
ADDITIVE FUNCTIONS FOR NUMBER SYSTEMS IN FUNCTION FIELDS

MANFRED G. MADRITSCH AND JÖRG M. THUSWALDNER

Abstract. Let Fq be a finite field with q elements and p ∈ Fq[X, Y ]. In this paper we study
properties of additive functions with respect to number systems which are defined in the ring
Fq[X, Y ]/p Fq[X, Y ]. Our results comprise distribution results, exponential sum estimations as
well as a version of Waring’s Problem restricted by such additive functions. Similar results have
been shown for b-adic number systems as well as number systems in finite fields in the sense of
Kovács and Pethő. In the proofs of the results contained in the present paper new difficulties
occur because the “fundamental domains” associated to the number systems studied here have
a complicated structure.

1. Introduction

In this paper we want to study additive functions. Before we start, however, we need an
impression, what we mean by a number system and therefore by an additive function in this
system. Therefore we start with the simplest case, a number system in the non-negative integers.
Let b ≥ 2 be a positive integer. Then every g ∈ N admits a unique and finite representation of the
form

g =
ℓ−1
∑

k=0

dkb
k with di ∈ {0, . . . , b− 1} and dℓ−1 6= 0 if g 6= 0.

We call a function f : R → G, with G an Abelian group, b-additive (in this number system) if

f(g) =

ℓ−1
∑

k=0

f(dkb
k).

If f only acts on the digits di, i.e., if

f(g) =
ℓ−1
∑

k=0

f(dk)

we call f strictly b-additive. A simple example of a strictly b-additive function is the sum of digits
function sb, defined by

sb(g) =

ℓ−1
∑

k=0

dk.

There are many questions around these functions and one of the first answered is its distribution
in residue classes.

Theorem (Kim [9]). Let b1, . . . , br ≥ 2 be integers and m1, . . . ,mr be positive integers. Further-
more let fi : N → Z, 1 ≤ i ≤ r, be a bi-additive function.

Set

H := {(f1(n) mod m1, . . . , fr(n) mod mr) : n ≥ 0} .
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Then H is a subgroup of Zm1 × · · · × Zmr and for every (a1, . . . , ar) ∈ H we have

# {n < N : f1(n) ≡ a1 mod m1, . . . , fr(n) ≡ ar mod mr} =
N

|H |
+ O

(

N1−δ
)

where δ = 1/(120r2b
3
m2) with

b = max
1≤i≤r

bi and m = max
1≤i≤r

mi

and the O-constant depends only on r and b1, . . . , br.

On the other hand one is also interested in the asymptotic distribution of the values of a
b-additive function.

Theorem (Bassily and Katái [2]). Let f : N → R be a b-additive function such that f(abk) = O(1)
as k → ∞ and a ∈ N . Furthermore let

mk,b :=
1

b

b−1
∑

a=0

f(abk), σ2
k,b :=

1

q

b−1
∑

a=0

f2(abk) −m2
k,b,

and

Mb(x) :=

N
∑

k=0

mk,b, D2
b (x) =

N
∑

k=0

σ2
k,b

with N = [logb x]. Assume that Db(x)/(log x)1/3 → ∞ as x → ∞ and let p(x) be a polynomial of
degree d with integer coefficients and positive leading term. Then, as x→ ∞,

1

x
#

{

n < x :
f(p(n)) −Mb(x

d)

Db(xd)
< y

}

→ Φ(y),

where Φ is the normal distribution function.

Generalizing these distribution results one can attack Waring’s Problem with a digitally re-
stricted set as base. In particular, Thuswaldner and Tichy [17] proved the following result.

Theorem. Let b, k, a and m be integers. Then every sufficiently large integer N can be written
as sum

N = xk
1 + · · · + xk

s ,

where xi ∈ N and sb(xi) ≡ a mod m for i = 1, . . . , s and s only depends on k. Moreover, the
number of representations of N in this way obeys a Hardy-Littlewood type asymptotic formula.

A generalization of this theorem to arbitrary b-additive functions is due to Wagner [18].
In 1991 Kovács and Pethő [10] introduced number systems in the polynomial ring Fq[X ] over

a finite field Fq. It is possible to define a generalization of b-additive functions with respect to
such number systems. In particular, fix a polynomial Q ∈ Fq[X ]. Then every other polynomial
G ∈ Fq[X ] has a unique finite representation of the form

G =

ℓ−1
∑

k=0

DkQ
k with degDk < degQ

and Dℓ−1 6= 0 if G 6= 0.
Analogs of the two distribution theorems above were shown for this setting by Drmota and

Gutenbrunner [6]. Waring’s Problem with this digitally restricted set was solved by the first
author [12] where the Weyl sum estimates came from the two authors of the present paper [13].

Recently, Scheicher and Thuswaldner [14] introduced a generalization of these number systems
which live in certain function fields and will be defined below. In the present paper we will define
and study analogues of b-additive functions in (slight generalizations of) these number systems.
Compared with the case of number systems in Fq[X ], new problems occur in this context. This
is mainly due to the fact that the “fundamental domains” of these number systems, which have
been studied by Beck et al. [3], have a nontrivial structure. Nevertheless we are not able to apply
their results directly since we will work with a valuation instead of the degree function. Therefore
we will develop our view of the fundamental domains in Section 3.
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2. Definitions and results

The idea of number systems in function fields is based on the theory of number systems in
algebraic number fields. Therefore we will first introduce number systems in these fields and then
rewrite them for function fields. A number system in an algebraic number field is defined as
follows. Let β be an algebraic integer. Let b ∈ Z[β] and N ⊂ Z, then we call the pair (b,N ) a
number system in Z[β] if every g ∈ Z[β] admits a unique and finite representation of the form

g =

ℓ−1
∑

k=0

dkb
k with dk ∈ N

and dℓ−1 6= 0 if g 6= 0.
Now the idea is to replace Z by Fq[X ] and consider the same construction. Thus let Fq[X ]

and Fq(X) be the ring of polynomials and the field of rational functions over a finite field Fq,
respectively. Furthermore let p ∈ Fq[X,Y ] be a separable irreducible polynomial. Then we are
interested in number systems in S = Fq[X,Y ]/pFq[X,Y ]. Let B ∈ S and N ⊂ Fq[X ], then we call
the pair (B,N ) a number system in S if every G ∈ S admits a unique and finite representation of
the form

G =

ℓ−1
∑

k=0

DkB
k with Dk ∈ N(2.1)

and Dℓ−1 6= 0 if G 6= 0. We call this representation the B-digit representation of G and LB(G) = ℓ
its length and denote by LB(m) the set of all G ∈ S whose B-adic length is less than m, i.e.,

LB(m) := {Q ∈ S | LB(Q) < m} .

Imitating the definitions above we call a function f strictly B-additive if it acts only on the digits
of (2.1), i.e., if

f(G) =

ℓ−1
∑

k=0

f(Dk)

with G as in (2.1). The definition of a B-additive function is done analogously. As mentioned
above, number systems in S have been investigated by Scheicher and Thuswaldner [14] as well as
Beck et al. [3]. They gained the following characterization.

