
WEYL SUMS IN Fq[x] WITH DIGITAL RESTRICTIONS
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Abstract. Let Fq be a finite field and consider the polynomial ring Fq [X]. Let Q ∈ Fq [X].
A function f : Fq [X] → G, where G is a group, is called strongly Q-additive, if f(AQ + B) =

f(A) + f(B) holds for all polynomials A, B ∈ Fq [X] with deg B < deg Q. We estimate Weyl
Sums in Fq [X] restricted by Q-additive functions. In particular, for a certain character E we
study sums of the form X

P

E(h(P )),

where h ∈ Fq((X−1))[Y ] is a polynomial with coefficients contained in the field of formal Laurent

series over Fq and the range of P is restricted by conditions on fi(P ), where fi (1 ≤ i ≤ r) are
Qi-additive functions. Adopting an idea of Gel′fond such sums can be rewritten as sums of the
form X

deg P<n

E

 
h(P ) +

rX
i=1

Ri

Mi

fi(A)

!
,

with Ri, Mi ∈ Fq [X]. Sums of this shape are treated by applying the k-th iterate of the Weyl-
van der Corput inequality and studying higher correlations of the functions fi. With these Weyl
Sum estimates we show uniform distribution results.

1. Introduction

The objective of the present paper is the study of exponential sums in Laurent series over
a finite field Fq. In particular, we are interested in Weyl sums involving terms related to digit
representations of elements of the polynomial ring R := Fq[X]. In order to describe this more
precisely, let

Pn := {A ∈ R : deg A < n}

be the set of all polynomials in R whose degree is less than n and fix a polynomial Q ∈ R of
positive degree d. It is easy to see that each A ∈ R admits a unique Q-ary digital expansion

A =
∑

i≥0

DiQ
i (Di ∈ Pd).(1.1)

We call a function f : R → G, where G is a group, strongly Q-additive if f(AQ+B) = f(A)+f(B).
Thus, if we represent an element A ∈ R by its Q-ary digital expansion (1.1), we may write

f(A) =
∑

i≥0

f(Di).

One simple example is the sum of digits function, which is defined by

sQ(A) :=
∑

i≥0

Di.

Drmota and Gutenbrunner [6] considered exponential sums of the shape

(1.2)
∑

A∈Pn

E

(
r∑

i=1

Ri

Mi

fi(A)

)
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with Ri,Mi ∈ R, Qi-additive functions fi and an additive character E defined on the field of
Laurent series over a finite field (compare (2.2) for the exact definition). Estimating such sums they
are able to derive results on the structure of subsets of R that are defined in terms of restrictions
of certain Qi-additive functions. For instance, they show that the values of r quite arbitrary
Qi-additive functions are equidistributed in residue classes with respect to a given element of R.
Moreover, they are able to prove normal distribution results involving Qi-additive functions.

Our aim is to give estimates for exponential sums of a more general structure. In particular,
we allow that the argument of the character E in (1.2) may contain an additional polynomial
summand. This result also forms a generalization of a result of Kubota [11] which is the basis of
a treatment of Waring’s Problem in function fields. We will dwell on this result again in Section 2
after having the necessary notations at hand.

Our exponential sum estimate has several applications. We want to present an equidistribution
result for sets of polynomials defined in terms of Qi-additive functions. In particular, the present
paper is organized as follows.

• In Section 2 we define the basic notions which are standard in this area (cf. for instance
[1, 3, 4, 5, 9, 11]) and give some preliminary results. Moreover we state the main results
of the paper, i.e., an estimates for Weyl sums in R with Qi-additive functions and an
equidistribution result in Fq involving rstrictions by Qi-additive functions.

• Section 3 is devoted to an estimate for higher auto correlation of Qi-additive functions. The
results of this section are partly generalizations of results of Drmota and Gutenbrunner [6].

• Section 4 is devoted to the proof of the Weyl sum estimates. To this matter the correlation
result of the previous section is used.

• Section 5 contains the proof of the uniform distribution result.

2. Preliminaries and statement of results

We want to state our results on Weyl Sums over the ring R := Fq[X] in this section and review
some earlier results related to such sums. To state the results we have to set up a certain additive
character which will allow us to define exponential sums. This character will be defined in the field
Fq((X

−1)) of Laurent series over Fq. All these objects are standard in this field (see for instance
[1, 11]) and we recall their definition briefly.

We set K := Fq(X) for the field of rational polynomials over Fq. Moreover, vectors will be
written in boldface, i.e., we will write for instance D := (D1, . . . ,Dℓ) where ℓ is an integer.

With R and K we have the analogues for the ring of “integers” and the field of “rationals”,
respectively. To get an equivalent for the “reals” we define a valuation ν as follows. Let A,B ∈ R,
then

ν(A/B) := deg A − deg B(2.1)

and ν(0) := −∞. With help of this valuation we can complete K to the field K∞ := Fq((X
−1)) of

formal Laurent series. Then we get

ν

(
+∞∑

i=−∞

aiX
i

)
= sup{i ∈ Z : ai 6= 0}.

Thus for A ∈ R we have ν(A) = deg A.
For convenience if not stated otherwise we will always denote a polynomial in R by a big Latin

letter and a formal Laurent series in K∞ by a small Greek letter.
By the definition of K∞ we can write every α ∈ K∞ as

α =

ν(α)∑

k=−∞

akXk

with ak ∈ Fq. Then we call ⌊α⌋ :=
∑ν(α)

k=0 akXk the integral part and in the same manner
{α} := α− ⌊α⌋ the fractional part of α. If there exist A,B ∈ R such that α = AB−1 then we call
α rational, otherwise α is irrational.
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The next ingredient for the Weyl Sums are additive characters. Let α ∈ K∞, α =
∑ν(α)

i=−∞ aiX
i.

