to [11] the map G is
continuous and maps onto D. It is one-to-one except at the orbit of periodic points of σ. This
implies that the sets

τkσ[i] (i ∈ A, k < |σ(i)|)
partition Ω with countable overlap (cf. [11, Proposition 6.2]). For each i ∈ A we get the decom-
position

(2.1) [i] =
⋃

j∈A, (p,i,s)∈P
σ(j)=pis

τ |p|σ[j].

An analogous representation can be obtained for suffixes. Just note that for σ(j) = pis we have
τ |p|σ[j] = τ−|s|−1σ[j.]. Thus (2.1) implies

(2.2) [i.] =
⋃

j∈A, (p,i,s)∈P
σ(j)=pis

τ−|s|σ[j.].
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2.3. Construction of the Rauzy fractal. Our first aim is to define a tile X related to a
unimodular Pisot substitution σ. Such a tile was first defined for the Tribonacci substitution by
Rauzy [34]. First we need the abelianization f of σ. It is defined as follows. Let ei be the canonical
i-th basis vector of Rd. Then

f : A → Zd,

i 7→ ei.

The domain of f is extended to A∗ in the following way. Let w = w1 . . . wm ∈ A∗. Then
f(w) :=

∑m
`=1 f(w`). It is easy to see that f ◦ σ = E0(σ) ◦ f .

Let λ = λ1 > 1, λ2, . . . , λr, λr+1, λ̄r+1, . . . , λr+s, λ̄r+s (d = r + 2s) be the eigenvalues of E0(σ).
and let UC := {u = u1 > 0, u2, . . . , ur, ur+1, ūr+1, . . . , ur+s, ūr+s} be a basis of Cd of right eigen-
vectors. Then we can select a basis VC := {v = v1 ≥ 1, v2, . . . , vr, vr+1, v̄r+1, . . . , vr+s, v̄r+s} of left
eigenvectors such that UC and VC are dual bases, i.e.

if k = 1, . . . , r

{
uk · vk = 1,

uj · vk = ūj · vk = 0 for j 6= k,

if k = r + 1, . . . , r + s





ūk · vk = 1,

uk · vk = 0,

uj · vk = ūj · vk = 0 for j 6= k.

In [12, Lemma 2.4] it is shown that

{u1, u2, . . . , ur,<ur+1,=ur+1, . . . ,<ur+s,=ur+s}
forms a basis of Rd. This basis is used to define the contracting invariant hyperplane

P := u2 ⊕ · · · ⊕ ur ⊕<ur+1 ⊕=ur+1 ⊕ · · · ⊕ <ur+s ⊕=ur+s

of E0(σ) (regarded as a linear operator on Rd). Note that by the duality of UC and VC we have
Rd = v ⊕P.

For 2 ≤ k ≤ r + s let δk : A∗ → R or C be the mapping which maps w ∈ A∗ to the scalar
product f(w) · vk. Furthermore, let

δ : A∗ → Rr−1 × Cs,
w 7→ (δk(w))2≤k≤r+s.

Obviously, δ is a homomorphism. With help of this map we define the representation map ψ :
Ω → Rr−1 × Cs by

(2.3) ψ(w) = lim
n→∞

δ(σ0(s0) . . . σn(sn)) =




∑
`≥0 δ2(s`)λ`

2

...∑
`≥0 δr+s(s`)λ`

r+s


 .

Here (p`, i`, s`)`≥0 denotes the prefix-suffix representation of w ∈ Ω.
Let π : Rd → P be the linear projection of Rd to P along u. Since UC and VC are dual bases it

is easy to see that π can be written as π(x) = x− (x · v)u. Let E0(σ)|P be the restriction of the
linear operator E0(σ) to the contractive hyperplane P and set

Σr+k =
( <λr+k =λr+k

−=λr+k <λr+k

)
(1 ≤ k ≤ s).

In what follows we identify C with R2 via the mapping z 7→ (<z,=z) and {0} × Rd−1 with Rd−1

via the mapping (0, z1, . . . , zd−1) 7→ (z1, . . . , zd−1). Then there exists a regular real matrix TP

such that E0(σ)|P = T−1
P ΛTP with

Λ = diag (λ2, . . . , λr,Σr+1, . . . , Σr+s)
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and πf = T−1
P δ holds. Now we set

Xi := T−1
P ψ([i]) (i ∈ A),

X :=
⋃

i∈A
Xi.

Xi (i ∈ A) and X are compact subsets of the contracting hyperplane P. We call these sets the
atomic surfaces or the Rauzy fractals of σ. In Figure 2 the atomic surfaces of the Fibonacci and
Tribonacci substitution are depicted.

Figure 2. The atomic surfaces associated to the Fibonacci (left) and the Tri-
bonacci (right) substitution.

The sets Xi (i ∈ A) will form the prototiles in the tiling we are going to define. We mention
also the following alternative definition of X and Xi. Let w = (w`) ∈ Ω be a periodic point of σ.
Then

Xi = −{πf(w1 . . . wk) : k ≥ 0, wk = i} (i ∈ A),

X = −{πf(w1 . . . wk) : k ≥ 0}.
In Proposition 3.1 we will show that this definition agrees with the definition of Xi and X given
above.

Another possibility to define the sets Xi runs via graph directed systems. Before we give
the details we recall the definition of a graph directed system. Let G be a finite directed graph
G = G(V, E) with the property that each of its states has an outgoing edge. Let V = {1, . . . , q}
be its set of states and E its set of edges. To each edge ε ∈ E assign a contractive affine mapping
ξε. We say that a set A = A1 ∪ . . . ∪Aq is a graph directed self-affine set if

(2.4) Ai =
⋃

ε:i→j

ξε(Aj) (1 ≤ i ≤ q),

where the union is extended over all edges ε of G starting at i. The relations (2.4) are called
a graph directed system. If the mappings ξε are similarities, we call A = A1 ∪ . . . ∪ Aq a graph
directed self-similar set. The non-empty compact sets A1, . . . , Aq are uniquely defined by the graph
directed system in (2.4). This can be shown with help of a fix point argument. For a detailed
account on graph directed sets we refer the reader to [28].

Observe that ψ is one-to-one almost everywhere on each cylinder [i.] (cf. [12, Proposition 4.4]).
Now (2.2) yields the following self-affinity property of the sets Xi.

(2.5) Xi =
⋃

(p,i,s),j

i
(p,i,s)−−−−→j

E0(σ)Xj + πf(s).

Note that obviously E0(σ) ◦ π = π ◦ E0(σ) and the non-overlapping union is extended over all
edges in Γσ starting at i. Since E0(σ) is a contraction on P, (2.5) is a graph directed system and
can be taken as the definition of Xi (i ∈ A). Thus X is a graph directed self-affine set.

For the Fibonacci substitution the set equation (2.5) reads

X1 =
(

E0(σ)X1 + π

(
0
1

))
∪ E0(σ)X2, X2 = E0(σ)X1,
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for the Tribonacci substitution we get the system

X1 =


E0(σ)X1 + π




0
1
0





 ∪


E0(σ)X2 + π




0
0
1





 ∪ E0(σ)X3,

X2 = E0(σ)X1,

X3 = E0(σ)X2.

It has been shown by Sirvent and Wang [40, Theorem 4.1] that Xi has non-empty interior for
each i ∈ A. In fact, they even proved that Xi = int(Xi).

We want to sum up the results discussed previously in the following proposition.

Proposition 2.3. Let σ be a unimodular Pisot substitution of d letters and let Xi (i ∈ A) and
X = X1 ∪ . . . ∪ Xd be the associated Rauzy fractals. Then X and Xi (i ∈ A) are non-empty
compact sets that are uniquely determined by the graph directed system

Xi =
⋃

(p,i,s),j

i
(p,i,s)−−−−→j

E0(σ)Xj + πf(s).

Furthermore, X and Xi are regular sets in the sense that

X = int(X) and Xi = int(Xi) (i ∈ A).

2.4. Relations to β-expansions. Atomic surfaces are strongly related to β-expansions of real
numbers with respect to a Pisot unit. For a real number β > 1 we define the β-transformation

Tβ : [0, 1] → [0, 1),
x 7→ βx mod 1.

The β-expansion of x ∈ [0, 1] is defined by

x =
∑

`≥1

u`β
−`

where the “digits” u` ∈ {0, 1, . . . , dβe − 1} are given by u` := bβT `−1
β (x)c. Let dβ(1) = u1u2 . . .

denote the digit string corresponding to the β-expansion of 1. The structure of dβ(1) reflects
many properties of the associated β-expansions (cf. [2]). If β is a unimodular Pisot unit and
the length of dβ(1) is equal to the degree of β we can find strong relations between β-expansions
and prefix-suffix expansions. For instance, let Irrβ(x) = xd − k1x

d−1 − · · · − kd−1x − 1 with
k1 ≥ k2 ≥ · · · ≥ kd−1 ≥ 1 be the minimal polynomial of a Pisot unit β. In this case we have
dβ(1) = k1k2 . . . kd−11 (cf. [21, Theorem 2]) and we can associate to β the substitution

(2.6) σβ(j) = 1 . . . 1︸ ︷︷ ︸
kj−times

(j + 1) (1 ≤ j ≤ d− 1), σβ(d) = 1

(cf. [10, 26]). The admissible β-expansions (cf. [32]) are exactly the expansions of the shape

(2.7)
∞∑

`=0

|p`|β−`

where (p`, i`, s`)`≥0 is the labelling of a reversed path in Γσ. The fundamental domains associated
to these expansions (cf. for instance [1, 2, 3]) are the same as the atomic surfaces apart from affine
transformations.

For Irrβ(x) = x2 − x − 1 we have β = 1+
√

5
2 . In this case the admissible β-expansions are

characterized by the prefix-suffix automaton of the Fibonacci substitution depicted on the left
hand side of Figure 1. From this graph it is easy to see that a digit sequence {u`}`≥1 ∈ {0, 1}N gives
rise to an admissible β-expansion (2.7) if and only if it does not contain the pattern 11. Similarly,
one can check that the β-expansions with respect to the root of x3− x2− x− 1 = 0 correspond to
the Tribonacci substitution. Their admissible sequences must not contain the pattern 111. The
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fundamental domains associated to these β-expansions are affine images of the atomic surfaces
depicted in Figure 2.

Note that the above correspondence does not hold for β-expansions where the length of dβ(1)
is bigger than the degree of β or even infinite (cf. [2]). In this case the corresponding substitutions
need more letters (cf. [10]) and their geometric realizations do not fit in our framework.

2.5. Stepped surface and tilings. Since P = {x ∈ Rd : x · v = 0} we set

P≥0 := {x ∈ Rd : x · v ≥ 0},
P<0 := {x ∈ Rd : x · v < 0}.

For x ∈ Zd and i ∈ A let [x, i] := {x− ei + θei : θ ∈ [0, 1]} be a line of length 1 in Rd and

[x, i∗] := {x + θ1e1 + · · ·+ θi−1ei−1 + θi+1ei+1 + · · ·+ θded : θi ∈ [0, 1]}
a (d− 1)-dimensional cube in Rd (note that in what follows we set −[x, i∗] = [−x, i∗]). With help
of this notion we define the stepped surface S

S := {[x, i∗] : x ∈ Zd, 1 ≤ i ≤ d such that x ∈ P≥0 and x− ei ∈ P<0}.
Following [6] we call the elements of S unit tips. The subset of S with zero translates is especially
needed in what follows. Thus we set S0 := {[0, i∗] : i ∈ A} ⊂ S. S0 consists of three faces of the
unit cube located at the origin.