Proposition 2.1. Let p ∈ Fq[X,Y ] be a polynomial such that

p(Y ) = Y d + pd−1Y
d−1 + · · · + p1Y + p0.

Set N = {D ∈ Fq[X ] : degD < deg p0}. Then (Y,N ) is a number system in Fq[X,Y ]/pFq[X,Y ]
if and only if

d
max
i=1

deg pi < deg p0.

Indeed, in these papers only the case B = Y has been considered. However, as we will see in
Proposition 3.1 this restriction is not crucial.

We want to illustrate Proposition 2.1 by the following example.

Example 2.2. Let p := Y 2 + XY + X2 then p2 = 1, p1 = X , and p0 = X2. Since deg p2 <
deg p1 < deg p0 we get by an application of Proposition 2.1 that Y is a basis of a number system
in Fq[X,Y ]/pFq[X,Y ].

We will use the following notations (we mainly follow those in [4] and [19]). It is well-known
that K∞ := Fq((X

−1)) is the completion of K := Fq(X) for the valuation at ∞, i.e., for every

α = A
B ∈ K let

ν(α) = ν∞(α) := degB − degA

be the valuation at ∞ (the inverse degree valuation). Let L = Fq(X,Y )/pFq(X,Y ) be an extension
of degree n. We assume that S is the ring of integers of L. We denote by ω the extension of ν to
L and by L∞ the completion of L for ω.
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In order to get an extension of the degree in L we put for every α ∈ L∞,

d(α) := −ω(α).

It is clear by the definition of d that d(A) = deg(A) for every A ∈ Fq[X ].
For any positive integer m and a subset T ⊂ L we define

T (m) := {A ∈ T : d(A) ≤ m} .(2.2)

Our first result is a generalization of Kim’s result to these number systems.

Theorem 2.3. For i ∈ {1, . . . , r} let (Bi,Ni) be number systems in S. Let fi : S → S be a
Bi-additive function with coprime Bi for i = 1, . . . , r. Furthermore let Mi be ideals in S, Mi be
any set of representatives of the congruence classes of Mi for i ∈ {1, . . . , r}.

Set

H := {(f1(A) mod M1, . . . , fr(A) mod Mr) : A ∈ S} .

Then H is isomorphic to a subgroup of M1 × · · · ×Mr and for every (H1, . . . , Hr) ∈ H we have

lim
n→∞

1

#S(n)
# {A ∈ S(n) : f1(A) ≡ H1 mod M1, . . . , fr(A) ≡ Hr mod Mr} =

1

|H|
.

Furthermore we get an equivalent result for the theorem of Bassily and Kátai.

Theorem 2.4. Let (B,N ) be a number system in S with d(B) = a
b and let f : S → R be a strictly

B-additive function. Set

µf :=
1

#N

∑

D∈N

f(A) and σ2
f :=

1

#N

∑

D∈N

f(A)2 − µ2
f .

Let h ∈ L∞[Z] be a polynomial of degree r. Suppose that σf > 0 and S is the ring of integers
of L, then for n→ ∞

#







A ∈ S(n) :
f(h(A)) − nrb

a µf
√

nrb
a σf

≤ x







→ Φ(x),

where Φ denotes the standard normal distribution function.

In the same way as above we want to apply this result in order to solve Waring’s Problem.
Therefore we first need a definition of Weyl sums in this setting.

Let Tr and N be the trace and the norm of an element in L∞ over K∞ and Res be the residue
of an element of Fq((X

−1)), i.e.,

Res





∑

j∈Z

ajX
j



 = a−1.

In this paper exponential sums with digital restrictions form an important tool. To define such
sums properly we need additive characters. Let ψ be a non-principal character on Fq. Then we
define a character E on L∞ by

E(x) := ψ (Res ◦Tr(x)) .(2.3)

Now we can state the result concerning Weyl sums.

Theorem 2.5. For i ∈ {1, . . . , r} let (Bi,Ni) be number systems in S with d(Bi) = ai

bi
and

#Ni = qdi . Let h ∈ L∞[Z] be a polynomial of degree k < char Fq and fi : S → S be a Bi-additive
function with coprime Bi for i = 1, . . . , r. Furthermore let Mi be ideals in S and Mi be any set
of representatives of the congruence classes of Mi for i ∈ {1, . . . , r}.

If there exist ℓ ∈ {1, . . . , r} and H ∈ LBℓ
(bℓ)

k such that
∣

∣

∣

∣

∣

∣

q−dℓbℓ

∑

A∈LBℓ
(bℓ)

E

(

Rℓ

Mℓ
∆k(fℓ(A);H)

)

∣

∣

∣

∣

∣

∣

< 1,
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then there exists a constant γ > 0 depending only on fℓ and Bℓ such that

∑

A∈S(n)

E

(

h(A) +

r
∑

i=1

Ri

Mi
fi(A)

)

≪ (#S(n))
1− k+2

2k+1 −γ
.

With help of these estimates we can solve Waring’s Problem in our setting.

Theorem 2.6. For i ∈ {1, . . . , r} let (Bi,Ni) be number systems in S with d(Bi) = ai

bi
and

#Ni = qdi . Let fi : S → S be Bi-additive functions for i ∈ {1, . . . , r}. Choose ideals Mi of S and
let Mi be any set of representatives of the congruence classes of Mi for i ∈ {1, . . . , r}.

Assume that S is the ring of integers of L and that for every 0 6= R ∈ M1 × · · · ×Mr there
exist ℓ ∈ {1, . . . , r} and H ∈ LBℓ

(bℓ)
k such that

∣

∣

∣

∣

∣

∣

q−dℓbℓ

∑

A∈LBℓ
(bℓ)

E

(

r
∑

i=1

Ri

Mi
∆k(fi(A);H)

)

∣

∣

∣

∣

∣

∣

< 1.

Let 0 < k < char Fq and s be an integer such that s > 2k. Then every N ∈ S, such that d(N) is
sufficiently large, admits a representation as sum of k-th powers of the form

N = P k
1 + · · · + P k

s

with Pj ∈ S(⌈d(N)/k⌉) and fi(Pj) ≡ Ji mod Mi for i = 1, . . . , r and j = 1, . . . , s.

Remark 2.7. The restriction s > 2k originates from Waring’s Problem without digital restrictions.
In order to sharpen this bound, one needs a better understanding of the unrestricted problem.

The paper is organized as follows. In Section 3 we collect some basic facts about number systems
in S. Each of the subsequent sections will be devoted to the proof of one of our results. The proofs
of our results are based on the proofs of the corresponding results for number systems in Fq[X ]
in the sense of Kovács and Pethő [10]. In particular, the proofs of Theorem 2.3 and Theorem 2.4
will follow Drmota and Gutenbrunner [6], the proof of Theorem 2.5 will follow Madritsch and
Thuswaldner [13], and the proof of Theorem 2.6 will follow Madritsch [12]. New difficulties occur
in our more general setting. For instance, the “fundamental domains” of the number systems in
S are no longer trivial.

3. Properties of Number Systems in S

Since the characterization of Scheicher and Thuswaldner (Proposition 2.1) deals only with the
case of B = Y we need to generalize this to arbitrary bases.