Then by Res α := a−1 we denote the residue of an element α. In a finite field Fq of characteristic
char Fq = p we define the additive character E by

E(α) := exp (2πi tr(Res α)/p) ,(2.2)

where tr : Fq → Fp denotes the usual trace of an element of Fq in Fp.
This character has the following basic properties which mainly correspond to well-known prop-

erties of the character exp(2πix).

Lemma 2.1 ([11, Lemma 1]).

(1) If ν(α − β) > 1 then E(α) = E(β).
(2) E : K∞ → C is continuous.
(3) E is not identically 1.
(4) E(α + β) = E(α)E(β).
(5) E(A) = 1 for every A ∈ Fq[X].
(6) For N,Q ∈ R we have

∑

deg A<deg Q

E

(
A

Q
N

)
=

{
qdeg Q if Q|N,

0 otherwise.

The sum in (6) of Lemma 2.1 is a very simple Weyl Sum. We define a general Weyl Sum by

S(α,M, ϕ) :=
∑

A∈M

E(αϕ(A)),(2.3)

where α ∈ K∞, M ⊂ R is a finite set, and ϕ : R → K∞ is a function.
One of the first results in that area was given by Kubota [11]. It reads as follows

Theorem ([11, Proposition 12]). Let h(Y ) = αY k + αk−1Y
k−1 + · · · + α1Y ∈ K∞[Y ] with

k = deg h < p = char Fq. Suppose that there exist relatively prime polynomials A and Q with

α = A
Q

+ β such that ν(β) ≤ ν(Q)−2 and n < ν(Q) ≤ (k − 1)n. Then

S(α,Pn, h) ≪ qn(1− 1

2k−1 +ε).(2.4)

We denote by I ⊂ R and In := Pn ∩ I the set of all irreducible polynomials and the set of all
irreducible polynomials of degree less than n, respectively. Then Car [1] could prove the following
result (see Hayes [9] for the case k = 1).

Theorem ([1, Proposition VII.7]). Let h(Y ) = αY k + αk−1Y
k−1 + · · · + α1Y ∈ K∞[Y ] with

k = deg h < p = char Fq. Let

r > 0 and n > sup

{
4kr,

4qr2

(log q)2
+ 2kr2

}

be positive integers. Let H be a polynomial such that deg H ∈ {2kr, . . . , kn − 2kr}. Then for G a
polynomial relatively prime to H

S(GH−1, In, h) ≪ r(log n)n1+2−2−2k

qn−k2−2kr

holds.

In the present paper we are interested in estimating exponential sums over polynomials that
satisfy certain congruences involving Qi-additive functions. Throughout the paper for i = 1, . . . , r
let fi denote a Qi-additive function where Qi ∈ R are pairwise coprime polynomials and di :=
deg Qi. Furthermore let Mi ∈ R and mi = deg Mi for i = 1, . . . , r. Then we define

Cn(f ,J,M) = Cn(J) := {A ∈ Pn : f1(A) ≡ J1 mod M1, . . . , fr(A) ≡ Jr mod Mr},

moreover, let

(2.5) C(f ,J,M) = C(J) :=
⋃

n≥1

Cn(J).
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Before we state our results we need a numbering of the polynomials in R and in C(J). Therefore
let τ be a bijection from Fq into the set {0, 1, . . . , q − 1} with τ(0) = 0. Then we extend τ to R
by setting τ(akXk + · · ·+ a1X + a0) = τ(ak)qk + · · ·+ τ(a1)q + τ(a0). Similarly we pull back the
relation ≤ from N to R via τ such that for A,B ∈ R

(2.6) A ≤ B :⇔ τ(A) ≤ τ(B).

By this we get a sequence {Zℓ}ℓ≥0 with Zℓ = τ−1(ℓ) for all ℓ ∈ N. In the same way we get a
sequence {Wℓ}ℓ≥0 with Wℓ ∈ C(J) for all ℓ ∈ N and τ(Wi) < τ(Wj) ⇔ i < j. Thus {Zℓ}ℓ≥0

and {Wℓ}ℓ≥0 are two rising sequences over R and C(J) (a sequence θ = {Aℓ}ℓ≥0 of elements in
R is called rising if i < j ⇒ deg Ai ≤ deg Aj , cf. Hodges [10]). Finally we denote by n1, n2, . . .
positive integers such that

(2.7) ℓ − 1 = deg(Wnℓ−1) < deg(Wnℓ
) = ℓ.

With this definition we have that

Ps = {Zℓ : 0 ≤ ℓ < qs},

Cs(J) = {Wℓ : 0 ≤ ℓ < ns}.

Now we are ready to state our main results. Let ϕ be a function. Then the difference operator
∆ℓ (ℓ ≥ 0) is recursively defined by

∆0(ϕ(A)) := ϕ(A),

∆ℓ+1(ϕ(A);D1, . . . ,Dℓ+1) := ∆ℓ(ϕ(A + Dℓ+1);D1, . . . ,Dℓ) − ∆ℓ(ϕ(A);D1, . . . ,Dℓ).