Figure 3. The stepped surfaces associated to the Fibonacci (left) and the Tri-
bonacci (right) substitution.

In Figure 3 the stepped surfaces associated to the Fibonacci as well as the Tribonacci substi-
tution are shown.

Let σ be an unimodular Pisot substitution and {Xi}i∈A its atomic surfaces. It is conjectured
that the collection

(2.8) I := {π(x) + Xi : [x, i∗] ∈ S}
tiles the hyperplane P (cf. for instance [25]). Up to now, it has been shown that for unimodular
Pisot substitutions this is equivalent to the so-called super coincidence condition (cf. [7, 25]; we
will give the exact definition in Definition 4.1 below). This condition is conjectured to hold at
least for each unimodular Pisot substitution. However, up to now it has been proved only for the
case of Pisot substitutions with two letters (cf. Barge and Diamond [7]) as well as for some classes
of substitutions with more letters. If this condition does not hold then overlaps occur.

3. Definition of the contact graph

3.1. Geometric realization of substitutions. With help of the prefix-suffix automaton we
are in a position to define the one dimensional geometric realization E1(σ) of σ (cf. [6] or [20,
Chapter 8]).

E1(σ)[y, j] := E0(σ)y −
⋃

(p,i,s),i

i
(p,i,s)−−−−→j

[f(s), i].
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The union is extended over all incoming edges of j ∈ A in the automaton Γσ. Note that En
1 (σ)[0, i]

(i ∈ A, n ∈ N) is a broken line that approximates the direction of the eigenvector u. Furthermore,
we need the dual of this map, namely

E∗
1 (σ)[x, i∗] := E0(σ)−1x +

⋃

(p,i,s),j

i
(p,i,s)−−−−→j

[E0(σ)−1f(s), j∗].

Here the union is extended over all outgoing edges of i ∈ A in the automaton Γσ. Note that
E∗

1 (σ)[x, i∗] is the union of all [y, j∗] for which [x, i] occurs in E1(σ)[y, j], i.e.

(3.1) [y, j∗] ∈ E∗
1 (σ)[x, i∗] ⇐⇒ [x, i] ∈ E1(σ)[y, j].

In the Fibonacci case we have

E∗
1 (σ)[x, 1∗] = E(σ)−1x + ([e1 − e2, 1∗] ∪ [0, 2∗]),

E∗
1 (σ)[x, 2∗] = E(σ)−1x + [0, 1∗].

In the Tribonacci case one computes

E∗
1 (σ)[0, 1∗] = E(σ)−1x + ([e1 − e3, 1∗] ∪ [e2 − e3, 2∗] ∪ [0, 3∗]),

E∗
1 (σ)[0, 2∗] = E(σ)−1x + [0, 1∗],

E∗
1 (σ)[0, 3∗] = E(σ)−1x + [0, 2∗].

The dual of the one dimensional geometric realization of σ can be used in order to approximate
the atomic surfaces of σ. To make this clear, set

(3.2) X̂i(n) :=
⋃

[y,j∗]∈E∗1 (σ)n[0,i∗]

π[y, j∗] = πE∗
1 (σ)n[0, i∗] (n ≥ 0).

Note that X̂i(0) = π[0, i∗]. Let n ≥ 1. Using the definition of E∗
1 (σ) we easily compute that

X̂i(n) =
⋃

[y1,j∗1 ]∈E∗1 (σ)[0,i∗]

⋃

[y,j∗]∈E∗1 (σ)n−1[y1,j∗1 ]

π[y, j∗]

=
⋃

[y1,j∗1 ]∈E∗1 (σ)[0,i∗]

(X̂j1(n− 1) + πE0(σ)−(n−1)y1)

=
⋃

i
(p,i,s)−−−−→j1

(X̂j1(n− 1) + πE0(σ)−nf(s)).

Multiplying by E0(σ)n and setting

(3.3) Xi(n) = E0(σ)nX̂i(n)

we obtain
Xi(n) =

⋃

i
(p,i,s)−−−−→j1

(E0(σ)Xj1(n− 1) + πf(s)).

This means that if we put Xj1(n − 1) in the left hand side of the set equation (2.5) we obtain
Xi(n). By the general theory of graph directed systems (cf. for instance [18, Chapter 3] or [28])
this implies that

(3.4) lim
n→∞

Xi(n) = Xi and lim
n→∞

⋃

i∈A
Xi(n) = X

in Hausdorff metric. Thus E∗
1 (σ) can be used to approximate the atomic surfaces in the sense of

the Hausdorff metric.
In Figure 4 we see E∗

1 (σ)8[0, i∗] (i ∈ {1, 2}) for the Fibonacci as well as E∗
1 (σ)10[0, i∗] (i ∈

{1, 2, 3}) for the Tribonacci substitution. In the first case, the approximation consists of unit line
segments, in the second case it consists of unit squares.

For the sake of completeness we now sketch the proof of the following alternative representation
of Xi and X.
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Figure 4. Approximation of the atomic surfaces with help of E∗
1 (σ) for the

Fibonacci (left) and the Tribonacci (right) substitution.

Proposition 3.1. Let w = (w`)`∈N ∈ Ω be a one sided periodic point of σ. Then

Xi = −{πf(w1 . . . wk) : k ≥ 0, wk = i} (i ∈ A) and

X = −{πf(w1 . . . wk) : k ≥ 0}.
Proof. We prove the assertion only for X. For Xi everything runs along similar lines. From the
set equation (2.5) we see that changing σ to σk with k ≥ 1 does not change the Rauzy fractals Xi

and X. Thus, since σ is primitive, we may assume w.l.o.g. that E0(σ) is a positive matrix and
that (after possible rearrangement of A) w = (w`)`∈N = limn→∞ σn(1) is a one sided fix point of
σ starting with 1. By (3.4) we know that

X = lim
n→∞

π
⋃

i∈A
E0(σ)nE∗

1 (σ)n[0, i∗].

Using the duality between E1(σ) and E∗
1 (σ) we obtain

X = − lim
n→∞

π
⋃

j∈A
E1(σ)n[0, j].

Now we have

lim
n→∞

πE1(σ)n[0, 1] = lim
n→∞

π
⋃

(p,i,s)

i
(p,i,s)−−−−→1

E1(σ)n−1[−f(s), i]

= lim
n→∞

π
⋃

(p,i,s)

i
(p,i,s)−−−−→1

(−E0(σ)n−1f(s) + E1(σ)n−1[0, i])

= lim
n→∞

π
⋃

j∈A
E1(σ)n−1[0, j]

where the last equality follows from the fact that E0(σ) is a positive matrix which is a contraction
on P. Thus

(3.5) X = − lim
n→∞

πE1(σ)n[0, 1].

This is still valid if we take only the limit of the vertices of the broken line E1(σ)n[0, 1]. These
vertices are exactly the points of the shape f(w1 . . . wk) (k ≥ 0). Thus we may rewrite (3.5) as

X = −{πf(w1 . . . wk) : k ≥ 0}
This proves the result. ¤



UNIMODULAR PISOT SUBSTITUTIONS AND THEIR ASSOCIATED TILES 11

3.2. A sequence of sets related to the contact graph. Now we are in a position to construct
certain sets, which lead to a generalization of the contact graph, which is well known for lattice
tilings (cf. for instance [22, 37]), to atomic surfaces. We will use the above mentioned approxima-
tion property in order to approximate the boundary of the sets Xi by the boundary of the sets
Xi(n) defined in (3.3). We start with the description of ∂Xi(0).

We easily see that
I0 := {π(x) + π[0, i∗] : [x, i∗] ∈ S}

is a tiling of P in the sense that it covers P with overlaps of zero measure. In [25, Theorem 2.5]
(see also Arnoux-Ito [6]) it is shown that E∗

1 (σ) is a so-called “tiling-substitution” which means
that

(3.6) In := {π(x) + Xi(n) : [x, i∗] ∈ S}
also forms a tiling of P for each n ∈ N. First consider I0. Because I0 is a tiling of P, the boundary
of a tile π[0, i∗] (i ∈ A) is a union of sets of the form

π([0, i∗] ∩ [y, j∗]) (π[y, j∗] ∈ I0, [y, j∗] 6= [0, i∗]).

Obviously, this union can be made finite because

{π(x) : [x, i∗] ∈ S}
is a uniformly discrete subset of P. Moreover, since the tiles are (d − 1)-dimensional prisms, we
only have to take intersections with tiles which pair a (d − 2)-dimensional face with π[0, i∗]. Let
Ui be the set of all unit tips, which pair at least (d− 2)-dimensional faces with the unit tip [0, i∗]
(i ∈ A), i.e.

Ui := {[y, j∗] ∈ S : Ld−2([y, j∗] ∩ [0, i∗]) > 0}
(Lk is the k-dimensional Lebesgue measure). In Figure 5 we depict the elements of U1 ∪ U2 for
the Fibonacci as well as the elements of U1 ∪ U2 ∪ U3 for the Tribonacci substitution. In the case
of the Fibonacci substitution the boundary of π[0, i∗] (i ∈ {1, 2}) consists of exactly two points
(the end points of the line segment [0, i∗]). In the Tribonacci case the boundaries of the “central”
unit tips [0, i∗] (i ∈ {1, 2, 3}) are indicated by boldface lines. These boundaries are unions of line
segments which come from the intersection of two unit tips.

1

2

3

12

Figure 5. The unit tips which pair at least (d − 2)-dimensional faces with the
“central” unit tips [0, i∗] for the Fibonacci (left) and the Tribonacci (right) sub-
stitution. The set [0, i∗] is indicated by i.

Let

(3.7) Q := {([x, i∗], [y, j∗]) : [x, i∗], [y, j∗] ∈ S with x = 0 or y = 0} .
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Throughout this paper we identify the elements ([x, i∗], [y, j∗]) and ([y, j∗], [x, i∗]). We will say
that an element of Q is written in canonical order if it is written in the form{

([0, i∗1], [z, i∗2]) if z 6= 0,

([0, i∗1], [0, i
∗
2]) with i1 ≤ i2 if z = 0.

In order to keep the analogy to the contact matrix of lattice tilings (cf. [22]) we set

R0 :=
⋃

i∈A
{([0, i∗], [y, j∗]) ∈ Q : [y, j∗] ∈ Ui}.

Note that R0 is the set of all pairs which correspond to non-empty intersections of the form
π([0, i∗] ∩ [y, j∗]). Thus

(3.8) ∂π[0, i∗] =
⋃

([0,i∗][y,j∗])∈R0
[0,i∗]6=[y,j∗]

π([0, i∗] ∩ [y, j∗]) (i ∈ A).

Looking at Figure 5 again, we see that for the Fibonacci substitution we have #R0 = 5 (two
line segments plus three end points), while in the Tribonacci case we have #R0 = 12 (3 surfaces
corresponding to the elements ([0, i∗], [0, i∗]); furthermore, the boundary consists of 9 different line
segments).

Thus R0 contains full information on the boundary of the sets Xi(0) = π[0, i∗]. We now want to
set up a sequence of sets Rn which contains full information on the boundaries of the sets Xi(n).
Before we do this in full generality, we want to provide the construction of R1 starting from R0

in full detail. To this end we define ϕ : S × S → Q by

(3.9) ϕ([x1, i
∗
1], [x2, i

∗
2]) :=

{
([0, i∗1], [x2 − x1, i

∗
2]) if (x1 − x2) · v < 0,

([0, i∗2], [x1 − x2, i
∗
1]) if (x1 − x2) · v ≥ 0.