Proposition 3.1. The pair (B,N ) is a number system in S if and only if there exists a polynomial
p̃ ∈ Fq[X,Z] and an Fq[X ]-isomorphism ϕ : Fq[X,Z]/p̃Fq[X,Z] ↔ S such that Z is a basis of a
number system in Fq[X,Z]/p̃Fq[X,Z] and ϕ(Z) = B.

Proof. Let (B,N ) be a number system in S. Then for k = 1, . . . , d there exists rk and di,j with
i = 1, . . . , k and j = 0, . . . , ri such that

Y k = dk,0 + dk,1B + · · · dk,rk
Brk .

Since the di,j ∈ Fq[X ] we get that there exists a polynomial p̃ ∈ Fq[X,Z] such that p̃(X,B) =
p(X,Y ). By setting ϕ(Z) = B and ϕ(d) = d for d ∈ N we get that ϕ is an isomorphism because
of (B,N ) being a number system. In order to show that Z is also a basis we choose an element
s ∈ Fq[X,Z]/p̃Fq[X,Z]. Then

ϕ(s) =
∑

k≥0

dkB
k

which implies that

s =
∑

k≥0

dkZ
k.

Thus (Z,N ) is a number system in Fq[X,Z]/p̃Fq[X,Z].
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For the contrary assume that there exists a polynomial p̃ ∈ Fq[X,Z] together with an isomor-
phism ϕ and (Z,N ) is a number system in Fq[X,Z]/p̃Fq[X,Z]. Set B := ϕ(Z) ∈ S. Then every
element s ∈ S gives rise to a representation

ϕ−1(s) =
∑

k≥0

dkZ
k.

Following the isomorphism back we get that

s =
∑

k≥0

dkB
k.

�

Remark 3.2. It follows from the proof that the set of digits N is the same for both number systems.
Thus in view of Proposition 2.1 we get that for every B there exists a d such that

N := {A ∈ Fq[X ] : d(A) < d}

and the pairs (B,N ) and (Z,N ) are number systems in S and Fq[X,Z]/p̃Fq[X,Z], respectively.

Since this is very important for our considerations we want to illustrate this by the following
example.

Example 3.3. Let p := Y 2 +XY +X4 +X2 and let B = Y +X2 +X be the basis of a number
system in Fq[X,Y ]/pFq[X,Y ]. Now by Proposition 3.1 it is sufficient to show that Z is the
basis of a number system in p̃. Therefore we set as in the proposition ϕ(B) = Z and get that p̃ =
Z2+XZ+X2. By Example 2.2 we get that Z is a basis of a number system in Fq[X,Z]/p̃Fq[X,Z].

In view of Remark 3.2 we get that for both number systems the set of digits is N = {A ∈
Fq[X ] : d(A) < 4}.

The next thing we need in connection with the number systems is an estimation of the length
of the expansion. Since our goal is to show distributional results, we have to be sure to count the
elements in an appropriate way. Above in (2.2) we therefore defined the notation S(m), which
will be justified by the following proposition.

Proposition 3.4. Let (B,N ) be a number system in S. Then for any G ∈ S \ {0} we have
∣

∣

∣

∣

LB(G) −
d(G)

d(B)

∣

∣

∣

∣

≤ c,

where c is a constant depending on B and N .

Proof. The idea of this proof is based on the proof of the main result of [11], where the analogous
result for number systems in algebraic number fields is shown.

Let G ∈ S \ {0} be arbitrary and let

G = D0 +D1B + · · · +DkB
k with Di ∈ N

be its B-adic representation. Note that d(B) > 0 because otherwise by inspecting the B-adic
representation of G we would have d(G) ≤ d where d := maxD∈N d(D). Since G was chosen
arbitrary, this is absurd.

As d(B) > 0 we get from the B-adic representation of G that

d(G) =
k

max
i=0

d(DiB
i) =

k
max
i=0

(d(Di) + i · d(B)) ≤ d+ k d(B).

Thus

LB(G) = k + 1 ≥
d(G) − d

d(B)
,

which establishes the lower bound.
For the upper bound we let G ∈ S \ {0} and let k ≥ 1 be such that

(3.1) (k − 1) · d(B) ≤ d(G) < k · d(B).
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Then there exists an G′ ∈ S such that

G =

k−1
∑

i=0

DiB
i +G′Bk

with Di ∈ N for i = 0, . . . , k − 1. Applying the degree function on both sides and using (3.1)
yields

d(G′) ≤ d(G) − k · d(B) + c ≤ c,

where c > 0 is a constant depending on B and N . Now let L := maxA∈S(c) LB(A) be the maximal
length of elements of degree not bigger than c. Thus we have, using (3.1) again,

LB(G) ≤ (k − 1) + 1 + L ≤
d(G)

d(B)
+ L+ 1.

�

4. Distribution in Residue Classes

In this section we want to prove Theorem 2.3. But before we get straight into it we have to
state some preliminary lemmas.

4.1. Preliminary Lemmas. Our first lemma is a consideration of so-called complete exponential
sums in L where the character E is defined in (2.3).

Lemma 4.1 ([4, Corollary II.3.2]). Let R ∈ S. Furthermore let M be an ideal and M a complete
set of residues modulo M . Then

∑

A∈M

E

(

R

M
A

)

=

{

N(M) if R = 0,

0 otherwise.

Recall that N is the norm of an element of L over K. For k ≥ 0 we recursively define the k-times
difference function ∆k by

∆0(f(A)) = f(A),

∆k+1(f(A);H1, . . . , Hk+1) = ∆k(f(A+Hk+1);H1, . . . , Hk) − ∆k(f(A);H1, . . . , Hk)

The next lemma is a version of the Weyl-van der Corput inequality for the field L.

Lemma 4.2. Let k be a positive integer and R be a finite subset of S. Then

∣

∣

∣

∣

∣

∑

A∈R

E(p(A))

∣

∣

∣

∣

∣

2k

= (#R)2
k−k−1

∑

H1∈R

· · ·
∑

Hk∈R

∑

A∈R

E(∆k(p(A);H1, . . . , Hk)).

Proof. The proof is the same as in the classical case (see for instance [1, Chapter IV, §5]). �

Finally we need a lemma to treat the different bases.

Lemma 4.3. Let (B,N ) be a number system in S with #N = qd. Let f be a completely B-
additive function, and t ∈ N, K,R ∈ S with LB(R), LB(K) < t · d. Then for all N ∈ S satisfying
N ≡ R mod Bt we have

f(N +K) − f(N) = f(R+K) − f(R).

Proof. This is analogous to the proof of [4, Lemma 3]. �
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4.2. The fundamental domain. Let (B,N ) be a number system in S. Then by the Theorem
of Puiseux (cf. Theorem 4.1.1 of [5]) we get that there exist a, b ∈ N such that

d(B) =
a

b
.

Before we start proving our higher correlation result we have to consider the internal structure
of S(n) in connection with the number system (B,N ). Assume that #N = qd. If R ∈ LB(b) we
get

d(R) = d(Db−1B
b−1 + · · · +D1B +D0) =

b−1
max
i=0

(

deg(Di) + i
a

b

)

≤ (d− 1) + a−
a

b
.