Theorem 2.2. Let Q1, . . . , Qr ∈ R be relatively prime with di := deg Qi be given and for i ∈
{1, . . . , r} let fi be a Qi-additive function. Choose M1, . . . ,Mr ∈ R, set mi := deg Mi, and fix
R ∈ Pm1

× · · · × Pmr
. Let h(Y ) = αkY k + · · · + α1Y + α0 ∈ K∞[Y ] be a polynomial of degree

0 < k < char Fq.
If there exists H ∈ Rk and A ∈ R such that

E

(
r∑

i=1

Ri

Mi

∆k(fi(A);H)

)
6= 1,

then
n∑

ℓ=1

E

(
h(Zℓ) +

r∑

i=1

Ri

Mi

fi(Zℓ)

)
≪ n1−2−k−1γ + n1−2−k−1( k+5

2 ),

where

γ = 2 +
k

2
+

1 − |Φi,k(H; di)|
2

dqdi

with some constant |Φi,k(H; di)| ∈ (0, 1).

We will use this result to prove the following theorem on uniform distribution in R.

Theorem 2.3. Let Q1, . . . , Qr ∈ R be relatively prime and for i ∈ {1, . . . , r} let fi be a Qi-additive
function. Choose M1, . . . ,Mr, J1, . . . , Jr ∈ R. Let {Wi}i≥1 be the elements of the set C(f ,J,M)
defined in (2.5) ordered by the relation induced by τ in (2.6) and h(Y ) = αkY k + · · ·+α1Y +α0 ∈
K∞[Y ] be a polynomial of degree 0 < k < p = char Fq. Then the sequence h(Wi) is uniformly
distributed in K∞ if and only if at least one coefficient of h(Y ) − h(0) is irrational.

3. Higher Correlation

The present and the next section are devoted to the proof of Theorem 2.2. Despite some
parts of the proof contain similar ideas as the proof of the rational analogue of these results (cf.
Thuswaldner and Tichy [13, Theorem 3.4]) in our case new phenomena occur and considerable
parts of our treatment need other ideas. However, as in the rational case, we use a higher correla-
tion result which is a generalisation of a result of Drmota and Gutenbrunner [6, Proposition 3.1].
In particular, [6] contains many of the results of this section for the case k = 1 and more specific
choices of other parameters.
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Recall that char Fq = p and that fi (1 ≤ i ≤ r) are Qi-additive functions where Qi ∈ R
are pairwise coprime polynomials of degree di. Moreover M1, . . . ,Mr ∈ R are polynomials with
mi := deg Mi for i = 1, . . . , r.

We fix a R ∈ Pm1
× · · · × Pmr

and define for H ∈ Rk

gRi,i,k(A;H) = gi,k(A;H) := E

(
Ri

Mi

∆k(fi(A);H)

)
,

gR,k(A;H) = gk(A;H) :=
r∏

i=1

gi,k(A;H).

(3.1)

We will omit the R (resp. the Ri) in the index of g if this omission conserns no confusion.
We define the following correlation functions.

Φi,k(H;n) := n−1
n−1∑

ℓ=0

gi,k(Zℓ;H),(3.2)

Ψi,k(h;n) := q−
Pk

j=1 hj

∑

H1∈Ph1

· · ·
∑

Hk∈Phk

|Φi,k(H;n)|2 .(3.3)

Furthermore we denote by Φk and Ψk the corresponding correlations with gi,k replaced by gk.
Setting

Pk
n := Pn × · · · × Pn︸ ︷︷ ︸

k times

we are in a position to state our correlation result.

Proposition 3.1. Let h1, . . . , hk, n be positive integers. Let d = [d1, . . . , dr] be the least common
multiple of the degrees di. Then for every 0 6= R ∈ Pm1

× · · · × Pmr
either

∀A ∈ R : gR,0(A) = E

(
r∑

i=1

Ri

Mi

fi(A)

)
= 1

or there exists an i ∈ {1, . . . , r} and an H ∈ Pk
di

such that |Φi,k(H; di)| < 1 and

Ψk(h;n) ≪ exp

(
−min

{
h1, . . . , hk,

⌊
log n

2 log q

⌋}
1 − |Φi,k(H; di)|

2

dqdi

)
+ n− 1

2 ,

In order to show the uniform distribution result mentioned in the introduction we need the
following adaption of [6, Proposition 1].

Proposition 3.2. For every R ∈ Pm1
× · · · × Pmr

either

∀A ∈ R : gR,0(A) = E

(
r∑

i=1

Ri

Mi

fi(A)

)
= 1

or

lim
n→∞

1

n

n−1∑

ℓ=0

gR,0(Zℓ) = 0

holds.

Before we start with the proof we want to take a closer look at R ∈ Pm1
× · · · ×Pmr

such that
gR,0(A) = 1 for all A ∈ R. Let R1 and R2 be such that gRi,0(A) = 1 for i = 1, 2. Then

gR1+R2,0(A) = E

(
r∑

i=1

R1,i + R2,i

Mi

fi(A)

)

= E

(
r∑

i=1

R1,i

Mi

fi(A) +

r∑

i=1

R2,i

Mi

fi(A)

)
= gR1,0(A)gR2,0(A) = 1.
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Thus we get that together with the identity element 0 that these R form a group under compo-
nentwise addition. This group we denote by

G := {R ∈ Pm1
× · · · × Pmr

: gR,0(A) = 0 ∀A ∈ R}.(3.4)

In order to prove Propositions 3.1 and 3.2 we start with a very special setting and continue by
succesively relaxing our prerequesites. Thus the first estimation is for the special case r = 1 (see
[6, Lemma 3.4] which contains the case a = 1, k = 1 of this result).

Lemma 3.3. Let h1, . . . , hk, a, n be positive integers. Fix i ∈ {1, . . . , r}. If there exists an H ∈ Pk
di

such that |Φi,k(H; di)| < 1 then

Ψi,k(h; aqn) ≪ exp

(
−min (h1, . . . , hk, n)

1 −
∣∣Φi,k(H; qdi)

∣∣2

diqdi

)
.