It remains to check that ϕ maps to Q. If the first alternative in the definition of ϕ holds it suffices
to show that [x2 − x1, i

∗
2] ∈ S. For this alternative (x2 − x1) · v > 0 holds. Furthermore, we have

(x2 − x1 − ei2) · v = (x2 − ei2) · v − x1 · v < −x1 · v ≤ 0

because [x1, i
∗
1], [x2, i

∗
2] ∈ S. This proves that [x2 − x1, i

∗
2] ∈ S. The second alternative is treated

likewise.
We set

R1 := R0 ∪
{

ϕ([x1, i
∗
1], [x2, i

∗
2]) ∈ Q : ∃ ([0, j∗1 ], [y, j∗2 ]) ∈ R0

with [x1, i1] ∈ E1(σ)[0, j1] and [x2, i2] ∈ E1(σ)[y, j2]
}

.

Lemma 3.2. Let [x1, i
∗
1] and [x2, i

∗
2] be elements of S. Then π([x1, i

∗
1] ∩ [x2, i

∗
2]) forms a (d− 2)-

dimensional face if and only if ϕ([x1, i
∗
1], [x2, i

∗
2]) ∈ R0.

Proof. This is an easy consequence of the definitions of ϕ and R0. ¤

With these preparations we are able to prove the following result.

Proposition 3.3. The boundary of Xi(1) is given by

(3.10) ∂Xi(1) =
⋃

([0,i∗][y,j∗])∈R1
[0,i∗] 6=[y,j∗]

(Xi(1) ∩ (Xj(1) + π(y))) (i ∈ A).

Proof. As mentioned above, I1 forms a tiling of P. Thus the boundary of the set Xi1(1) (i1 ∈ A)
consists of sets of the shape Xi1(1) ∩ (Xi2(1) + π(x)). Since Xi1(1) is a finite union of (d − 1)-
dimensional prisms, it suffices to take into account only intersections that contain at least one
(d− 2)-dimensional face. Because

Xi1(1) =
⋃

[y,j∗]∈E∗1 (σ)[0,i∗]

E0(σ)(Xj(0) + π(y))
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the intersection Xi1(1) ∩ (Xi2(1) + π(x)) contains a (d − 2)-dimensional face if and only if there
exist

[y1, j
∗
1 ] ∈ E∗

1 (σ)[0, i∗1] and [y2, j
∗
2 ] ∈ E∗

1 (σ)[x, i∗2]
such that π([y1, j

∗
1 ] ∩ [y2, j

∗
2 ]) forms a (d− 2)-dimensional face, i.e., in view of Lemma 3.2, if and

only if

(3.11) [y1, j
∗
1 ] ∈ E∗

1 (σ)[0, i∗1], [y2, j
∗
2 ] ∈ E∗

1 (σ)[x, i∗2] and ϕ([y1, j
∗
1 ], [y2, j

∗
2 ]) ∈ R0.

Using the duality relation (3.1) between E1(σ) and E∗
1 (σ) we see that (3.11) is equivalent to the

existence of [y1, j
∗
1 ], [y2, j

∗
2 ] ∈ S such that

(3.12) [0, i1] ∈ E1(σ)[y1, j1], [x, i2] ∈ E1(σ)[y2, j2] and ϕ([y1, j
∗
1 ], [y2, j

∗
2 ]) ∈ R0.

We have to distinguish two cases according to the two cases in the definition of ϕ in (3.9).
• Suppose first that ϕ([y1, j

∗
1 ], [y2, j

∗
2 ]) = ([0, j∗1 ], [y2 − y1, j

∗
2 ]) holds and set y = y2 − y1.

Translating the first two statements of (3.12) by the vector −E0(σ)y1 yields

[−E0(σ)y1, i1] ∈ E1(σ)[0, j1], [x− E0(σ)y1, i2] ∈ E1(σ)[y, j2] and ([0, j∗1 ], [y, j∗2 ]) ∈ R0.

Because [x, i∗2] is a unit tip we have

ϕ([−E0(σ)y1, i
∗
1], [x− E0(σ)y1, i

∗
2]) = ([0, i∗1], [x, i∗2]).

• Now suppose that ϕ([y1, j
∗
1 ], [y2, j

∗
2 ]) = ([0, j∗2 ], [y1 − y2, j

∗
1 ]) holds and set y = y1 − y2.

Translating the first two statements of (3.12) by the vector −E0(σ)y2 yields

[−E0(σ)y2, i1] ∈ E1(σ)[y, j1], [x− E0(σ)y2, i2] ∈ E1(σ)[0, j2] and ([0, j∗2 ], [y, j∗1 ]) ∈ R0.

Because [x, i∗2] is a unit tip we have

ϕ([−E0(σ)y2, i
∗
1], [x− E0(σ)y2, i

∗
2]) = ([0, i∗1], [x, i∗2]).

In both cases (3.12) implies the existence of [x1, ĩ
∗
1], [x2, ĩ

∗
2] ∈ Zd×A and ([0, j∗1 ], [y, j∗2 ]) ∈ R0 such

that
([0, i∗1], [x, i∗2]) = ϕ([x1, ĩ

∗
1], [x2, ĩ

∗
2]),

[x1, ĩ1] ∈ E1(σ)[0, j1] and [x2, ĩ2] ∈ E1(σ)[y, j2].
By the definition of R1 this implies that ([0, i∗1], [x, i∗2]) ∈ R1.

Summing up we have shown that Xi1(1) ∩ (Xi2(1) + π(x)) contains a (d− 2)-dimensional face
only if ([0, i∗1], [x, i∗2]) ∈ R1. Hence, we may write the boundary of Xi(1) as

∂Xi(1) =
⋃

([0,i∗1 ][x,i∗2 ])∈R1
[0,i∗1 ]6=[x,i∗2 ]

(Xii(1) ∩ (Xi2(1) + π(x))) (i ∈ A)

and the result is proved. ¤

The fact that we add R0 in the definition of R1 has technical reasons. It ensures that the
sequence {Rn}n≥0 defined below is increasing.

In Figure 6 the sets E∗
1 (σ)[y, j∗] for which ([0, i∗][y, j∗]) ∈ R1 are depicted. In the Fibonacci

case we have

X̂1(1) = πE∗
1 (σ)[0, 1∗] = π([e1 − e2, 1∗] ∪ [0, 2∗]),

X̂2(1) = πE∗
1 (σ)[0, 2∗] = π[0, 1∗].

In the Tribonacci case one computes

X̂1(1) = πE∗
1 (σ)[0, 1∗] = π([e1 − e3, 1∗] ∪ [e2 − e3, 2∗] ∪ [0, 3∗]),

X̂2(1) = πE∗
1 (σ)[0, 2∗] = π[0, 1∗],

X̂3(1) = πE∗
1 (σ)[0, 3∗] = π[0, 2∗].

Each tile E∗
1 (σ)[y, j∗] is depicted in a different color. Observe that the tiles all have the property

to pair at least one (d − 2)-dimensional face with at least one of the “central” tiles E∗
1 (σ)[0, i∗].

In the case of the Tribonacci substitution the boundaries of the sets E∗
1 (σ)[0, i∗] are indicated by

bold face lines.
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1

2
1

23

Figure 6. Illustration of the set R1 for the Fibonacci (left) and the Tribonacci
(right) substitution. The set E∗

1 (σ)[0, i∗] is indicated by i.

Now we turn to the general case. We construct Rn+1 starting from Rn in the same way as we
constructed R1 starting from R0. Thus starting with R0 we define the sequence {Rn}n∈N by a
recurrence relation. This is done by the following set function. Let 2Q be the set of all subsets of
Q. Then

Ψ : 2Q → 2Q,

M 7→ M ∪
{

ϕ([x1, i
∗
1], [x2, i

∗
2]) ∈ Q : ∃ ([0, j∗1 ], [y, j∗2 ]) ∈ M

with [x1, i1] ∈ E1(σ)[0, j1] and [x2, i2] ∈ E1(σ)[y, j2]
}

.

Now suppose that R0, . . . , Rn are already defined. Then Rn+1 is defined in terms of Rn by

(3.13) Rn+1 := Ψ(Rn).

In Lemma 4.2 we will show that the sets Rn admit a generalization of (3.10) for the boundaries
∂Xi(n) (n ≥ 1). The following lemma shows that the sequence {Rn}n∈N is ultimately constant.

Lemma 3.4. Let σ be a unimodular Pisot substitution and attach to it the sequence of sets {Rn}
defined in (3.13). Then there exists an effectively computable integer N ∈ N such that RN = Rn

for all n ≥ N . Thus we set R := RN . R contains only finitely many elements.

Proof. Let ΛC := diag(λ1, . . . , λd) and let T be a regular matrix satisfying E0(σ) := T−1ΛCT . Let
n ≥ 1 be arbitrary. By the definition of Rn an element ([0, i∗1], [r, i

∗
2]) ∈ Rn satisfies

r = ±E0(σ)nx +
n−1∑

k=0

E0(σ)k(f(sk)− f(tk)),

where ([0, j∗1 ], [x, j∗2 ]) ∈ R0 and sk and tk are suffixes of strings of the shape σ(j) for certain j ∈ A.
Setting rk = (r(1)

k , . . . , r
(d)
k ) := T (f(sk) − f(tk)) (0 ≤ k ≤ n − 1) and q = (q(1), . . . , q(d)) := Tx

this yields

Tr = ±Λn
Cq +

n−1∑

k=0

Λk
Crk =

(
±λn

1 q(1) +
n−1∑

k=0

λk
1r

(1)
k , . . . ,±λn

dq(d) +
n−1∑

k=0

λk
dr

(d)
k

)
.

The first coordinate of Tr is bounded by a constant L1 depending only on the choice of T because
[r, j∗] is a unit tip. The other coordinates are bounded by a constant L2 because rk and q can
attain only finitely many values and |λi| < 1 for 2 ≤ i ≤ d.

In other words, the elements ([0, i∗], [r, j∗]) ∈ Rn satisfy

||Tr||∞ ≤ L

for some absolute constant L. This implies that the number of elements in Rn is uniformly bounded
in n. Since Rn ⊆ Rn+1 it follows that the sequence {Rn} is ultimately constant. ¤
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Corollary 3.5. Let R0 ⊆ M ⊆ R. Then Ψ(M) = M implies that M = R.

Proof. Note that M1 ⊆ M2 implies that Ψ(M1) ⊆ Ψ(M2). Select N such that RN = ΨN (R0) = R.
Suppose that Ψ(M) = M . Then

R = ΨN (R0) ⊆ ΨN (M) = M ⊆ R

and we are done. ¤

3.3. The contact graph. Before we give the exact definition of the contact graph we recall the
definition of the adjacency matrix AG = (aij) of a finite directed graph G (cf. [27, Definition 2.2.3]).
Let V = {1, . . . , q} be the set of states of G. Then AG is a q × q matrix with aij equal to the
number of edges in G leading form i to j. The order of the states will play no role in our context.
In particular, changing the order of the states of G does not change the eigenvalues of AG.

Definition 3.6. Let σ be a unimodular Pisot substitution and let Q be defined as in (3.7). If
M ⊂ Q then the contact graph G(M) of M is given in the following way. The states of G(M) are
the elements of M . Each of the states is an initial state. Furthermore, there exists an edge

(3.14) ([0, i∗1], [x, i∗2])
P |Q−−−→ ([0, j∗1 ], [y, j∗2 ]) (states written in canonical order)

with P := (p1, i1, s1) and Q := (p2, i2, s2) in G(M) if

([0, i∗1], [x, i∗2]) ∈ Ψ{([0, j∗1 ], [y, j∗2 ])}
and

(3.15) σ(jk) = (pk, ik, sk) ∈ P (1 ≤ k ≤ 2) or σ(j3−k) = (pk, ik, sk) ∈ P (1 ≤ k ≤ 2).