Assuming that n ≥ (d− 1) + a− a
b this implies that

S(n) = {A ∈ S : d(A) ≤ n} =
{

PBb +R ∈ S | P ∈ S(n− a), R ∈ LB(b)
}

.(4.1)

Remark 4.4. In our case the fundamental domain consists of all elements G with negative degree
d(G). In contrast Scheicher and Thuswaldner [15] let the fundamental domain consist of all
elements G with only negative exponents in their B-adic representation. We will adopt their ideas
in order to fit our circumstances.

Thus we define the fundamental domain F of a number system (B,N ) by

F := {α ∈ L∞ : d(α) < 0}.(4.2)

4.3. Higher Correlation. For the rest of this section let (Bi,Ni), 1 ≤ i ≤ r with di = 1 +
maxD∈Ni degD be number systems in S with coprime bases and let fi be Bi-additive functions.
Let

d(Bi) =
ai

bi
for i = 1, . . . , r.

Furthermore let Mi, 1 ≤ i ≤ r be ideals of S and let Mi be a complete set of residues modulo
Mi, respectively. We define for R = (R1, . . . , Rr) ∈ M1 × · · · ×Mr and H ∈ Sk

gR,i,k(A;H) = gi,k(A;H) := E

(

Ri

Mi
∆k(fi(A);H)

)

,

gR,k(A;H) = gk(A;H) :=

r
∏

i=1

gi,k(A;H).

(4.3)

We will omit the R (respectively the Ri) in the index of g if this omission causes no confusion.
In order to show our correlation results we define the following functions.

Φi,k(H;n) :=
1

#S(n)

∑

A∈S(n)

gi,k(A;H),(4.4)

Ψi,k(h;n) :=

k
∏

j=1

(#S(hj))
−1

∑

H1∈S(h1)

· · ·
∑

Hk∈S(hk)

|Φi,k(H;n)|2 ,

Λi,k(H) := q−dibi

∑

A∈LBi
(bi)

gi,k(A;H).

Furthermore we denote by Φk and Ψk the corresponding correlations with gi,k replaced by gk.
Note that Λi,k is needed because the fundamental domains in our setting are non-trivial. This

is reflected by (4.1) and (4.2).
We are now in a position to state our correlation result.

Proposition 4.5. Let h1, . . . , hk, n be positive integers. Then for every 0 6= R ∈ M1 × · · · ×Mr

either

∀A ∈ S : g0(A) = E

(

r
∑

i=1

Ri

Mi
fi(A)

)

= 1
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or there exist i ∈ {1, . . . , k} and an H ∈ LBi(bi)
k such that |Λi,k(H)| < 1 and

Ψk(h;n) ≪ exp

(

−min (h1, . . . , hk, n)
1 − |Λ(H; 1)|2

aiqdibi

)

.

Before we start with the proof we want to take a closer look at those R ∈ M1 × · · · ×Mr such
that gR,0(A) = 1 for all A ∈ S. Let R1 and R2 be such that gR1,0(A) = gR2,0(A) = 1. Then

gR1+R2,0(A) = E

(

r
∑

i=1

R1,i +R2,i

Mi
fi(A)

)

= E

(

r
∑

i=1

R1,i

Mi
fi(A) +

R2,i

Mi
fi(A)

)

= gR1,0(A)gR2,0(A) = 1.

Thus we get that together with the identity element 0 these R form a group by component addition.
We denote this group by

G := {R ∈ M1 × · · · ×Mr : ∀A ∈ S : gR,0(A) = 0}(4.5)

The proof of Proposition 4.5 is in two steps. First we assume that r = 1. Secondly we reduce
the general case to the case r = 1.

Lemma 4.6. Let k < char(Fq) and h be positive integers. Fix an ℓ ∈ {1, . . . , r} and R ∈ Mℓ. If
there exists an H ∈ LBℓ

(bℓ)
k such that |Λℓ,k(H)| < 1, then

Ψℓ,k(h;n) ≪ exp

(

−min (h1, . . . , hk, n)
1 − |Λℓ,k(H)|2

aℓqdℓbℓ

)

.

Proof. We fix an R ∈ Mℓ. As ℓ and k are fixed throughout the proof we drop the indices,i.e., we
set B := Bℓ, Ψ := Ψℓ,k, Φ := Φℓ,k, Λℓ,k := Λ, g := gℓ,k, f := fℓ, d := dℓ, a := aℓ, and b := bℓ.

Following the proof of [6, Lemma 4] together with our observation in (4.1) we easily get that

Φ(PBb + R;n) = Φ(P;n− a)Λ(R; b)

holds. We set

Ξ := q−kdb
∑

R1∈LB(b)

· · ·
∑

Rk∈LB(b)

|Λ(R, b)|2 .

This yields

Ψ(h;n) = Ψ(h − a;n− a)Ξ,

where h − a := (h1 − a, . . . , hk − a).
By iteration we derive for s ≤ min(h1, . . . , hk, n)/a

Ψ(h;n) = Ψ(h− sa;n− sa)Ξs.

By the trivial estimation of g we get that |Ψ(h;n)| ≤ 1 for all h and n. This implies that
|Ψ(h;n)| ≤ |Ξ|s. Therefore we are left with estimating |Ξ|. By hypothesis there exists an H ∈
LB(b)k with |Λ(H, b)| < 1, yielding

Ξ ≤ 1 −
1 − |Λ(H, b)|2

qdb
≪ exp

(

−
1 − |Λ(H, b)|2

qdb

)

.

Inserting this in (4.3) we get that

|Ψ(h;n)| ≤ |Ξ|s ≪ exp

(

−min (h1, . . . , hk, n)
1 − |Φ(H, 1)|2

aqdb

)

and the lemma is proven. �
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Remark 4.7. |Ψℓ,k(h; 1)| = 1 is uncommon. Indeed, we get

∀H ∈ LBℓ
(bℓ)

k : |Φℓ,k(H)| = 1

⇔ ∀H ∈ LBℓ
(bℓ)

k ∀A ∈ LBℓ
(bℓ)

k : gℓ,k(A;H) is constant

⇔ ∀H ∈ LBℓ
(bℓ)

k ∀A,B ∈ LBℓ
(bℓ) :

gℓ,k−1(A;H)gℓ,k−1(A+Hk;H) = gℓ,k−1(B;H)gℓ,k−1(B +Hk;H)

⇔ ∀H ∈ LBℓ
(bℓ)

k−1 ∀A,B ∈ LBℓ
(bℓ) : gℓ,k−1(A+B;H) = gℓ,k−1(A;H)gℓ,k−1(B;H)

⇔ ∀A,B ∈ LBℓ
(bℓ) : gℓ,0(A+B) = gℓ,0(A)gℓ,0(B).

Thus

∃H ∈ LBℓ
(bℓ)

k : |Φℓ,k(H; 1)| < 1

⇐⇒

∃A,B ∈ LBℓ
(bℓ) : gℓ,0(A+B) 6= gℓ,0(A)gℓ,0(B).

In the next lemma we want to generalize to the case r 6= 1 and therefore replace the Ψℓ,k from
above by Ψk.