Proof. We fix an R ∈ Pm1
× · · · × Pmr

. As i and k are fixed throughout the proof of the lemma
we set Ψ := Ψi,k, Φ := Φi,k, g := gR?i,i,k, f := fi, d := di.

We can represent every element in R in Q-ary expansion Thus we define functions σ0, σ1, . . .
iteratively by

Zℓ := Zσ1(ℓ)Q + Zσ0(ℓ) (deg Zσ0(ℓ) < d)

σt+1(ℓ) := σ1(σt(ℓ)).

The following properties of the σt are easy to check.

Zσ0(y) = Zy 0 ≤ y < qd,

Zσt(xqd+y) = Zσt(xqd) 0 ≤ y < qd, 0 < t,(3.5)

{Zσt(ℓ) : qdt ≤ ℓ < qd(t+1)} = {Zℓ : 0 ≤ ℓ < qd}.

Further we define

Φ(t)(H; aqn) :=
1

aqn−dt

aqn−dt−1∑

ℓ=0

g(Zσt(ℓqdt);H),

Ψ(t)(h; aqn) := q−
Pk

j=1 hj

∑

H1∈Ph1

· · ·
∑

Hk∈Phk

∣∣∣Φ(t)(H; aqn)
∣∣∣
2

for n ≥ dt.
We set

s =
min(h1, . . . , hk, n)

d
(3.6)

and show that for 0 ≤ t < s, Pj ∈ R and Rj ∈ Pd (j = 1, . . . , k)

(3.7) Φ(t)(PQ + R; aqn) = Φ(t+1)(P; aqn)Φ(R; qd)

holds.
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As f is Q-additive we get that f(PjQ + Rj) = f(Pj) + f(Rj) for j = 1, . . . , k. Further for
A ∈ R and I ∈ Pd we get g(AQ + I;PQ + R) = g(A;P)g(I;R). Thus (3.5) implies that

aqn−dtΦ(t)(PQ + R; aqn)

=

aqn−dt−1∑

ℓ=0

g(Zσt(ℓqdt);PQ + R)

=

aqn−d(t+1)−1∑

x=0

qd−1∑

y=0

g(Zσ1(σt(xqd(t+1)+yqdt))Q + Zσ0(σt(xqd(t+1)+yqdt));PQ + R)

=

aqn−d(t+1)−1∑

x=0

g(Z(σt+1(xqd(t+1)));P)

qd−1∑

y=0

g(Zy;R)

= aqn−d(t+1)Φ(t+1)(P; aqn)qdΦ(R; qd).

Now we show that for min(h1, . . . , hk) ≥ d

Ψ(t)(h; aqn) = Ψ(t+1)(h − d; aqn)Ψ(d, . . . , d; qd),

where h − d := (h1 − d, . . . , hk − d).
Thus, using (3.7), we derive

q
Pk

j=1 hj Ψ(t)(h; aqn)

=
∑

P1∈Ph1−d

∑

R1∈Pd

· · ·
∑

Pk∈Phk−d

∑

Rk∈Pd

Φ(t)(PQ + R; aqn)Φ(t)(PQ + R; aqn)

=
∑

P1∈Ph1−d

∑

R1∈Pd

· · ·
∑

Pk∈Phk−d

∑

Rk∈Pd

Φ(t+1)(P; aqn)Φ(R; qd)Φ(t+1)(P; aqn)Φ(R; qd)

=
∑

P1∈Ph1−d

· · ·
∑

Pk∈Phk−d

Φ(t+1)(P; aqn)Φ(t+1)(P; aqn)
∑

R1∈Pd

· · ·
∑

Rk∈Pd

Φ(R; qd)Φ(R; qd)

= q
Pk

j=1 hj−kdΨ(t+1)(h − d; aqn)qkdΨ(d, . . . , d; qd).

By the trivial estimation of g we get that
∣∣Ψ(t)(h;n)

∣∣ ≤ 1 for all h, n and t. Furthermore with

s as in (3.6) we get (note that Ψ = Ψ(0))

Ψ(h; aqn) = Ψ(0)(h; aqn) = Ψ(s)(h − sd; aqn)Ψ(d, . . . , d; qd)s.

Since
∣∣Ψ(s)(h − sd; aqn)

∣∣ ≤ 1 this implies that |Ψ(h; aqn)| ≤
∣∣Ψ(d, . . . , d; qd)

∣∣s. Therefore we are

left with estimating
∣∣Ψ(d, . . . , d; qd)

∣∣. By hypothesis there exists an H ∈ Pk
d with

∣∣Φ(H; qd)
∣∣ < 1,

yielding

Ψ(d, . . . , d; qd) ≤ 1 −
1 −

∣∣Φ(H; qd)
∣∣2

qd
≪ exp

(
−

1 −
∣∣Φ(H; qd)

∣∣2

qd

)
.

Finally for given h and n we get that

|Ψ(h; aqn)| ≤
∣∣Ψ(d, . . . , d; qd)

∣∣s ≪ exp

(
−min (h1, . . . , hk, n)

1 −
∣∣Φ(H; qd)

∣∣2

dqd

)

and the lemma is proven. �
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Remark 3.4. As in [6, p.133] we see that |Φi,k(H; di)| = 1 is uncommon. Indeed, we get

∀H ∈ Pk
di

: |Φi,k(H; di)| = 1

⇔ ∀H ∈ Pk
di
∀A ∈ Pdi

: gi,k(A;H) is constant

⇔ ∀H ∈ Pk
di
∀A,B ∈ Pdi

:

gi,k−1(A;H)gi,k−1(A + Hk;H) = gi,k−1(B;H)gi,k−1(B + Hk;H)

⇔ ∀H ∈ Pk−1
di

∀A,B ∈ Pdi
: gi,k−1(A + B;H) = gi,k−1(A;H)gi,k−1(B;H)

⇔ ∀A,B ∈ Pdi
: gi,0(A + B) = gi,0(A)gi,0(B).