If the first alternative in (3.15) holds, the corresponding edge is said to be of type 1, if the second
alternative holds, it is of type 2. If both alternatives hold, we also say that the edge is of type 1.

The adjacency matrix of G(M) is called the contact matrix of M .
If M = R then C := G(R) is called the contact graph of σ. Its adjacency matrix is called the

contact matrix of σ.

Obviously, all the graphs G(M) are subgraphs of the graph G(Q).

Remark 3.7. Note that the two alternatives we have for the edges correspond to the two alterna-
tives in the definition of ϕ. In fact, inserting the definition of Ψ we see that the edge (3.14) exists
if either

x = E0(σ)y + f(s1)− f(s2) such that σ(jk) = (pk, ik, sk) ∈ P (1 ≤ k ≤ 2)

or
x = −E0(σ)y − f(s2) + f(s1) such that σ(j3−k) = (pk, ik, sk) ∈ P (1 ≤ k ≤ 2).

Indeed, ([0, i∗1], [x, i∗2]) ∈ Ψ{([0, j∗1 ], [y, j∗2 ])} implies that ([0, i∗1], [x, i∗2]) = ϕ([−f(s̃1), ĩ∗1], [E0(σ)y −
f(s̃2), ĩ∗2]) with σ(jk) = p̃k ĩks̃k (1 ≤ k ≤ 2). According to the definition of ϕ this implies that

([0, i∗1], [x, i∗2]) =

{
[0, ĩ∗1], [E0(σ)y − f(s̃2) + f(s̃1), ĩ∗2] or
[0, ĩ∗2], [−E0(σ)y + f(s̃2)− f(s̃1), ĩ∗1].

Setting (pk, ik, sk) = (p̃k, ĩk, s̃k) in the first case and (pk, ik, sk) = (p̃3−k, ĩ3−k, s̃3−k) in the second
case (1 ≤ k ≤ 2) yields the desired formulas.

Both alternatives (type 1 and type 2) can hold for an edge simultaneously only if σ(j1) = σ(j2)
and, hence, (p1, i1, s1) = (p2, i2, s2). This implies j1 = j2. Thus we must have x = E0(σ)y and
x = −E0(σ)y. Since E0(σ) is a regular matrix we must therefore have x = y = 0. Summing up
we conclude that both alternatives can hold simultaneously only for an edge of the shape

([0, i∗], [0, i∗])
P |P−−→ ([0, j∗], [0, j∗]).

Throughout the paper we will always assume that the states of the occurring graphs are written
in canonical order. It is easy to see that the edge

(3.16) ([0, i∗], [0, i∗])
P |Q−−−→ ([0, j∗1 ], [y, j∗2 ])
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exists if and only if

(3.17) ([0, i∗], [0, i∗])
Q|P−−−→ ([0, j∗1 ], [y, j∗2 ])

exists. Thus we will always identify these two edges.
Definition 3.6 generalizes the graph G(R), which was defined by Scheicher and Thuswaldner [36,

37] for lattice tilings. The contact matrix for lattice tilings first appears in Gröchenig and Haas [22].

For the Fibonacci substitution it is fairly easy to calculate the contact graph. In fact, we have
R0 = R1 = R. Thus R has 5 elements. From Figure 5 we easily see that

R = {(r1, r1), (r1, r2), (r1, r3), (r2, r2), (r2, r4)}
with r1 = [0, 1∗], r2 = [0, 2∗], r3 = [(0, 1), 1∗] and r4 = [(1,−1), 1∗]. If we draw the edges between
these states according to Definition 3.6 we arrive at the graph depicted in Figure 7 (ε denotes the
empty word). Observe that it contains a copy of the corresponding prefix-suffix automaton.

(r1, r1)

(ε,1,2)|(ε,1,2)

¶¶

(ε,1,ε)|(ε,1,ε)

((

(ε,1,ε)|(ε,1,2)

²²

(r2, r2)

(1,2,ε)|(1,2,ε)

hh

(r2, r4)

(1,2,ε)|(ε,1,2)

((
(r1, r3)

(ε,1,2)|(ε,1,ε)zzttttttttt

(r1, r2)

(ε,1,ε)|(1,2,ε)

¶¶

Figure 7. The contact graph of the Fibonacci substitution.

The contact graph of the Tribonacci substitution will be constructed later. It is described in
Theorem 6.4.

Lemma 3.8. Let σ be a unimodular Pisot substitution and let H be a subgraph of G(Q). If from
each state ([0, i∗1], [x, i∗2]) of H there leads a walk to a state ([0, j∗1 ], [y, j∗2 ]) ∈ R0 then H ⊂ C = G(R).

Proof. By definition, R contains all elements ([0, i∗1], [x, i∗2]) ∈ Q from which there leads a walk to
a state of the shape ([0, j∗1 ], [y, j∗2 ]) ∈ R0 in G(Q). Since H ⊆ G(Q) we are done. ¤

4. On the boundary of a tile

Our next task is the description of the boundary of the atomic surfaces in terms of the contact
graph. In what follows we need that also the limit of the tilings In defined in (3.6) for n → ∞
yields a tiling. Let Xi(n) be defined as in (3.3). Since Xi(n) → Xi this is tantamount to saying
that I in (2.8) tiles P. As mentioned in the introduction this is true only if the so-called super
coincidence condition holds.

Definition 4.1 (cf. [7, 25]). Let [x, i] and [y, j] with x, y ∈ Zd and i, j ∈ A be given. We say that
[x, i] and [y, j] have strong coincidence if there exists an n ∈ N such that E1(σ)n[x, i]∩E1(σ)n[y, j]
have at least one line segment in common.

Let π′ be the projection of Rd to u along P. We say that [x, i] and [y, j] have the same height if

int(π′[x, i]) ∩ int(π′[y, j]) 6= ∅.
Furthermore, σ satisfies the super coincidence condition if [x, i] and [y, j] have strong coincidence
whenever they have the same height.
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If this condition holds for σ then [25, Theorem 1.3] yields that I tiles P. Together with [25,
Theorem 3.3] this implies that (X̂i(n) is defined in (3.2))

(4.1) lim
n→∞

E0(σ)n∂X̂i(n) = ∂Xi (i ∈ A)

in Hausdorff metric (cf. also [20, Chapter 8] and [6]; for the lattice tile analogue of these results
we refer to Vince [43, Theorem 4.2]). Setting X̂(n) :=

⋃
i∈A X̂i(n) an analogous identity holds for

∂X.

4.1. The boundaries of the approximations of Xi. For fixed n the set X̂i(n) in (3.2) is the
union of (d − 1)-dimensional prisms of the shape π[x, i∗]. Its boundary is a union of (d − 2)-
dimensional prisms of the shape

(4.2) π[x1, i
∗
1] ∩ π[x2, i

∗
2].

Let Q be defined as in (3.7). For ([0, i∗1], [x, i∗2]) ∈ Q let

(4.3) B(([0, i∗1], [x, i∗2]), n) := X̂i1(n) ∩ (X̂i2(n) + E0(σ)−nπ(x)).

If [0, i∗1] 6= [x, i∗2] then B(([0, i∗1], [x, i∗2]), n) consists of a union of prisms of the shape (4.2). The
number of these prisms will be denoted by

Π (B(([0, i∗1], [x, i∗2]), n)) .

Lemma 4.2. Let σ be a unimodular Pisot substitution. If [0, i∗1] 6= [x, i∗2] then for n ≥ 0 we have

Π(B(([0, i∗1], [x, i∗2]), n)) > 0 =⇒ ([0, i∗1], [x, i∗2]) ∈ Rn.

If n is large enough such that Rn = R then this becomes

Π(B(([0, i∗1], [x, i∗2], n)) > 0 =⇒ ([0, i∗1], [x, i∗2]) ∈ R.

This implies that

∂Xi(n) =
⋃

([0,i∗],[y,j∗])∈Rn

[0,i∗]6=[y,j∗]

(Xi(n) ∩ (Xj(n) + π(y))) (i ∈ A, n ∈ N).

Proof. We use induction on n in order to prove the lemma. For n = 0 the result is true by (3.8).
Now suppose that it is true for n− 1. Then we get

B(([0, i∗1], [x, i∗2]), n) = X̂i1(n) ∩ (X̂i2(n) + E0(σ)−nπ(x))

= π


 ⋃

[y1,j1]∈E∗1 (σ)[0,i∗1 ]

⋃

[y,j∗]∈E∗1 (σ)n−1[y1,j∗1 ]

[y, j∗]


 ∩

π


 ⋃

[y2,j2]∈E∗1 (σ)[0,i∗2 ]

⋃

[y,j∗]∈E∗1 (σ)n−1[y2,j∗2 ]

[y, j∗] + E0(σ)−nx


 .
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Inserting the definition of E∗
1 (σ) in the first union yields

B(([0, i∗1], [x, i∗2]), n) = π




⋃

i1
(p1,i1,s1)−−−−−−→j1

⋃

[y,j∗]∈E∗1 (σ)n−1[E0(σ)−1f(s1),j∗1 ]

[y, j∗]


∩

π




⋃

i2
(p2,i2,s2)−−−−−−→j2

⋃

[y,j∗]∈E∗1 (σ)n−1[E0(σ)−1f(s2),j∗2 ]

[y, j∗] + E0(σ)−nx




= π




⋃

i1
(p1,i1,s1)−−−−−−→j1

⋃

[y,j∗]∈E∗1 (σ)n−1[0,j∗1 ]

[y, j∗] + E0(σ)−nf(s1)


∩

π




⋃

i2
(p2,i2,s2)−−−−−−→j2

⋃

[y,j∗]∈E∗1 (σ)n−1[0,j∗2 ]

[y, j∗] + E0(σ)−nf(s2) + E0(σ)−nx


 .

Changing the order of the unions and inserting the definition of X̂`(n− 1) for ` = j1 and j2 yields
that this is equal to

⋃

i1
(p1,i1,s1)−−−−−−→j1

⋃

i2
(p2,i2,s2)−−−−−−→j2

( (
X̂j1(n− 1) + πE0(σ)−nf(s1)

)

∩
(
X̂j2(n− 1) + πE0(σ)−n(f(s2) + x)

) )
=

⋃

i1
(p1,i1,s1)−−−−−−→j1

⋃

i2
(p2,i2,s2)−−−−−−→j2

[E0(σ)−1(f(s2)−f(s1)+x),j∗2 ]∈S

(
B

(
([0, j∗1 ], [E0(σ)−1(f(s2)− f(s1) + x), j∗2 ]), n− 1

)

+ πE0(σ)−nf(s1)
)

∪
⋃

i1
(p1,i1,s1)−−−−−−→j1

⋃

i2
(p2,i2,s2)−−−−−−→j2

[−E0(σ)−1(f(s2)−f(s1)+x),j∗1 ]∈S

(
B

(
([0, j∗2 ], [−E0(σ)−1(f(s2)− f(s1) + x), j∗1 ]), n− 1

)

+ πE0(σ)−n(f(s2) + x)
)

.