Lemma 4.8. Let k < char(Fq) and h be positive integers and fix an R ∈ M1 × · · ·×Mr. If there
exist an ℓ and an H ∈ LBℓ

(bℓ)
k such that |Λℓ,k(H)| < 1, then

Ψk(h;n) ≪ exp

(

−min{h1, . . . , hk, n}
1 − |Λℓ,k(H)|2

aiqdℓbℓ

)

.

Proof. We will follow the proof of [13, Lemma 3.6]. The main difference here is that the “degrees”
of the bases need not be integers and therefore we have to use a special treatment for them.

Let ℓ ∈ {1, . . . , r} be such that |Λℓ,k(H)| < 1. Then we want to reduce the estimation of Φk(h;n)
to that of Φℓ,k(h;n) by trivially estimating the rest. Let s = n

3r and choose ti (i ∈ {1, . . . , r})
in a way such that si = tidibi satisfies the inequality s ≤ si ≤ 2s. Now we split the sum over
all A ∈ S(n) up according to the congruence classes modulo Bt1

1 , . . . , B
tr
r . Therefore let Bi be a

complete set of residues modulo SBti

i for i = 1, . . . , r.
Thus for a given C ∈ B1 × · · · × Br we define

NC :=
{

A ∈ S(n) : A ≡ C1 mod Bt1
1 , . . . , A ≡ Cr mod Btr

r

}

.

For n ≥ we get by the Chinese Remainder Theorem that

|NC| =
#S(n)

∏r
i=1 q

dibiti
.

By our choice of the Bj we can apply Lemma 4.3 and get

Φk(H;n) =

r
∏

i=1

(Λi,k(H))
ti .

Now we take the modulus and estimate Λi,k(H) for i 6= ℓ trivially. Thus

|Φk(H;n)| ≤
r
∏

i=1

|Λi,k(H)|ti ≤ |Λℓ,k(H)|ti .

In the same way we can estimate Ψk by Λℓ,k. Noting that sℓ ≪ n≪ sℓ we get by an application
of Lemma 4.6 that

Ψk(h;n) ≤ Ψℓ,k(h; bℓ) ≪ exp

(

−min{h1, . . . , hk, n}
1 − |Λℓ,k(H)|2

aℓqdℓbℓ

)

.

�

Now we are ready to state the proof of the higher correlation result.

Proof of Proposition 4.5. By the assumptions of Lemma 4.8 we split the proof into two cases.
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Case 1: There exist an ℓ and H ∈ LBℓ
(bℓ)

k such that |Λℓ,k(H)| < 1. Then we get the
result by an application of Lemma 4.8.
Case 2: If for all ℓ ∈ {1, . . . , r} and all H ∈ LBℓ

(bℓ)
k we have |Λℓ,k(H)| = 1 then we

get by Remark 4.7 that gℓ,k(A + B;H) = gℓ,k(A;H)gℓ,k(B;H) and consequently by the
Bℓ-additivity of the fℓ (ℓ = 1, . . . , r) for A,B ∈ S

gk(A+B;H) = gk(A;H)gk(B;H).(4.6)

We distinguish between two cases:
Case 2.1: g0(A) = 1 for every A ∈ S. This is the first alternative in the proposition.
Case 2.2: There exists A ∈ S such that g0(A) 6= 1. In this case the proof is exactly
the same as the proof of case 2.2 in [6, p.136] or [13, p.889]. �

4.4. Distribution Result. In order to show Theorem 2.3 we need a further lemma.

Lemma 4.9. For every R ∈ M1 × · · · ×Mr either

∀A ∈ S : g0(A) = E

(

r
∑

i=1

Ri

Mi
fi(A)

)

= 1

or

lim
n→∞

1

#S(n)

∑

A∈S(n)

g0(A) = 0

holds.

Proof. We only consider the case that there exists an R ∈ M1 × · · · × Mr with g0(A) 6= 1 as
otherwise there is nothing to show.

The idea is to apply Lemma 4.2 with k = 1. By this lemma we have
∣

∣

∣

∣

∣

∣

∑

A∈S(n)

g0(A)

∣

∣

∣

∣

∣

∣

2

≤ (#S(n))
2
∑

H∈S(n)

∑

A∈S(n)

E(∆1(f(A);H)).

Taking the modulus and squaring again together with Cauchy’s inequality yields
∣

∣

∣

∣

∣

∣

∑

A∈S(n)

g0(A)

∣

∣

∣

∣

∣

∣

4

≤ (#S(n))3
∑

H∈S(n)

|Φ1(H ;n)|2 = (#S(n))4 Ψ1(n;n).

Now an application of Proposition 4.5 proves the lemma. �

Proof of Theorem 2.3. We define the additive group

H0 :=

{

C ∈ M1 × · · · ×Mr : ∀R ∈ G : E

(

r
∑

i=1

−
RiCi

Mi

)

= 1

}

(4.7)

where G is the group defined in (4.5).
Then we use Lemma 4.1 to rewrite the problem and get

1

#S(n)
# {A ∈ S(n) : f1(A) ≡ C1 mod M1, . . . , fr(A) ≡ Cr mod Mr}

=
1

#S(n)

∑

A∈S(n)

r
∏

i=1

1

N(Mi)

∑

Ri∈Mi

E

(

Ri

Mi
(fi(A) − Ci)

)

(4.8)

=
1

∏r
i=1 N(Mi)

∑

R∈M1×···×Mr

E

(

r
∑

i=1

−
RiCi

Mi

)

1

#S(n)

∑

A∈S(n)

g0(A)

=
1

∏r
i=1 N(Mi)

∑

R∈G

E

(

r
∑

i=1

−
RiCi

Mi

)

+ o(1),

where we have applied Lemma 4.9.
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By the definition of H0 in (4.7) and since G is a group we have

∑

R∈G

E

(

r
∑

i=1

−
RiCi

Mi

)

=

{

#H0 if C ∈ H0,

0 otherwise.

Plugging this into (4.8) yields

1

#S(n)
# {A ∈ S(n) : f1(A) ≡ C1 mod M1, . . . , fr(A) ≡ Cr mod Mr} =

1

H0
+ o(1)

if S ∈ H0.
Thus we are left with showing that H = H0. If C ∈ H0 then clearly C ∈ H. Conversely, if

C ∈ H, then there exists an A ∈ S such that f1(A) ≡ C1 mod M1, . . . , fr(A) ≡ Cr mod Mr. In
particular

g0(A) = E

(

r
∑

i=1

Ri

Mi
fi(A)

)

= E

(

r
∑

i=1

RiCi

Mi

)

.

Moreover, by Proposition 4.5, for every R ∈ G we have g0(A) = 1 which implies that C ∈ H0 and
the theorem is proven. �

5. Asymptotic Distribution

After showing the distribution into residue classes we want to consider the asymptotic distribu-
tion of the values of a single B-additive function. Therefore we fix a B-additive function f : S → R

throughout the section.
In order to show Theorem 2.4 we need a refinement of a Weyl inequality. Therefore we have to

introduce some notation in the function field L.