Thus

∃H ∈ Pk
d : |Φi,k(H; d)| < 1

⇐⇒

∃A,B ∈ Pdi
: gi,0(A + B) 6= gi,0(A)gi,0(B).

Before we generalize Lemma 3.3 to r > 1 we need a preliminary lemma.

Lemma 3.5 ([6, Lemma 3.3]). Let f be a completely Q-additive function, and t ∈ N, K,R ∈ R
with deg R,deg K < deg Qt. Then for all N ∈ R satisfying N ≡ R mod Qt we have

f(N + K) − f(N) = f(R + K) − f(R).

Now we are ready for the next step to r > 1 (see [6, Lemma 3.5] for a special case of this result).

Lemma 3.6. Let k < p be a positive integer and R ∈ Pm1
× · · · × Pmr

be fixed. If there exist
H ∈ Pk

di
such that |Φi,k(H, di)| < 1 for at least one i = 1, . . . , r then

Ψk(h; aqn) ≪ exp

(
−min{h1, . . . , hk, n}

1 − |Φi,k(H; di)|
2

diqdi

)
.

Proof. We fix an R ∈ Pm1
× · · · × Pmr

. Let ℓ ∈ {1, . . . , r} be such that |Φℓ,k(H, dℓ)| < 1.
Then we want to reduce the estimation of Φk(h; aqn) to the estimation of Φℓ,k(h; aqn) by trivially
estimating the rest. Let s = n

3r
and choose ti (i ∈ {1, . . . , r}) in a way that bi = ti deg Qi satisfies

the inequality s ≤ bi ≤ 2s. Now set Bi = Qti

i and split the sum over A ∈ Pn up according to the
congruence classes modulo B1, . . . , Br.

Thus for a given S ∈ Pb1 × · · · × Pbr
we define

NS := {Zℓ : 0 ≤ ℓ < aqn, Zℓ ≡ S1 mod B1, . . . , Zℓ ≡ Sr mod Br} .

For n ≥
∑r

i=1 bi we get by the Chinese Remainder Theorem that

|NS| =
aqn

∏r
i=1 qbi

= aqn−
Pr

i=1 bi .

By our choice of the Bj we can apply Lemma 3.5 and get

aqnΦk(H;n) =
∑

A∈Pn

gk(A;H)

=
∑

S∈Pb1
×···×Pbr

∑

A∈NS

r∏

i=1

gi,k(Si;H)

=
∑

S∈Pb1
×···×Pbr

r∏

i=1

gi,k(Si;H)
aqn

∏r
j=1 qbj

= aqn

r∏

i=1

q−bi

∑

Si∈Pbi

gi,k(Si;H)

= aqn

r∏

i=1

Φi,k(H; qbi).
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Now we take the modulus and estimate Φi,k(H; qbi) for i 6= ℓ trivially. Thus

|Φk(H; aqn)| ≤
r∏

i=1

∣∣Φi,k(H; qbi)
∣∣ ≤

∣∣Φℓ,k(H; qbℓ)
∣∣ .

Therefore we can estimate Ψk by Ψℓ,k. Noting that bℓ ≪ n ≪ bℓ we get by an application of
Lemma 3.3 that

Ψk(h; aqn) ≤ Ψℓ,k(h; qbℓ) ≪ exp

(
−min{h1, . . . , hk, n}

1 −
∣∣Φℓ,k(H; qdℓ)

∣∣2

dℓqdℓ

)
.

�

Finally we generalize Lemma 3.6 by allowing an arbitrary integer as second argument for Ψk.

Lemma 3.7. Let k < p be a positive integer and R ∈ Pm1
×· · ·×Pmr

be fixed. Let d := [d1, . . . , dr]
be the least multiple. If there exist H ∈ Pk

di
such that |Φi,k(H, di)| < 1 for at least one i = 1, . . . r,

then

Ψk(h;n) ≪ exp

(
−min

{
h1, . . . , hk,

⌊
log n

2 log q

⌋}
1 − |Φi,k(H; di)|

2

dqdi

)
.

Proof. We fix R ∈ Pm1
×· · ·×Pmr

. As in Lemma 3.6 let ℓ be such that |Φℓ,k(H, dℓ)| < 1. Further
we set

s :=

⌊
log n

2d log q

⌋
.

First we show how we can split up Φk. Define two positive integers a and b with n = aqds + b
and 0 ≤ b < qds ≪ n

1
2 . Then for any P ∈ Rk and R ∈ Pk

ds

nΦk(PXds + R;n) = aqdsΦk(PXds + R; aqds) + ca(P)bΦk(R; b)

holds, where |ca(P)| = 1 is a constant depending on a and P. Indeed, we obtain

nΦk(PXds + R;n) =

aqds−1∑

ℓ=0

gk(Zℓ;PXds + R) +

aqds+b−1∑

ℓ=aqds

gk(Zℓ;PXds + R)

= aqdsΦk(PXds + R; aqds) +

b−1∑

y=0

gk(ZaXds + Zy;PXds + R)

= aqdsΦk(PXds + R; aqds) + ca(P) bΦk(R; b).

Now we show that by skipping the summands corresponding to b we do not lose to much.
∣∣Φk(PXds + R;n) − Φk(PXds + R; aqds)

∣∣

=

∣∣∣∣
aqdsΦk(PXds + R; aqds) + ca(P) bΦk(R; b)

n
− Φk(PXds + R; aqds)

∣∣∣∣

=
b

n

∣∣ca(P)Φk(R; b) − Φk(PXds + R; aqds)
∣∣

≪
b

n
≪ n− 1

2 .