The fact that we have to split up the double unions in two parts comes from the definition of ϕ.
Note that one of the quantities [E0(σ)−1(f(s2)−f(s1)+x), j∗2 ] and [−E0(σ)−1(f(s2)−f(s1)+x), j∗1 ]
is always contained in S. Indeed, E∗

1 (σ) transforms a unit tip in a union of unit tips (cf. [6,
Proposition 1]) and ϕ transforms a pair of unit tips into a pair of unit tips by definition. Summing
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up we proved that

Π(B(([0, i∗1], [x, i∗2]), n)) =

Π

( ⋃

i1
(p1,i1,s1)−−−−−−→j1

⋃

i2
(p2,i2,s2)−−−−−−→j2

[E0(σ)−1(f(s2)−f(s1)+x),j∗2 ]∈S

(
B

(
([0, j∗1 ], [E0(σ)−1(f(s2)− f(s1) + x), j∗2 ]), n− 1

)

+ πE0(σ)−nf(s1)
)

∪
⋃

i1
(p1,i1,s1)−−−−−−→j1

⋃

i2
(p2,i2,s2)−−−−−−→j2

[−E0(σ)−1(f(s2)−f(s1)+x),j∗1 ]∈S

(
B

(
([0, j∗2 ], [−E0(σ)−1(f(s2)− f(s1) + x), j∗1 ]), n− 1

)

+ πE0(σ)−n(f(s2) + x)
))

.

By the induction hypothesis this is greater than zero if and only if at least one of the elements
([0, j∗1 ], [E0(σ)−1(f(s2)−f(s1)+x), j∗2 ]) or ([0, j∗2 ], [−E0(σ)−1(f(s2)−f(s1)+x), j∗1 ]) is contained in
Rn−1. If this is the case then by the definition of Rn in terms of Rn−1 we have ([0, i∗1], [x, i∗2]) ∈ Rn

and we are done. ¤

4.2. A set equation for the boundaries of Xi. In the remaining part of the paper we will
always assume that σ satisfies the super coincidence condition. We are now in a position to give
a description of the boundaries of Xi (i ∈ A) as a graph directed system.

Let ε : ([0, i∗1], [x, i∗2])
(p1,i1,s1)|(p2,i2,s2)−−−−−−−−−−−−→ ([0, j∗1 ], [y, j∗2 ]) be an edge in C (the states are written in

canonical order) and set

F (ε) :=

{
f(s1) if ε is of type 1,

f(s2) + x if ε is of type 2.

Note that for those edges, for which both alternatives of Definition 3.6 hold both alternatives in
the definition of F (ε) coincide. Indeed, in view of Remark 3.7 we have x = 0 and s1 = s2 in this
case. An easy calculation shows that F (ε) is the same for the identified edges (3.16) and (3.17).

We define the non-empty compact sets C(v) ⊂ P (v ∈ R) by the following graph directed
system:

(4.4) C(v1) =
⋃

ε:v1→v2

E0(σ)C(v2) + πF (ε).

The union is extended over all outgoing edges of v1 in the contact graph C. In particular, C(v) is
empty if the state v has no outgoing edges.

Theorem 4.3. Let σ be a unimodular Pisot substitution which satisfies the super coincidence
condition and let X and {Xi}i∈A be the associated atomic surfaces. The boundaries of X and Xi

(i ∈ A) can be characterized as follows.

∂X =
⋃

([0,i∗],[y,j∗])∈R
y 6=0

C(([0, i∗], [y, j∗])),(4.5)

∂Xi =
⋃

([0,i∗],[y,j∗])∈R

i fixed,[0,i∗]6=[y,j∗]

C(([0, i∗], [y, j∗])) (i ∈ A),(4.6)

where C(v) (v ∈ R) is uniquely defined by the graph directed system (4.4).
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Remark 4.4. Note that equation (4.4) is related to the dual map E∗
2 (σ) of the two dimensional

realization E2(σ) of σ in Sano et al. [35]. With help of this dual map one also gets a parametrization
of the boundary of Xi (cf. [35, Proposition 3.1]). This technique was used in Ito-Kimura [24] to
determine the Hausdorff dimension of the boundary of the classical Rauzy fractal.

Proof. Let N be large enough such that RN = R. Then by the same reasoning as in the proof of
Lemma 4.2 we get

B(v1, n) =
⋃

ε:v1→v2

B(v2, n− 1) + πE0(σ)−nF (ε).

Thus E0(σ)nB(v, n) converges to C(v) for n →∞ in Hausdorff metric (cf. [18, Theorem 2.6 and
Chapter 3]), i.e.

(4.7) C(v) = lim
n→∞

E0(σ)nB(v, n)

holds for each v ∈ R. Since

∂X̂(n) =
⋃

([0,i∗1 ],[x,i∗2 ])∈Q
x 6=0

B(([0, i1], [x, i∗2]), n)

Lemma 4.2 implies that

(4.8) ∂X̂(n) =
⋃

([0,i∗1 ],[x,i∗2 ])∈R
x 6=0

B(([0, i1], [x, i∗2]), n).

Note that if An → A, Bn → B and An ∪ Bn → C in Hausdorff metric then C = A ∪ B. Thus
multiplying by E0(σ)n and taking limits in (4.8), (4.1) yields (4.6). (4.5) is shown analogously. ¤

For v ∈ R let C(v) be defined as in (4.4). Using (4.7), (4.3) and (4.1) we see that

C(([0, i∗], [0, i∗])) = lim
n→∞

E0(σ)nB([0, i∗], [0, i∗], n) = lim
n→∞

E0(σ)nX̂i(n) = Xi.

Thus the state ([0, i∗], [0, i∗]) in C corresponds to the set Xi. Suppose that there exists an edge
([0, i∗1], [x, i∗2]) → ([0, j∗], [0, j∗]) in C. Then, by (4.4) the set C(([0, i∗1], [x, i∗2])) contains a shrinked
copy of Xj . Thus the set C(([0, i∗1], [x, i∗2])) has inner points because Xj has inner points by
Proposition 2.3. But since by assumption there are no overlaps in the tiling I this implies that
i1 = i2 and x = 0 and, hence, C(([0, i∗1], [x, i∗2])) = Xi1 . Thus we may omit the states ([0, i∗], [0, i∗])
from C without affecting (4.4) for those sets C(v) which are subsets of the boundary of one of
the sets Xi. From the resulting subgraph we may successively omit all states having no outgoing
edge because the sets C(v) corresponding to these states v are empty. Thus we loose nothing by
omitting these states. This motivates the following definition.

Definition 4.5. Let C be the contact graph. Delete the states ([0, i∗], [0, i∗]) from C and from
the resulting subgraph successively delete all states having no outgoing edges. The boundary graph
emerging from this process will be denoted by C∂ .

In the sequel we will need the following definitions (cf. for instance [27, p. 37]). Let G be a
directed graph. We call a state v of G a stranding state if no edges start at v or no edges terminate
at v. G is called essential if it contains no stranding states. The graph emerging from G by
removing all stranding states is called the essential part of G.

Let C′∂ be the essential part of C∂ (i.e. remove all states of C∂ having no incoming edges) and
let V ∈ C∂ be an arbitrary state. Since each state of C∂ has outgoing edges we conclude that each
walk starting at V arrives at a state V ′ ∈ C′∂ after finitely many steps.

4.3. Using prefixes instead of suffixes. Let σ be a unimodular Pisot substitution. All the
definitions and results of this paper can be established also by working with prefixes instead of
suffixes. In this case the set equation in (2.5) for the atomic surfaces X ′

i associated to σ reads

X ′
i =

⋃

(p,i,s),j

i
(p,i,s)−−−−→j

E0(σ)X ′
j − πf(p)
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where
X ′

i = Xi + π(ei) (i ∈ A)
(cf. [6, Lemma 8]). Moreover, the following slight modifications are needed (cf. [6]). Firstly, we
have to set [x, i] := {x + θei : θ ∈ [0, 1]} and

[x, i∗] := {x + ei + θ1e1 + . . . + θi−1ei−1 + θi+1ei+1 + . . . + θded) : θi ∈ [0, 1]}.
The stepped surface S has to be

S := {[x, i∗] : x ∈ Zd, 1 ≤ i ≤ d such that x ∈ P<0 and x + ei ∈ P≥0}
in the prefix setting, the set S0 is defined by S0 := {[−ei, i

∗] : i ∈ A} ⊂ S. The definitions of ϕ
and Q have to be changed accordingly. For the one dimensional geometric realization E1(σ) and
its dual E∗

1 (σ) we have
E1(σ)[y, j] := E0(σ)y +

⋃

(p,i,s),i

i
(p,i,s)−−−−→j

[f(p), i]

and
E∗

1 (σ)[x, i∗] := E0(σ)−1x−
⋃

(p,i,s),j

i
(p,i,s)−−−−→j

[E0(σ)−1f(p), j∗].

These modifications cause that different pairs of unit tips pair (d− 2)-dimensional faces with each
other. However, the structure of the resulting contact graph is of course the same because both
constructions are equivalent.

5. Hausdorff and box counting dimension of the boundary

Throughout this section we assume that the super coincidence condition is fulfilled for the
substitutions under discussion. By Theorem 4.3 we know that ∂X is a graph directed self-affine
set directed by C∂ . We will now determine the box counting dimension of ∂X and ∂Xi (i ∈ A). If
∂X is even graph directed self-similar, according to a general theory (cf. for instance Falconer [18,
Chapter 3]) the box counting dimension coincides with the Hausdorff dimension.

5.1. Preparation: construction of covers. We will use the notation WL(V, V ′) for all walks
from a state V to a state V ′ of length L in C∂ and WL(V ) for all walks in C∂ starting at V . The
set of all walks of length L in C∂ will be denoted by WL.

Let

(5.1) ε : ([0, i∗1], [x, i∗2])
(p1,i1,s1)|(p2,i2,s2)−−−−−−−−−−−−→ ([0, j∗1 ], [y, j∗2 ]) (states written in canonical order)

be an edge in C∂ and define

χε : P → P,
t 7→ E0(σ)t + πF (ε).

More generally, let

(5.2) w : VL
PL|QL−−−−→ VL−1

PL−1|QL−1−−−−−−−→ · · · P1|Q1−−−−→ V0

be a walk in WL and set V` := ([0, i∗` ], [x`, j
∗
` ]) (written in canonical order). Denote the edge

V`
P`|Q`−−−−→ V`−1 by ε`. Then set

χw : P → P,
t 7→ χεL

◦ · · · ◦ χε1(t).

Note that the functions χw are contractions since E0(σ) is a contraction on P.
We associate two walks of the prefix-suffix automaton Γσ (see Definition 2.2) to the walk w in

(5.2) in the following way. First we set

(p1, i1, s1) :=

{
P1 if ε1 is of type 1,

Q1 if ε1 is of type 2,
(q1, j1, t1) :=

{
P1 if ε1 is of type 2,

Q1 if ε1 is of type 1.
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For 2 ≤ ` ≤ L we define (p`, i`, s`) and (q`, j`, t`) iteratively as follows. If we have defined
(p`−1, i`−1, s`−1) := P`−1 then

(p`, i`, s`) :=

{
P` if ε` is of type 1,

Q` if ε` is of type 2,
(q`, j`, t`) :=

{
P` if ε` is of type 2,

Q` if ε` is of type 1.

If, at the contrary, we have defined (p`−1, i`−1, s`−1) := Q`−1 then

(p`, i`, s`) :=

{
Q` if ε` is of type 1,

P` if ε` is of type 2,
(q`, j`, t`) :=

{
Q` if ε` is of type 2,

P` if ε` is of type 1.