5.1. Definitions. Since we need some geometry of numbers let D be the differential of the exten-
sion L over Fq(X). Set

S(m) = r ·m,(5.1)

where r is the ramification index of the extension L over Fq(X). Finally we denote by g the genus
of this extension.

For the proof of the Weyl inequality we will need Diophantine approximation in the field L∞.
We assume that S is the ring of integers in L and ρ(1), . . . , ρ(n) be an Fq[X ]-basis (integer basis)
of S. Then we denote by

d⋆(ρ) := max
i=1,...,n

d(ρ(i)).

To show Theorem 2.4 we start with some preliminaries and follow Drmota and Gutenbrunner [6].

5.2. Preliminaries. The first lemma will help us to extract one digit from the B-digit represen-
tation.

Lemma 5.1. Let α ∈ L∞ such that

α =
∑

k∈Z

DkB
k.

Let B be a complete set of residues modulo SB and D ∈ N . For R ∈ B we set

cR,D :=
1

N(SB)
E

(

−
DR

B

)

.

Then for j ∈ Z

∑

R∈B

cR,DE

(

R

Bj+1
α

)

=

{

1 if Dj = D,

0 if Dj 6= D.

Proof. Easily follows from the proof of [6, Lemma 7]. �

Since the coefficients of the polynomial need not be in S we have to consider how Diophantine
approximation can be established in L∞.
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Lemma 5.2 ([4, Proposition I.2.2]). Let a be a sufficiently large integer. Then for every α ∈ L∞

there exist H ∈ S \ {0} and G ∈ D−1, such that

d(H) ≤ a, d(Hα−G) ≤ −a− ǫ,

where ǫ is a constant depending only on L.

As we mentioned above we will need a refinement of Weyl’s inequality of Car [4]. In order to
establish this we follow an idea of Hua [8]. Therefore we need two further tools. The first deals
with the number of representations of a number as a product.

Lemma 5.3 ([4, Proposition I.4.3]). Let j be a positive integer, N ∈ N and W ∈ S(jN). Let
τ(j,N,W ) be the number of solutions (W1, ...,Wj) ∈ S(N)j of the equation

W = W1 · · ·Wj

Then, for every real number ε > 0, there exists a constant β (depending only on j and ε) such
that for every non-zero element W ∈ S(jN) one has

τ(j,N,W ) ≤ βqεS(N).

Lemma 5.4 ([4, Proposition II.3.3]). Let H ∈ S \ {0}, G ∈ D−1, b ∈ Z. Furthermore let R be a
complete set of residues modulo SH. Then

∑

R∈R

∑

A∈S(b)

E

(

G

H
AR

)

= N(SH)#(SH(b)),

where
SH(b) = {α ∈ SH : d(α) < b}.

Finally we need an estimation of the number of elements in an ideal I(m).

Lemma 5.5 ([4, Equation I.2.6]). Let I be an ideal of S. Then for m ∈ Z such that f ·m ≥ 2g−2
we have

#I(m) = {A ∈ I : d(A) < m} = q1−g+S(m)N(I)−1.(5.2)

5.3. Main tool. We now develop the main tool needed in order to properly prove the asymptotic
distribution result.

Lemma 5.6. Let h ∈ L∞[Z] be a polynomial of degree k ≥ 1, i.e.,

h(Z) = αkZ
k + · · · + α1Z + α0.

If there exist G ∈ D−1 and H ∈ S \ {0} such that

ω(Hαk −G) ≥ kn− n1/3 + d⋆(ρ) + ε,

n1/3 − d⋆(ρ) + 1 ≤ d(H) ≤ kn− n1/3 + d⋆(ρ),

then there exists a constant c > 0 such that
1

#S(n)

∑

A∈S(n)

E (h(A)) ≪ exp
(

−cn1/3
)

.

Proof. The proof is based on the proof of [4, Proposition II.3.6]. Therefore we only emphasize on
the differences occurring in our setting.

First of all we apply Lemma 4.2 and Lemma 5.3 to get
∣

∣

∣

∣

∣

∣

∑

A∈S(n)

E (h(A))

∣

∣

∣

∣

∣

∣

2k−1

≤ (#S(n))2
k−1−k

∑

W1∈S(n)

· · ·
∑

Wk−1∈S(n)

∑

A∈S(n)

E (∆k−1(h(A),H))

≤ (#S(n))2
k−1−k

∑

W∈S((k−1)n)

∑

A∈S(n)

τ(k − 1, n,W )E (k!αkWA)

≤ (#S(n))2
k−1−kβqεS(n)

∑

W∈S((k−1)n)

∑

A∈S(n)

E (k!αkWA) .

(5.3)



14 MADRITSCH AND THUSWALDNER

Now by Lemma 5.2 there exist H and G such that

d(H) ≤ kn− n1/3 + d⋆(ρ), ω(Hαk −G) ≥ kn− n1/3 + d⋆(ρ).

We set

m := max((k − 1)n, d⋆(ρ) − e+ d(H)),

c := min(ω(Hαk −G) + d(H) −m− ǫ− 1, n).

Following the proof of Proposition II.3.5 of [4] we reach at

W ⋆ :=
∑

W∈S((k−1)n)

∑

A∈S(n)

E (k!αkWA) ≤ q1−g+S(m)#(SH(c)).

We distinguish three cases according to the size of d(H).

Case 1: n1/3 − d⋆(ρ) + 1 ≤ d(H) ≤ n. We easily get that m = (k − 1)n and c = n. Thus

W ⋆ ≤ q1−g+S((k−1)n)q1+S(c−d(H)) ≤ q2−g+S(d⋆(ρ)−1)qS(kn−n1/3).

Case 2: n < d(H) ≤ (k − 1)n − d⋆(ρ) + e. Calculations give us that m = (k − 1)n and
c = n. Since c = n < d(H) we get that #(SH(c)) = 1 and therefore

W ⋆ ≤ q1−gqS(kn−n).

Case 3: (k−1)n−d⋆(ρ)+e < d(H) ≤ kn−n1/3+d⋆(ρ). In this case m = d⋆(ρ)−e+d(H)
and c = n. Thus

W ⋆ ≤ q1−g+S(2d⋆(ρ)−e)qS(kn−n1/3).

Plugging this into (5.3) we get that

∣

∣

∣

∣

∣

∣

∑

A∈S(n)

E (h(A))

∣

∣

∣

∣

∣

∣

2k−1

≪ (#S(n))2
k−1−kqS(kn−n1/3+ε),

which together with (5.2) proves the lemma. �

Now we can easily deduce the main proposition of this section.

Proposition 5.7. Let ℓ be a positive integer and n1/3

d(B) ≤ j1 < · · · < jm ≤ kn−n1/3

d(B) . Then

1

#S(n)
# {A ∈ S(n) : Dj1(h(A)) = D1, . . . , Djm(h(A)) = Dm} =

1

|N |m
+ O

(

exp
(

−cn1/3
))

Proof. By Lemma 5.1 we get that

# {A ∈ S(n) : DB,j1(h(A)) = D1, . . . , DB,jm(h(A)) = Dm}

=
∑

A∈S(n)

(

∑

R1∈B

cR1,D1E

(

R1

Bj1+1
h(A)

)

)

· · ·

(

∑

Rm∈B

cRm,DmE

(

Rm

Bjm+1
h(A)

)

)

= c0,D1 · · · c0,Dm +
∑′

R1,...,Rm∈B

cR1,D1 · · · cRm,Dm

∑

A∈S(n)

E

((

R1

Bj1+1
+ · · · +

Rm

Bjm+1

)

h(A)

)

,

where
∑′

denotes the sum over all elements (R1, . . . , Rm) 6= 0.