Thus we get

Φk(PQs + R;n) = Φk(PQs + R; aqds) + O(n− 1
2 )

and, hence,

Ψk(h;n) = Ψk(h; aqds) + O(n− 1
2 ).

Now we apply Lemma 3.6 to Ψk(h; aqds) and get for fixed h

Ψ(h;n) ≪ exp

(
−min

(
h1, . . . , hk,

log n

2 log q

)
1 −

∣∣Φ(H; qdℓ)
∣∣2

dqdℓ

)
+ n− 1

2 .

�
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Now we are ready to state the proof of the higher correlation result.

Proof of Proposition 3.1. By the assumptions of Lemma 3.7 we split the proof into two cases.

Case 1: There exist an i and H ∈ Pk
d such that |Φi,k(H; di)| < 1. Then we get the result

by an application of Lemma 3.6.
Case 2: If for all i and H ∈ Pk

d we have |Φi,k(H; di)| = 1 then we get by Remark 3.3 that
gi,k(A + B;H) = gi,k(A;H)gi,k(B;H) and consequently

gk(A + B;H) = gk(A;H)gk(B;H)(3.8)

for any A,B ∈ Pd and thus by the Qi-additivity of the fi (i = 1, . . . , r) also for A ∈ R.
We again distinguish between two cases:

Case 2.1: g0(A) = 1 for every A ∈ R. This is the first alternative in the proposition.
Case 2.2: There exists A ∈ R such that g0(A) 6= 1. In this case the proof is exactly
the same as the proof of case 2.2 in [6, p.136]. �

Finally we are left to show Proposition 3.2. To this matter we state first the Weyl-van der
Corput inequality in K∞.

Lemma 3.8 ([5, Lemma 2.1]). Let u be a complex-valued function defined on R. Let n and s be
positive integers such that qs ≤ n. If n = aqs +b for a and b positive integers such that 0 ≤ b < qs,
then

qs(n + qs − b)−1

∣∣∣∣∣

n−1∑

ℓ=0

u(Zℓ)

∣∣∣∣∣

2

≤
∑

P∈Ps

n−1∑

ℓ=0

u(Zℓ)u(Zℓ + P ),

where u(B) = 0 if τ(B) ≥ 0.

Proof of Proposition 3.2. We only consider the case that there exists an R ∈ Pm1
×· · ·×Pmr

with
g0(A) 6= 1 as otherwise there is nothing to show. Let s be the greatest integer such that qs ≤ n.
Let a and b be positive integers such that n = aqs + b with 0 ≤ b < qs. Then we apply Lemma
3.8 with u(A) := g0(A) and get

qs(n + qs − b)−1

∣∣∣∣∣

n−1∑

ℓ=0

g0(Zℓ)

∣∣∣∣∣

2

≤
∑

P∈Ps

n−1∑

ℓ=0

g0(Zℓ)g0(Zℓ + P ) = n
∑

P∈Ps

Φ1(P ;n).

We apply Cauchy’s inequality to get Φ1(n, P ) squared as follows.

qs(n + qs − b)−2

∣∣∣∣∣

n−1∑

ℓ=0

g0(Zℓ)

∣∣∣∣∣

4

≤ n2
∑

P∈Ps

|Φ1(n, P )|2 = n2qsΨ1(s;n),

and, hence,
∣∣∣∣∣

n−1∑

ℓ=0

g0(Zℓ)

∣∣∣∣∣

4

≤ 4n4Ψ1(s;n).

Now we apply Proposition 3.1 to estimate Ψ1(s;n) and by noting that s → ∞ with n → ∞ the
proposition follows. �

4. Weyl’s Lemma for Q-additive functions

In this section we prove Theorem 2.2. Therefore we have to estimate sums of the form

Sn(ϕ) :=

n−1∑

ℓ=0

E(ϕ(Zℓ)),(4.1)

where n is a positive integer and ϕ is a function ϕ : R → K∞. As we already stated the Weyl-van
der Corput inequality in Lemma 3.8, we generalise this result to the case of the kth difference
operator.
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Lemma 4.1. Let n and k < char Fq be positive integers and u be a complex-valued function defined
on R. Let s1, . . . , sk be positive integers, such that qsj ≤ n for j = 1, . . . , k. Further let aj and bj

be positive integers for j = 1, . . . , k such that n = ajq
sj + bj and 0 ≤ bj < qsj . Then

|Sn(ϕ)|2
k

≤




k∏

j=1

(n + qsj − bj)
2k−j

qsj




∑

P1∈Ps1

· · ·
∑

Pk∈Psk

n−1∑

ℓ=0

E(∆k(ϕ(Zℓ);P1, . . . , Pk))

holds, where u(B) = 0 if τ(B) ≥ n.

Proof. We show this by induction on k. For k = 1 this is Lemma 3.8 with u(Zℓ) := E(ϕ(Zℓ)) for
0 ≤ ℓ < n.

For k > 1 we square the induction hypotheses and apply Cauchy’s inequality to get

|Sn(ϕ)|2
k+1

≤




k∏

j=1

(n + qsj − bj)
2k+1−j

q2sj




∣∣∣∣∣∣

∑

P1∈Ps1

· · ·
∑

Pk∈Psk

n−1∑

ℓ=0

E(∆k(ϕ(Zℓ);P1, . . . , Pk))

∣∣∣∣∣∣

2

≤
k∏

j=1

(n + qsj − bj)
2k+1−j

qsj

∑

P1∈Ps1

· · ·
∑

Pk∈Psk

∣∣∣∣∣

n−1∑

ℓ=0

E(∆k(ϕ(Zℓ);P1, . . . , Pk))

∣∣∣∣∣

2

.