The reason why we defined these quantities exactly in this way is that according to the definition
of C∂ the sequences (p`, i`, s`)L≥`≥1 and (q`, j`, t`)L≥`≥1 give rise to walks in Γσ (with L ≥ ` ≥ 1
we mean that the walk starts with (pL, iL, sL) and ends with (p1, i1, s1)).

Lemma 5.1. Let w ∈ WL be the walk in (5.2) and associate the sequences (p`, i`, s`)L≥`≥1 and
(q`, j`, t`)L≥`≥1 to it as above. If PL = (pL, iL, sL) then

(5.3) x0 = E0(σ)−LxL +
L∑

`=1

E0(σ)−`(f(t`)− f(s`)),

if PL = (qL, jL, tL) then

(5.4) x0 = −E0(σ)−LxL +
L∑

`=1

E0(σ)−`(f(t`)− f(s`)).

Proof. This can easily be proved by induction on L. If (5.3) holds for a certain L ∈ N we will say
for short that A1(L) holds. Similar, if (5.4) is true for a certain L ∈ N we will say that A2(L)
holds.

Let V` be defined as above. We start with L = 1. If ε1 is of type 1 then P1 = (p1, i1, s1) and
Q1 = (q1, j1, t1). Using the definition of C∂ we get x0 = E0(σ)−1x1 + E0(σ)−1(f(t1) − f(s1)). If
ε1 is of type 2 we have P1 = (q1, j1, t1) and Q1 = (p1, i1, s1). This yields x0 = −E0(σ)−1x1 +
E0(σ)−1(f(t1)− f(s1)).

Now we turn to the induction step. We will prove A1(L) and A2(L) assuming A1(L − 1) and
A2(L − 1): Suppose first that PL−1 = (pL−1,iL−1,sL−1) and that A1(L − 1) is true. If εL is of
type 1 then PL = (pL, iL, sL) and QL = (qL, jL, tL). Applying the definition of C∂ this implies
that

xL−1 = E0(σ)−1xL + E0(σ)−1(f(tL)− f(sL)).
Inserting this in A1(L− 1) proves A1(L) in this case. If εL is of type 2 then PL = (qL, jL, tL) and
QL = (pL, iL, sL). The proof of A2(L) is done in the same way in this case.

Now assume that PL−1 = (qL−1,jL−1,tL−1) holds and that A2(L− 1) is true. If εL is of type 1
then PL = (qL, jL, tL) and QL = (pL, iL, sL). Applying the definition of C∂ this implies that

xL−1 = E0(σ)−1xL + E0(σ)−1(f(sL)− f(tL)).

Inserting this in A2(L− 1) proves A2(L) in this case. If εL is of type 2 then PL = (pL, iL, sL) and
QL = (qL, jL, tL). The proof of A1(L) is done in the same way in this case. ¤

Let ρ > 0 and let B be an arbitrary ball of radius ρ. Iterating (2.5) L times, multiplying by
E0(σ)−L and observing that the sets Xj are compact and have non-empty interior by Proposi-
tion 2.3, we see that there is a constant cρ independent of L which bounds the number of walks
(q`, j`, t`)L≥`≥1 of Γσ having length L and satisfying

L∑

`=1

E0(σ)−`f(t`) ∈ B.

Lemma 5.2. The number of walks in WL corresponding to a given walk (p`, i`, s`)L≥`≥1 of Γσ is
uniformly bounded in L.
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Proof. Let w be defined as in (5.2). By Lemma 5.1 we have

x0 = ±E0(σ)−LxL +
L∑

`=1

E0(σ)−`(f(t`)− f(s`)).

Here s` is fixed and for x0 and xL we have at most |C∂ | choices. The result follows from the remark
preceding this lemma. ¤

Lemma 5.3. Let w ∈ WL be as in (5.2) and associate (p`, i`, s`)L≥`≥1 and (q`, j`, t`)L≥`≥1 to it
as above. Then

χw(0) =





π

L∑

`=1

E0(σ)L−`f(s`) if PL = (pL, iL, sL),

π

(
xL +

L∑

`=1

E0(σ)L−`f(s`)

)
if PL = (qL, jL, tL).

Proof. The proof is done by induction. Let L = 1. If ε1 is of type 1 then χε1(0) = πf(s1), if it is
of type 2 then χε1(0) = π(f(s1) + x1).

We proceed with the induction step. Let w′ be the walk emerging from w by deleting the state
VL. If we assume that PL−1 = (pL−1, iL−1, sL−1) then by the induction hypothesis

χw′(0) = π

L−1∑

`=1

E0(σ)L−1−`f(s`).

If εL is of type 1, i.e. PL = (pL, iL, sL), then, since F (εL) = f(sL),

χw(0) = χεL ◦ χw′(0) = π

L∑

`=1

E0(σ)L−`f(s`).

If εL is of type 2, i.e. PL = (qL, jL, tL), then F (εL) = f(sL)+xL and the result follows analogously.
If we assume that PL−1 = (qL−1, jL−1, tL−1) then by the induction hypothesis and by Lemma 5.1

χw′(0) = π

(
xL−1 +

L−1∑

`=1

E0(σ)L−1−`f(s`)

)
= π

(
−E0(σ)L−1x0 +

L−1∑

`=1

E0(σ)L−1−`f(t`)

)
.

If εL is of type 1, i.e. PL = (qL, jL, tL), then, since F (εL) = f(tL),

χw(0) = χεL
◦ χw′(0) = π

(
−E0(σ)Lx0 +

L∑

`=1

E0(σ)L−`f(t`)

)
.

and the result follows from Lemma 5.1. If εL is of type 2, i.e. PL = (pL, iL, sL), the result follows
analogously. ¤

Lemma 5.4. Let Z with int(Z) ⊃ X be a closed (d− 1)-dimensional cube and L ∈ N. Then there
is a constant ν independent of L such that the collection {χw(Z) : w ∈ WL} covers each point in
Rd−1 at most ν times.

Proof. Let L be arbitrary, but fixed. We will prove the assertion for E0(σ)−Lχw(Z) instead
of χw(Z). Because E0(σ) is regular, this does not make a difference. In what follows let
(p`, i`, s`)L≥`≥1 and (q`, j`, t`)L≥`≥1 be walks in Γσ. Since Z is bounded, the remark preceding
Lemma 5.2 assures that there exists an absolute constant c1 such that Z+π

∑L
`=1 E0(σ)−`f(t`) has

non-empty intersection with at most c1 sets of the shape Xj+π
∑L

`=1 E0(σ)−`f(s`). From the same
fact it follows that there even exists an absolute constant c2 such that Z + π

∑L
`=1 E0(σ)−`f(t`)
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has non-empty intersection with at most c2 sets of the shape Z +π
∑L

`=1 E0(σ)−`f(s`). Note that

E0(σ)−Lχw(Z) =





Z + π

L∑

`=1

E0(σ)L−`f(s`) or

Z + π

(
xL +

L∑

`=1

E0(σ)L−`f(s`)

)
.

By Lemma 5.2 there is an absolute constant c3 which bounds the number of w ∈ WL corresponding
to a given walk (p`, i`, s`)L≥`≥1 of Γσ. Furthermore, there are only |C∂ | choices for xL. This implies
the result. ¤

Let Λ and TP be defined as in Subsection 2.3. The dimension calculations are done for the sets
C(v) with v ∈ C∂ defined in (4.4). Since it is more convenient to work with affine transformations
whose linear part is in diagonal form we work with the sets

D(v) := TPC(v).

From (4.4) we immediately get that

D(v1) =
⋃

ε:v1→v2

ΛD(v2) + TPπF (ε).

Let ε be an edge in C∂ as in (5.1). Then we set

ψε(t) := Λt + TPπF (ε).

More generally, for a walk w in C∂ consisting of the edges εL, . . . , ε1 we write

ψw = ψεL ◦ · · · ◦ ψε1 .

The following is an immediate consequence of Lemma 5.4.

Lemma 5.5. Let Y = TPZ with Z as in Lemma 5.4, i.e. int(Y ) ⊃ TPX, and L ∈ N. Then there
is a constant ν independent of L such that the collection {ψw(Y ) : w ∈ WL} covers each point in
Rd−1 at most ν times.

5.2. Dimension calculations. Let g : Rd−1 → Rd−1 be a contractive linear map with singular
values α1(g) ≥ · · · ≥ αd−1(g) > 0. The singular value function φκ(g) is defined for each 0 ≤ κ ≤
d− 1 by

φκ(g) = α1(g)α2(g) · · ·αm−1(g)αm(g)κ−m+1

where m ∈ N is given by m− 1 < κ ≤ m.
If the essential part C′∂ of C∂ is strongly connected then for each V ∈ C∂ there exists a constant

C > 0 such that

(5.5) |WL(V )| ∼ C|µ|L,

where µ is an eigenvalue of the adjacency matrix of C∂ having largest modulus. For V ∈ C′∂ formula
(5.5) follows from the Perron-Frobenius Theorem (cf. [27, Theorem 4.2.3]). For V ∈ C∂\C′∂ formula
(5.5) is still true because — as mentioned after Definition 4.5 — each walk starting at V leads to
a state V ′ ∈ C′∂ after finitely many steps.

Let λ′ be one of the eigenvalues of E0(σ) which is smallest in modulus (we have λ′ 6= 0 because
E0(σ) is irreducible). Since all the contractions ψw with w ∈ WL have the same linear part ΛL

we get

lim
L→∞


 ∑

w∈WL(V )

φκ (ψw)




1/L

= lim
L→∞


 ∑

w∈WL(V )

φκ
(
ΛL

)



1/L

= lim
L→∞


 ∑

w∈WL(V )

(λ−1|λ′|κ−d+1)L




1/L

(5.6)

= λ−1|λ′|κ−d+1|µ|
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for d − 2 ≤ κ ≤ d − 1. Let dσ be the uniquely defined number κ for which this quantity is equal
to 1. Then

(5.7) dσ = d− 1 +
log λ− log |µ|

log |λ′| .

We are now in a position to prove the following results.

Proposition 5.6. Let d ≥ 2 and let X and Xi (i ∈ A) be the atomic surfaces for a unimodular
Pisot substitution σ fulfilling the super coincidence condition. If the essential part of the boundary
graph C∂ is strongly connected we have the estimates

dimB(∂X) ≤ dσ and dimB(∂Xi) ≤ dσ (i ∈ A)

with dσ as in (5.7).

Proof. In Falconer [15, Theorem 5.4] this is proved for self-affine sets rather than graph directed
self-affine sets. Falconer’s proof can easily be adapted to our situation (for the two-dimensional
case cf. also Deliu et al. [13]). We refer the reader also to Feng et al. [19], where a similar result
was established for another graph, which is more difficult to handle than the contact graph. ¤

In some cases we can even show equality.

Proposition 5.7. Let d ≥ 2 and let X and Xi (i ∈ A) be the atomic surfaces for a unimodular
Pisot substitution σ fulfilling the super coincidence condition. Let C′∂ be the essential part of C∂ .
If C′∂ is strongly connected, and if the contracting eigenvalues of E0(σ) all have the same modulus
then

dimB(∂X) = dimH(∂X) = dσ and dimB(∂Xi) = dimH(∂Xi) = dσ (i ∈ A)

with dσ as in (5.7).

Proof. cf. Falconer [18, Corollary 3.5]. ¤

Note that Proposition 5.7 also covers the case d = 2 and the case d = 3 with λ′ non-real. In
order to prove dimB(∂Xi) = dσ in a more general case we need some preparations.