Now we fix (R1, . . . , Rm) 6= 0 and set

R = R1 +R2B
j2−j1 + · · · +RmB

jm−j1 .

Thus we have to estimate
∑

A∈S(n)

E

(

R

Bj1+1
P (A)

)

.
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We want to apply Lemma 5.6 and therefore write ξ for the leading coeficient of RP (A). Then
by an application of Lemma 5.2 we get that there exist A ∈ D−1 and Q ∈ S such that

d (Q) ≤ (k − 1)n− n1/3 + d⋆(ρ),

d

(

ξ

Bj1+1
Q−A

)

≤ −(k − 1)n+ n1/3 − d⋆(ρ) − ǫ.

Now we distinguish two cases according to the size of d(Q).

Case 1: n1/3 − d⋆(ρ) − 1 ≤ d(Q) ≤ (k − 1)n − n1/3 + d⋆(ρ). In this case we can apply
Lemma 5.6 and get

∑

A∈S(n)

E

(

R

Bj1+1
P (A)

)

≪ (#S(n)) exp
(

−cn1/3
)

.

Case 2: 0 ≤ d(Q) ≤ n1/3 − d⋆(ρ)− 1. We want to show that this is actually not possible.
Therefore we further distinguish two cases according to the size of d(ξ)−(j1+1)d(B)+d(Q).

Case 2.1: d(ξ) − (j1 + 1)d(B) + d(Q) ≥ D. In this case we get

j1 + 1 ≤
d(ξ) + d(Q) −D

d(B)
≪

d(Q)

d(B)
≤
n1/3

d(B)

contradicting the lower bound.
Case 2.2: d(ξ) − (j1 + 1)d(B) + d(Q) < D. Now we immedeately get that A must
be 0. Thus we have

d

(

ξ

Bj1+1
Q

)

≤ −(k − 1)n+ n1/3 − d⋆(ρ) − ǫ

which implies

j1 + 1 ≥
(k − 1)n− n1/3 + d⋆(ρ) + ǫ+ d(ξ) + d(Q)

d(B)
≫

(k − 1)n− n1/3

d(B)

contradicting the upper bound.

Therefore we only may apply Lemma 5.6 and derive the desired result. �

5.4. Weak Convergence. We want to show Theorem 2.4 by comparing the gained distribution
with the one of independent identically distributed random variables. Let Y0, Y1, . . . be iid random

variables on N such that P [Yi = D] = |N |−1
. Thus Proposition 5.7 can be seen as

1

|N |m
# {A ∈ S(n) : DQ,j1(h(A)) = D1, . . . , DQ,jm(h(A)) = Dm}

= P [Yj1 = D1, . . . , Yjm = Dm] + O
(

exp
(

−cn1/3
))

.

In fact we want to show that the moments are the same and have to consider that we shrank
our scope to n1/3

d(B) ≤ j1 < · · · < jℓ ≤ kn−n1/3

d(B) . Thus we need to show that the moment method

holds also for our truncated version. This will be provided by the following lemma.

Lemma 5.8. Let (B,N ) be a number system in S and g be a B-additive function. Set

µ =
1

|N |

∑

D∈N

g(D) = Eg(Yj).

Then the m-th (central) moment of g̃(P (A)) is given by

1

|S(n)|

∑

A∈S(n)

(

g̃(P (A)) −

(

kn− n1/3

d(B)

)

µ

)m

= E







∑

n1/3

d(B)
≤j≤ kn−n1/3

d(B)

(g(Yj) − µ)







m

+ O
(

nm exp
(

−cn1/3
))

.
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We truncate our B-additive function f as follows.

f̃(h(A)) :=
∑

n1/3

d(B)
≤k≤ kn−n1/3

d(B)

f(Dk(h(A))).

Thus it follows from Lemma 5.8 that

1

#S(n)
#







A ∈ S(n) :
f̃(h(A)) − kn−2n1/3

d(B) µ
√

kn−2n1/3

d(B) σ
≤ x







= Φ(x) + o(1).

Since
∣

∣

∣
f̃(h(A)) − f(h(A))

∣

∣

∣
≪ n1/3

we also get that

1

#S(n)
#







A ∈ S(n) :
f(h(A)) − kn

d(B)µ
√

kn
d(B)σ

≤ x







= Φ(x) + o(1).

6. Weyl Sums with Digital Restrictions

In this section we want to prove Theorem 2.5. The idea is to do Weyl differentiation and apply
Proposition 4.5. Our aim is to estimate

Sn(h) :=
∑

A∈S(n)

E

(

h(A) +
r
∑

i=1

Ri

Mi
fi(A)

)

,

where h ∈ L∞[Z] is a polynomial of degree k < charFq.
By hypotheses there exist an ℓ and H ∈ LBℓ

(bℓ)
k with |Λℓ,k(H)| < 1. We set

ϕ(A) := h(A) +

r
∑

i=1

Ri

Mi
fi(A).(6.1)

Then we apply Weyl’s method (Lemma 4.2) to get the following estimation.

|Sn(h)|2
k

≤ (#S(n))
2k−k−1

∑

P1∈S(n)

· · ·
∑

Pk∈S(n)

∑

A∈S(n)

E(∆k(ϕ(A);P))

We have to consider the k-th difference operator of ϕ. By linearity of the difference operator and
the definitions of ϕ in (6.1) and gR,k in (4.3) we get

E(∆k(ϕ(A);P)) = E

(

∆k(h(A);P) + ∆k

(

r
∑

i=1

Ri

Mi
fi(A);P)

))

= E (k!αkP1 · · ·Pk) gR,k(A;P),

where αk is the leading coefficient of h. Thus

|Sn(α)|2
k

≤ (#S(n))
2k−k−1

∑

P1∈S(n)

· · ·
∑

Pk∈S(n)

E (k!αkP1 · · ·Pk)
∑

A∈S(n)

gR,k(A;P).

Taking the modulus and shifting to the innermost sum yields together with the definition of Φk

in (4.4)

|Sn(h)|2
k

≤ (#S(n))
2k−k−1

∑

P1∈S(n)

· · ·
∑

Pk∈S(n)

|Φk(P;n)| .

We apply Cauchy’s inequality to get the modulus squared

|Sn(h)|2
k+1

≤ (#S(n))
2k+1−k−2

∑

P1∈S(n)

· · ·
∑

Pk∈S(n)

|Φk(P;n)|2 = (#S(n))
2k+1−k−2

Ψk(n;n).
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Finally we apply Proposition 4.5 to estimate Ψk(n;n). Thus

|Sn(h)|2
k+1

≪ (#S(n))2
k+1−k−2 exp

(

−
n

aℓ

1 − |Λℓ,k(H)|2

qdℓbℓ

)

and therefore

Sn(h) ≪ (#S(n))1−
k+2

2k+1 −γ ,

where γ > 0 is defined by

(#S(n))
−2k+1γ

= exp

(

−
n

aℓ

1 − |Λℓ,k(H)|2

qdℓbℓ

)

.(6.2)

7. Waring’s Problem with Digital Restrictions

This section is devoted to the proof of Theorem 2.6. Therefore we first state the corresponding
result without digital restrictions.