Applying Lemma 3.8 with u(Zℓ) := E(∆k(ϕ(Zℓ);P1, . . . , Pk)) for the innermost sum yields

|Sn(ϕ)|2
k+1

≤




k+1∏

j=1

(n + qsj − bj)
2k+1−j

qsj




∑

P1∈Ps1

· · ·
∑

Pk+1∈Psk+1

n−1∑

ℓ=0

E(∆k+1(ϕ(Zℓ);P1, . . . , Pk+1)).

Thus the Lemma is proven. �

Now we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. We want to apply our results on higher correlation in Proposition 3.1 to-
gether with the generalized Weyl inequality of Lemma 3.7. For the case that we have the expetional
setting described in case 1 of Proposition 3.1. In the following section we will consider the resulting
sums in the proof of Theorem 2.3.

Before we start we write for short (h ∈ K∞[Y ])

Sn(h) :=

n−1∑

ℓ=0

E

(
h(Zℓ) +

r∑

i=1

Ri

Mi

fi(Zℓ)

)
,(4.2)

By hypotheses there exists an 1 ≤ i ≤ r and H ∈ Pk
di

with |Φi,k(H, di)| < 1.

Let d =
∏r

i=1 di be the product of the degrees of the Qi. Then set

s :=

⌊
log n

2d log q

⌋
.

Let a and b be positive integers such that n = aqs + b and 0 ≤ b < qs. We set

ϕ(A) = h(A) +
r∑

i=1

Ri

Mi

fi(A).(4.3)

Then an application of Lemma 4.1 with s1 = · · · = sk = s yields

|Sn(h)|2
k

≤
(n + qs − b)2

k−1

qks

∑

P∈Pk
s

n−1∑

ℓ=0

E(∆k(ϕ(Zℓ);P))
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We have to consider the k-th difference operator of ϕ. By linearity of the difference operator and
(4.3) we get

E(∆k(ϕ(Zℓ);P)) = E

(
∆k(h(Zℓ)) + ∆k

(
r∑

i=1

Ri

Mi

fi(Zℓ))

))

= E (k!αkP1 · · ·Pk) gk(Zℓ;P).

Thus

|Sn(α)|2
k

≤
(n + qs − b)2

k−1

qks

∑

P1∈Ps

· · ·
∑

Pk∈Ps

E (k!αkP1 · · ·Pk)
n−1∑

ℓ=0

gk(Zℓ;P).

Taking the modulus and shifting to the innermost sum yields

|Sn(h)|2
k

≤
(n + qs − b)2

k−1

qks

∑

P1∈Ps

· · ·
∑

Pk∈Ps

∣∣∣∣∣

n−1∑

ℓ=0

gk(Zℓ;P)

∣∣∣∣∣ .

We apply Cauchy’s inequality to get the modulus squared

|Sn(h)|2
k+1

≤
(n + qs − b)2

k+1−2

qks

∑

P1∈Ps

· · ·
∑

Pk∈Ps

∣∣∣∣∣

n−1∑

ℓ=0

gk(Zℓ;P)

∣∣∣∣∣

2

=
(n + qs − b)2

k+1−2

qks
Ψk(s, . . . , s;n).

Finally we apply Lemma 3.7 to estimate Ψk(s, . . . , s;n). Thus

|Sn(h)|2
k+1

≪
n2k+1−2

n
k
2

(
exp

(
−

⌊
log n

2 log q

⌋
1 − |Φi,k(H; di)|

2

dqdi

)
+ n− 1

2

)

and therefore

Sn(h) ≪ n1−2−k−1γ + n1−2−k−1( k+5
2 ),

where

γ = 2 +
k

2
+

1 − |Φi,k(H; di)|
2

dqdi
.

�

5. Uniform Distribution

In this section we want to apply Theorem 2.2 in order to show that sequences of the form
{h(Wℓ)}ℓ≥0 with h ∈ K∞[Y ] a polynomial are uniformly distributed. Therefore we begin with a
definition of uniform distribution in K∞. For a general concept of uniform distribution one may
consider Kuipers and Niederreiter [12] or Drmota and Tichy [7] for a complete survey on that
topic. In this paper we mainly follow Carlitz [3] and Dijksma [4, 5]. Further investigations on that
topic have been done by Car [2] (for k-th roots) and Webb [14] (for an integral form of uniform
distribution).

Let θ = {Ai}i≥1 be a sequence of elements in K∞. By Nk(N,β) we denote the number of
elements Ai with 1 ≤ i ≤ N and deg(Ai − β) < −k. Thus

Nk(N,β) := #{1 ≤ i ≤ N : deg(Ai − β) < −k}.

Then we call θ uniformly distributed (according to Carlitz) in K∞ if

lim
N→∞

1

N
Nk(N,β) = q−k(5.1)

for all positive integers k and all β ∈ K∞.
We are mainly interested in the distribution of the sequences Zi and Wi defined in Section 2.

First we state the Weyl Criterion for uniformly distributed sequences in K∞.
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Lemma 5.1 ([3, Theorem 3]). The sequence θ = {αi}i≥1 of elements of K∞ is uniformly dis-
tributed in K∞ if and only if

lim
N→∞

1

N

N∑

i=1

E(H αi) = 0

for all 0 6= H ∈ R.