Let again λ′ be one of the eigenvalues of E0(σ) which is smallest in modulus. We have to
distinguish two cases. If λ′ is real then there is a j ∈ {1, . . . , s} such that λ′ = λj . In this case
define the (d− 2)-dimensional subspace Π by

Π = {(x2, . . . , xd) ∈ Rd−1 : xj = 0}.
Furthermore, let projΠ be the orthogonal projection from Rd−1 to Π.

If λ′ is non-real then there is a j ∈ {1, . . . , t} such that λ′ = λs+j . In this case define the
(d− 3)-dimensional subspace Π̃ by

Π̃ = {(x2, . . . , xd) ∈ Rd−1 : xs+2j−1 = xs+2j = 0}.
Furthermore, let projΠ̃ be the orthogonal projection from Rd−1 to Π̃.

Lemma 5.8. Let C′∂ be the essential part of C∂ and assume that C′∂ is strongly connected.

• If d ≥ 3 and λ′ is real then there is a constant c > 0 such that

(5.8) Ld−2 (projΠ (D(V ))) > c

holds for each V ∈ C∂ .
• If d ≥ 4 and λ′ is non-real then there is a constant c > 0 such that

Ld−3 (projΠ̃ (D(V ))) > c

holds for each V ∈ C∂ .
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Proof. Assume that λ′ is real. The non-real case is done in a very similar way and we omit it.
Since each TPXi contains an open ball by Proposition 2.3 there is a constant c1 > 0 such that

min
i∈A

Ld−2 (projΠ (TP∂Xi)) ≥ c1

holds. But TP∂Xi is the union of at most |C∂ | sets of the shape D(V ) with V ∈ C∂ . Thus there
is at least one element V ′ ∈ C∂ with

(5.9) Ld−2 (projΠ (D(V ′))) ≥ c2

for a constant c2 > 0.
Case 1: V ′ ∈ C′∂ . Note that from each V ∈ C∂ there is a walk w of length L < |C∂ | leading to V ′.

Then D(V ) contains a shrinked (non-rotated) copy of D(V ′). By the definition of Π we
have

Ld−2(projΠ(D(V ))) ≥ Ld−2(projΠ(ψw(D(V ′))))

=
∣∣∣∣
detΛ

λ′

∣∣∣∣
L

Ld−2(projΠ(D(V ′))).

Thus there is a positive constant c such that (5.8) holds for V .
Case 2: V ′ ∈ C∂ \C′∂ . In this case D(V ′) is the union of finitely many shrinked (non-rotated) copies

of sets of the shape D(V ′′) with V ′′ ∈ C′∂ . Thus we reduced this case to Case 1.
¤

Theorem 5.9. Let d ≥ 3 and let X and Xi (i ∈ A) be the atomic surfaces for a unimodular Pisot
substitution σ fulfilling the super coincidence condition. Let C′∂ be the essential part of C∂ . If C′∂
is strongly connected, then

dimB(∂X) = dimB(∂Xi) = dσ

holds for all i ∈ A with dσ as in (5.7).

Proof. (cf. Falconer [17, Proposition 4]) The case d = 2 as well as the case d = 3 with λ′ non-real
is covered by Proposition 5.7. We will confine ourselves to the case where λ′ is real. The non-real
case with d ≥ 4 can be done with obvious modifications. We will give a lower estimate for the box
counting dimension of D(V ) with V ∈ C∂ . Since for V 6∈ C′∂ the corresponding set is a finite union
of sets D(V ′) with V ′ ∈ C′∂ we can confine ourselves to V ∈ C′∂ .

Let Y be as in Lemma 5.5. Then there is a δ > 0 satisfying

∀V ∈ C′∂ ∀η ∈ projΠ(D(V )) : L1 ({ξ ∈ Y : projΠξ = η}) ≥ δ.

Fix elements V, V ′ ∈ C′∂ and a walk w ∈ WL(V, V ′) for the moment. Let U be the (d − 1)-
dimensional unit ball. Note that Π is the (d− 2)-dimensional subspace of Rd−1 orthogonal to the
smallest axis of the ellipsoid ψw(U). Because Ld−2(projΠ(D(V ′))) > c holds by Lemma 5.8, this
implies that

Ld−2(projΠ(ψw(D(V ′)))) ≥ cα1(ψw) · · ·αd−2(ψw)

and, for each η ∈ projΠ(ψw(D(V ′))),

L1 ({ξ ∈ ψw(Y ) : projΠ(ξ) = η}) ≥ αd−1(ψw)δ.

If ξ ∈ ψw(Y ) and projΠ(ξ) ∈ projΠ(ψw(D(V ′))) then ξ is within distance 2ραd−1(ψw) of D(V )
with ρ := diam(Y ). It follows that

Ld−1 {ξ ∈ ψw(Y ) : |ξ − θ| < 2ραd−1(ψw) for some θ ∈ D(V )}
≥ Ld−2(projΠ(ψw(D(V ′))))αd−1(ψw)δ

≥ cδα1(ψw) · · ·αd−1(ψw).

By Lemma 5.5,
⋃

w∈WL
ψw(Y ) is a union of sets which covers each point in Rd−1 for at most ν

times. Obviously, the same assertion is true for
⋃

w∈WL(V ) ψw(Y ). Note that h := αd−1(ψw) is
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independent of w ∈ WL(V ). We have

Ld−1{ξ ∈ Rd−1 : |ξ − θ| ≤ 2ρh for some θ ∈ D(V )}

≥ Ld−1


 ⋃

w∈WL(V )

{ξ ∈ ψw(Y ) : |ξ − θ| < 2ρh for some θ ∈ D(V )}



≥ ν−1
∑

w∈WL(V )

Ld−1 {ξ ∈ ψw(Y ) : |ξ − θ| < 2ρh for some θ ∈ D(V )}

≥ cδ

ν

∑

w∈WL(V )

α1(ψw) · · ·αd−1(ψw)

=
cδ

ν

∑

w∈WL(V )

α1(ψw) · · ·αd−1(ψw)κ−(d−1)+1h(d−1)−κ

=
cδh(d−1)−κ

ν

∑

w∈WL(V )

φκ(ψw)

for d−2 < κ ≤ d−1. If κ < dσ then (5.6) implies that
∑

w∈WL(V ) φκ(ψw) ≥ M for some constant
M not depending on h. Thus

Ld−1{ξ ∈ Rd−1 : |ξ − θ| ≤ 2ρh for some θ ∈ D(V )} ≥ c1h
(d−1)−κ.

Using [16, Proposition 3.2] this implies that dimB (D(V )) ≥ dσ holds for each V ∈ C′∂ . Together
with Proposition 5.6 this implies the theorem. ¤

6. An example: A class of cubic unimodular Pisot substitutions

The remaining part of the paper is devoted to unimodular Pisot substitutions of the shape

(6.1) σ(1) = 1 . . . 1︸ ︷︷ ︸
b times

2, σ(2) = 1 . . . 1︸ ︷︷ ︸
a times

3, σ(3) = 1

with 1 ≤ a ≤ b. Note that all these substitutions fulfill the super coincidence condition. In
particular in Solomyak [41] it is shown that they have pure discrete spectrum and Barge and
Kwapisz [8] prove that pure discrete spectrum is equivalent to the super coincidence condition.

The substitutions in (6.1) are special instances of the substitutions (2.6) that are related to
β-expansions of real numbers. The choice a = b = 1 yields the Tribonacci substitution. It turns
out that most of these substitutions have essentially one and the same contact graph C.

Let σ be as in (6.1). Then we easily see that its adjacency matrix E0(σ) is given by

E0(σ) =




b a 1
1 0 0
0 1 0


 .

6.1. The eigenvector of the dominant eigenvalue of E0(σ). Before we can construct the
contact graphs of this class of substitutions we need the following result on the positive left
eigenvector v of E0(σ) corresponding to its dominant eigenvalue.

Proposition 6.1. Let σ be as in (6.1) and let v = v1 = (v11, v12, v13) be the left eigenvector
corresponding to the dominant eigenvalue of E0(σ) having v13 = 1. Then v1j (1 ≤ j ≤ 3) is
positive and we have

v11 > v12 > v13 = 1.

Proof. See [14, Section 8, p. 223], where v11, v12 and v13 have been calculated explicitly. ¤

In Figure 8 two examples of atomic surfaces corresponding to substitutions of the class (6.1)
are given.
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Figure 8. The left atomic surface corresponds to the choice a = b = 2, the right
one to a = 3, b = 4.

6.2. Calculation of contact matrices. Now we want to determine the contact graph of the
substitutions in (6.1). This could be done directly by using Definition 3.6. However, in order to
shorten the procedure, with help of a Mathematica R© program we calculated the contact graph
for several choices of a and b. This led us to conjecture that in the general case the contact graph
has set of states M(a, b), where (all elements are written in canonical order)

(6.2) M(a, b) :=





M ∪
{(

[0, 1∗], [(1,−1, 1), 1∗]
)
,
(
[0, 1∗], [(1, 0,−1), 1∗]

)}
if b > a > 1,

M ∪
{(

[0, 1∗], [(1,−1, 1), 1∗]
)}

if b = a > 1,

M ∪
{(

[0, 1∗], [(1, 0,−1), 1∗]
)}

if b > a = 1,

M if b = a = 1.

with

M :=
{(

[0, 1∗], [0, 1∗]
)
,
(
[0, 1∗], [0, 2∗]

)
,
(
[0, 1∗], [0, 3∗]

)
,
(
[0, 1∗], [(0, 0, 1), 1∗]

)
,

(
[0, 1∗], [(0, 0, 1), 2∗]

)
,
(
[0, 1∗], [(0, 1,−1), 1∗]

)
,
(
[0, 1∗], [(0, 1,−1), 2∗]

)
,

(
[0, 1∗], [(0, 1, 0), 1∗]

)
,
(
[0, 2∗], [0, 2∗]

)
,
(
[0, 2∗], [0, 3∗]

)
,
(
[0, 2∗], [(0, 0, 1), 2∗]

)
,

(
[0, 2∗], [(1,−1, 0), 1∗]

)
,
(
[0, 2∗], [(1,−1, 1), 1∗]

)
,
(
[0, 2∗], [(1, 0,−1), 1∗]

)
,

(
[0, 3∗], [0, 3∗]

)
,
(
[0, 3∗], [(0, 1,−1), 2∗]

)
,
(
[0, 3∗], [(1, 0,−1), 1∗]

)}
.

Using Definition 3.6 we can calculate the graph G(M(a, b)) by a lengthy but easy computation.
Note that for the calculation of the box counting dimension we only need subgraphs of the graph C∂

defined in Definition 4.5. Indeed, the quantity dσ in (5.7) which occurs in the dimension formulas
of Proposition 5.7 and Theorem 5.9 depends only on E0(σ) and C∂ . Thus the states ([0, i∗], [0, i∗])
are of no importance in what follows and we will leave them away.

Lemma 6.2. Let M ′(a, b) = M(a, b) \ {([0, i∗], [0, i∗]) : 1 ≤ i ≤ 3}.
• If b > a > 1 then G(M ′(a, b)) is depicted in Figure 91.
• If b = a > 1 then G(M ′(a, b)) is depicted in Figure 101.

1We are only interested in the number of edges leading from one state to another. Each label ` in the figure
represents ` edges.
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Figure 9. A picture of the graph G(M ′(a, b)) for b > a > 1. Each edge la-
belled by ` in the picture represents ` edges in G(M ′(a, b)). If ` ≤ 0 then the
corresponding edge does not exist.