Furthermore we need a relation between the number of Wℓ ≤ A and the number of Zℓ ≤ A.
Therefore we define the set

J := {(f1(A) mod M1, . . . , fr(A) mod Mr) : A ∈ R}

of all possible congruence classes. Then we expect that the A ∈ R are uniformly distributed
among these classes. Thus we want to show the following.

Proposition 5.2. For every R ∈ Pm1
× · · · × Pmr

we have

lim
n→∞

1

n
|{A ≤ Zn−1 : f1(A) ≡ J1 mod M1, . . . , fr(A) ≡ Jr mod Mr}| =

1

|J |
.

This is a slight generalization of [6, Theorem 1]. The proof, however, is almost the same and
we omit it.

Before we state proof of Theorem 2.3 we need a lemma which provides us with a tool to rewrite
a sum over Wℓ into one over Zℓ. Recall that n1, n2, . . . are the quantities defined in (2.7).

Lemma 5.3. Let m be a positive integer and ϕ : R → K∞ be a function. Then for ns−1 ≤ m < ns

there exists a positive integer n such that n < qs and

m−1∑

ℓ=0

E(ϕ(Wℓ)) =
∑

R1∈Pm1

· · ·
∑

Rr∈Pmr

n−1∑

ℓ=0

E

(
ϕ(Zℓ) +

r∑

i=1

Ri

Mi

(fi(Zℓ) − Ji)

)
.

Furthermore

m ∼
n

|J |
(5.2)

and if m = ns then n = qs.

Proof. The trick we use to rewrite this sum goes back to Gelfond [8]. We set

Hn(ϕ,R) :=

n−1∑

ℓ=0

E

(
ϕ(Zℓ) +

r∑

i=1

Ri

Mi

fi(Zℓ)

)
.

From this we get for a positive integer m

∑

R1∈Pm1

· · ·
∑

Rr∈Pmr

E

(
−

r∑

i=1

Ri Ji

Mi

)
Hn(ϕ,R)

=
∑

R1∈Pm1

· · ·
∑

Rr∈Pmr

n−1∑

ℓ=0

E

(
r∑

i=1

Ri

Mi

(fi(Zℓ) − Ji)

)
E(ϕ(Zℓ))

= q
Pr

i=1 mi

m−1∑

ℓ=0

E(ϕ(Wℓ)).

Finally we are left with estimating m. An application of Proposition 5.2 gives (5.2). Whereas
the assertion that if m = ns then n = qs is trivial. Thus the lemma is proved. �

In order to proof Theorem 2.3 for the case that gk(A;H) = 1 for all H ∈ Rk and A ∈ R we
need a Lemma due to Dijksma [4].

Lemma 5.4 ([4, Theorem 2.5]). Let h(Y ) ∈ K∞[Y ] be a polynomial of degree k with 0 < k < p =
char Fq. Then the sequence {f(Zℓ)}ℓ≥0 is uniformly distributed (mod 1) in K∞ if and only if the
polynomial h(Y ) − h(0) has at least one irrational coefficient.
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After these preparations it is quite easy to show Theorem 2.3.

Proof of Theorem 2.3. We want to use Weyl’s Criterion (Lemma 5.1) in order to show uniform
distribution. Thus we have to show

lim
n→∞

1

n

n∑

i=1

E(H h(Wi)) = 0

for every 0 6= H ∈ R.

To this end we fix an H ∈ R and set h̃(Y ) := H h(Y ). Furthermore we set

Sm(H) :=

m−1∑

ℓ=1

E(h̃(Wℓ)).

First we apply Lemma 5.3 to rewrite the sum. Thus

Sm(H) =
∑

R1∈Pm1

· · ·
∑

Rr∈Pmr

n−1∑

ℓ=0

E

(
h̃(Zℓ) +

r∑

i=1

Ri

Mi

(fi(Zℓ) − Ji)

)
.

We distinguish between the possible cases for gRRR,0(A) for every R ∈ Pm1
× · · · × Pmr

. We set
G1 := Pm1

× · · · × Pmr
\ G where G is defined in (3.4). Thus we get

Sm(H) = S0 + S1,

where

S0 =
∑

RRR∈G

E

(
−

r∑

i=1

Ri

Mi

Ji

)
n−1∑

ℓ=0

E
(
h̃(Zℓ)

)
,(5.3)

S1 =
∑

RRR∈G1

n−1∑

ℓ=0

E

(
h̃(Zℓ) +

r∑

i=1

Ri

Mi

(fi(Zℓ) − Ji)

)
.(5.4)

We consider the sums separately and start with S0. We distinguish two cases according to
whether G 6= {0} or G = {0}. If G 6= {0}, then we get

∑

RRR∈G

E

(
−

r∑

i=1

Ri

Mi

Ji

)
= 0

and therefore S0 = 0. On the other hand if G = {000} we have to consider the sum

S0 =

n−1∑

ℓ=0

E
(
h̃(Zℓ)

)
.

By hypotheses we have that at least one coefficient of h(Y ) − h(0) is irrational. The same holds

true for h̃(Y ) − h̃(0). An application of Lemma 5.4 yields S0 = o(n) = o(m). Thus we get

S0 =

{
o(m) if |G| = 1,

0 otherwise.

For S1 we apply Theorem 2.2 and get that

S1 =

n−1∑

ℓ=0

E

(
h̃(Zℓ) +

r∑

i=1

Ri

Mi

(fi(Zℓ) − Ji)

)
≪ n1−2−k−1γ + n1−2−k−1( k+5

2 ).

Finally we use (5.2) to get

S1 ≪ m1−2−k−1γ + m1−2−k−1( k+5
2 ).

As H was arbitrary we get together with Lemma 5.1 that the sequence is uniformly distributed.
�
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