• If b > a = 1 then G(M ′(a, b)) emerges from the graph in Figure 9 by deleting the state
([0, 1∗], [(1,−1, 1), 1]) and all the broken-line edges, and by adding the edge

(6.3) ([0, 2∗], [(0, 0, 1), 2∗]) 1−→ ([0, 1∗], [(0, 1,−1), 1∗]).

• If b = a = 1 then G(M ′(a, b)) emerges from the graph in Figure 10 by deleting the state
([0, 1∗], [(1,−1, 1), 1∗]) and all the broken-line edges, and by adding the edges in (6.3).

Having deduced the shape of these graphs we can easily prove the following result.

Lemma 6.3. Let σ be a substitution of the shape (6.1). Then R0 ⊆ M(a, b) ⊆ R.

Proof. The first inclusion can be checked directly by observing that M(a, b) contains all unit tips
which pair faces with unit tips of the shape ([0, i∗], [0, j∗]).

The second inclusion is a consequence of Lemma 3.8. For all states v of G(M(a, b)) it is easily
seen that v is either contained in R0 or there leads a walk from v to the state ([0, 1∗], [0, 2∗]) ∈
R0. ¤

Our goal is to prove the following theorem.

Theorem 6.4. Let σ be a cubic unimodular Pisot substitution of the shape (6.1) with b ≥ a ≥ 1.
Then the contact graph C of σ is given by

C = G(M(a, b))

where M(a, b) is defined as in (6.2). Thus the number of states of C is either 17 or 18 or 19.
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Figure 10. A picture of the graph G(M ′(a, b)) for b = a > 1.

Remark 6.5. The shape of the graph C∂ can easily be derived from Figure 9 and Figure 10 via
Lemma 6.2.

6.3. Proof of Theorem 6.4. We already proved that R0 ⊆ M(a, b) ⊆ R. Thus in view of
Corollary 3.5 we have to show that Ψ(M(a, b)) = M(a, b) in order to prove Theorem 6.4. This
will be done in the following lemma.

Lemma 6.6. Let σ be as in (6.1) with 1 ≤ a ≤ b. Then M(a, b) = Ψ(M(a, b)) and thus
G(M(a, b)) = C is the contact graph of σ.

Proof. We will show the result only for the case b > a > 1. The three other cases follow by arguing
along the same lines with minor modifications.

We easily see that

V1 := E1(σ)[0, 1] = {[0, 2], [(0,−1, 0), 1], . . . , [(1− b,−1, 0), 1]},
V2 := E1(σ)[0, 2] = {[0, 3], [(0, 0,−1), 1], . . . , [(1− a, 0,−1), 1]},(6.4)
V3 := E1(σ)[0, 3] = {[0, 1]}.
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Also the following list of identities will be useful during the proof.

E1(σ)[(0, 0, 1), 1] = {[(1, 0, 0), 2], [(1,−1, 0), 1], . . . , [(2− b,−1, 0), 1]} ,

E1(σ)[(0, 0, 1), 2] = {[(1, 0, 0), 3], [(1, 0,−1), 1], . . . , [(2− a, 0,−1), 1]} ,

E1(σ)[(0, 1,−1), 1] = {[(a− 1, 0, 1), 2], [(a− 1,−1, 1), 1], . . . , [(a− b,−1, 1), 1]} ,

E1(σ)[(0, 1,−1), 2] = {[(a− 1, 0, 1), 3], [(a− 1, 0, 0), 1], . . . , [(0, 0, 0), 1]} ,

E1(σ)[(0, 1, 0), 1] = {[(a, 0, 1), 2], [(a,−1, 1), 1], . . . , [(a + 1− b,−1, 1), 1]} ,(6.5)

E1(σ)[(1,−1, 1), 1] = {[(b− a + 1, 1,−1), 2], [(b− a + 1, 0,−1), 1], . . . , [(2− a, 0,−1), 1]} ,

E1(σ)[(1, 0,−1), 1] = {[(b− 1, 1, 0), 2], [(b− 1, 0, 0), 1], . . . , [(0, 0, 0), 1]} ,

E1(σ)[(1,−1, 0), 1] = {[(b− a, 1,−1), 2], [(b− a, 0,−1), 1], . . . , [(1− a, 0,−1), 1]} .

Let E be the set of all unit tips [z, l∗] for which there exists an i ∈ A with ([0, k∗], [z, l∗]) ∈
M(a, b). We will have to form E1(σ)[z, l] of all [z, l∗] ∈ E. Using (6.4) and (6.5) we get

⋃

[z,l∗]∈E

E1(σ)[z, l] := {[(m, 0,−1), 1] : 1− a ≤ m ≤ b− a + 1}
∪ {[(m, 1,−1), 2] : b− a ≤ m ≤ b− a + 1}
∪ {[(b− 1, 1, 0), 2]}
∪ {[(m,−1, 1), 1] : a− b ≤ m ≤ a}
∪ {[(m, 0, 0), j] : 0 ≤ m ≤ b− 1 for j = 1 and 0 ≤ m ≤ 1 for j = 2, 3}
∪ {[(m,−1, 0), 1] : 1− b ≤ m ≤ 1}
∪ {[(m, 0, 1), j] : a− 1 ≤ m ≤ a for j = 2 and m = a− 1 for j = 3} .

For abbreviation we call the unions on the right hand side U1, . . . , U7.
In order to prove the lemma we will use directly the definition of Ψ: First we have to form all

elements of the shape ϕ([x, i∗], [y, j∗]) with [y, j] ∈ U1 ∪ . . . ∪ U7 and [x, i] ∈ V1 ∪ V2 ∪ V3. If there
exists ([0, k∗], [z, l∗]) ∈ M(a, b) such that

(6.6) [x, i] ∈ E1(σ)[0, k] and [y, j] ∈ E1(σ)[z, l],

then we have show that ϕ([x, i∗], [y, j∗]) ∈ M(a, b) provided that the second coordinate of ϕ is a unit
tip (the first one is always a unit tip). By the definition of Ψ this will imply Ψ(M(a, b)) ⊂ M(a, b).
Since the other direction is trivial this finishes the proof.

To avoid trivial repetitions, we will give the proof only for [y, j] ∈ U1. Thus we have to
consider all elements ϕ([x, i∗], [y, j∗]) where [x, i] ∈ V1 ∪ V2 ∪ V3 and [y, j] = [(m, 0,−1), 1] with
1− a ≤ m ≤ b− a + 1.

First we assume that [x, i] = [0, i]. Thus Proposition 6.1 together with the definition of ϕ yields
that

ϕ([0, i∗], [(m, 0,−1), 1∗]) =

{
([0, i∗], [(m, 0,−1), 1∗]) m > 0,

([0, 1∗], [(−m, 0, 1), i∗]) m ≤ 0.

Using Proposition 6.1 and the definition of “unit tip” from Subsection 2.5 we see that this contains
the pairs of unit tips

([0, i∗], [(1, 0,−1), 1∗]) (1 ≤ i ≤ 3),
([0, 1∗], [(0, 0, 1), i∗]) (1 ≤ i ≤ 2).

Since each of these pairs is contained in M(a, b) we are done.
Now assume that [x, i] = [(q,−1, 0), 1] with q ≤ 0. Then Proposition 6.1 implies that

ϕ([(q,−1, 0), 1∗], [(m, 0,−1), 1∗]) =

{
([0, 1∗], [(m− q, 1,−1), 1∗]) m ≥ q,

([0, 1∗], [(q −m,−1, 1), 1∗]) m < q.

The same proposition yields that the only pairs of unit tips occurring here are

([0, 1∗], [(0, 1,−1), 1∗]) and ([0, 1∗], [(1,−1, 1), 1∗]).

Both of them are contained in M(a, b).
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Next assume that [x, i] = [(q, 0,−1), 1] with q ≤ 0. Then

ϕ([(q, 0,−1), 1∗], [(m, 0,−1), 1∗]) =

{
([0, 1∗], [(m− q, 0, 0), 1∗]) m ≥ q,

([0, 1∗], [(q −m, 0, 0), 1∗]) m < q.

The only pair of unit tips contained here is ([0, 1∗], [0, 1∗]) which is contained in M(a, b). Since we
covered all [x, i] ∈ V1 ∪ V2 ∪ V3 the case [y, j] ∈ U1 is settled.

Doing the same for the other [y, j] ∈ U` (` ∈ {2, 3, 4, 5, 6, 7}), we see that there does not occur
any new element in Ψ(M(a, b)). Thus Ψ(M(a, b)) only contains elements of M(a, b) and we are
done. ¤

6.4. Calculation of the Hausdorff and box counting dimension. In the present section
we want to establish explicit formulas for the box counting dimension of the tiles related to the
substitutions in (6.1). First of all we note that the contact graph associated to each of these
substitutions satisfies the conditions of Theorem 5.9. In order to apply this theorem we may work
with the reduced graph C′∂ rather than C∂ . According to the four different classes of contact graphs
we have to distinguish four cases.

First we mention that the characteristic polynomial of E0(σ) is

x3 − bx2 − ax− 1.

Thus the two roots contained in the unit circle are different and real if and only if

D :=
1

108
(
27− 4a3 + 18ab− a2b2 + 4b3

)
< 0.

Thus the occurring fractals are graph directed self-similar if and only if D ≥ 0.
First consider the case b > a > 1. It is easy to see that the adjacency matrix of C′∂ in this case

is given by

M1 :=




0 0 0 a− 1 a 0 0 0 a− 1 0
b− a 0 b− a− 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 1 0 0
0 0 0 a− 2 a− 1 0 0 0 a− 2 0
0 1 0 0 0 1 0 1 0 0
1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1
0 0 0 1 1 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0




.

We can read off from Figure 9 that C′∂ is strongly connected. Furthermore, from the same figure
we see that the greatest common divisor of the length of its cycles is equal to 1. This implies that
C′∂ is primitive and thus it has a uniquely defined positive largest eigenvalue µ, which is the largest
root of its characteristic polynomial. The characteristic polynomial splits up in several irreducible
factors. The one contributing the largest root µ is easily seen to be

pa,b(x) = x4 + (1− a)x3 + (a− b)x2 − (b + 1)x− 1.

For the three other cases we also find the largest root of the characteristic polynomial easily. In
the case b = a > 1 it is the largest root of pb,b(x), for b > a = 1 it is the largest root of pb,1(x)
and for the Tribonacci substitution corresponding to the choice b = a = 1 it is the largest root of
p1,1(x).

Thus Proposition 5.7 and Theorem 5.9 yield the following result.

Theorem 6.7. Let X, X1, X2 and X3 be the atomic surfaces associated to the substitution

σ(1) = 1 . . . 1︸ ︷︷ ︸
b times

2, σ(2) = 1 . . . 1︸ ︷︷ ︸
a times

3, σ(3) = 1

with b ≥ a ≥ 1. Let µ be the positive largest root (in modulus) of the polynomial

x4 + (1− a)x3 + (a− b)x2 − (b + 1)x− 1,
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λ′ shall be one of the the smallest (in modulus) eigenvalues of E0(σ). Then the box counting
dimension of ∂Xi (1 ≤ i ≤ 3) and ∂X is given by

dimB(∂X) = dimB(∂Xi) = 2 +
log λ− log µ

log |λ′| (i ∈ {1, 2, 3}).

If D ≥ 0 then we also have

dimH(∂X) = dimB(∂X) and dimH(∂Xi) = dimB(∂Xi) (i ∈ {1, 2, 3}).

7. Acknowledgement
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