We say that a polynomial N ∈ S is the strict sum of k-th powers if it has a representation of
the form

N = Xk
1 + · · · +Xk

s (X1, . . . , Xs ∈ S(m)),(7.1)

where m is defined by

k(m− 1) < d(N) ≤ km.(7.2)

By R(N, s, k) we denote the number of solutions of (7.1). Then Car [4] was able to show the
following.

Proposition 7.1 ([4, Theorem]). Let s be an integer such that s ≥ 1 + 2k. Then every N ∈ S,
such that d(N) is sufficiently large, admits a strict representation as in (7.1). Moreover one has
an asymptotic estimate for the number R(N, s, k) of these representations.

R(N, s, k) = Ss(N)q(s−k)S(m) + o(q(s−k)S(m)),

where m is as in (7.2), 0 < Ss(N) ≪ 1 and s is defined in (5.1).

In our case we are interested in the number of solution of

N = Xk
1 + · · · +Xk

s (X1, . . . , Xs ∈ S(m)),(7.3)

with fi(Xj) ≡ Ji mod Mi for i = 1, . . . , r and j = 1, . . . , s. We denote the number of solutions of
(7.3) by R(N, s, k, f ,J,M). The idea will be the reduction of this special case to the general one.

As in [4] we denote by P the valuation ideal of ν and by M the valuation ideal of ω. Furthermore
we write P⊗n := P×· · ·×P, with P repeated n times. Let ρ := (ρ1, . . . , ρn) be an integral Fq[X ]-
basis and γ = (γ1, . . . , γn) its dual basis. Then γ is a basis for D−1 (cf. [16, Chapter III,§3]). We
define hγ to be the isomorphism

hγ(t1, . . . , tn) = (t1γ1ρ1, . . . , tnγnρn).

We choose the Haar measures on K∞ and L∞ to be such that the values of the valuation ideals
P and M equals 1, i.e. ρ = dx on K∞ and µ on L∞. We will always denote by t = (t1, . . . , tn)
and element of K

n
∞ and by x one of L∞. Finally on K

n
∞ we have the product measure ρ⊗n =

dt1 × · · · × dtn = dt.
In order to count the solutions we will use the following Lemma.

Lemma 7.2 ([4, Proposition I.3.1]). Let N ∈ S. Then

∫

P⊗n

E(hγ(t) ·N)dt =

{

1 if N = 0,

0 else.
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For short we set for z ∈ L∞, m ≥ 0, 1 ≤ i ≤ s, and R ∈ D−1

F (z,m) =
∑

W∈S(m)

E
(

zW k
)

,

S(z,m) =
∑

W∈S(m)
fi(W )≡Ji mod Mi

E
(

zW k
)

,

Thus we get the following integral representation for R(N, s, k).

Lemma 7.3 ([4, Proposition II.1.2]).

R(N, s, k) = cI

∫

hγ(P⊗n)

F (z,m)sE(−zN)dz,

where cI is a constant depending only on L.

We want to rewrite S(z,m) to F (z,m). Therefore we apply a trick which goes back to Gelfond
[7] to connect the second and third sum

S(z,m) =
r
∏

i=1

(N(SMi))
−1

∑

R∈M1×···×Mr

∑

W∈S(m)

E

(

zW k +
r
∑

i=1

Ri

Mi
(fi(W ) − Ji)

)

.

In view of Lemma 7.3 we get that

R(N, s, k, f ,J,M) = R′(N, s, k) = cI

∫

hγ(P⊗n)

S(z,m)sE(−zN)dz

= cI

r
∏

i=1

(N(SMi))
−s
∫

hγ(P⊗n)

∑

P1∈S(m)

· · ·
∑

Ps∈S(m)

∑

R∈M1×···×Mr

× E

(

r
∑

i=1

Ri

Mi
(fi(P1) − Ji)

)

· · ·E

(

r
∑

i=1

Ri

Mi
(fi(Ps) − Ji)

)

× E(z(P k
1 + · · · + P k

s −N))dz.

We split the integral up into two parts according to whether R = 0 or not. Thus

R′(N, s, k) = cI

r
∏

i=1

(N(SMi))
−s (I1 + I2) ,

where

I1 =

∫

hγ(P⊗n)

E(z(P k
1 + · · · + P k

s −N))dz =

∫

hγ(P⊗n)

F (z,m)sE(−zN)dz

I2 =

∫

hγ(P⊗n)

∑

0 6=R∈Ms

s
∏

i=1

HRi(z,m)E

(

−
s
∑

i=1

RiJ

M
− zN

)

dz.

In order to estimate the first integral we apply Proposition 7.1 and get

I1 = Ss(N)q(s−k)S(m) + o(q(s−k)S(m)).

In order to prove our theorem we need to show that I2 = o(q(s−k)S(m)), i.e., I2 only contributes
to the error term. Therefore we split the second integral I2 up again according to the different
values of R. Thus

I2 =
∑

0 6=R∈M1×···×Mr

IR,

where

IR =

∫

hγ(P⊗n)

HR(z,m)sE (−zN) dz
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with

HR(z,m) =
∑

P∈S(m)

E

(

zP k −
r
∑

i=1

Ri

Mi
(fi(P ) − Ji)

)

.

We split this integral up into two parts. Thus

|IR| ≤ sup
R,z

|HR(z,m)|s−2k

max
R

∫

hγ(P⊗n)

HR(z,m)2
k

dz.(7.4)

For the supremum we apply Theorem 2.5 to get

sup
R,z

|HR(z,m)|s−2k

≪ (#S(m))(
s−2k)(1− k+2

2k+1 +γ) ,(7.5)

where γ is defined in (6.2).
In order to estimate the integral we will apply Hua’s Lemma. Therefore we need the following

lemma.

Lemma 7.4 ([4, Proposition II.5.2]). Let c be any integer such that 1 ≤ c ≤ k. Let ε > 0. Then
∫

hγ(P⊗n)

F (z,m)2
c

E(−zN)dz ≪ (#S(m))
2c−c+ε

.

Thus we get

max
R

∫

hγ(P⊗n)

HR(z,m)2
k

dz ≪ max
R

∫

hγ(P⊗n)

F (z,m)2
k

dz ≪ (#S(m))
2k−k+ε

.(7.6)

Now plugging (7.5) and (7.6) into (7.4) yields

|IR| ≪ (#S(m))(s−2k)(1− k+2+γ

2k+1 ) (#S(m))2
k−k+ε ≪ (#S(m))s−k−δ ,

where ε has to be chosen such that

(s− 2k)

(

k + 2

2k+1
+ γ

)

− ε =: δ > 0

which is possible since s > 2k.
Thus a final application of (5.2) yields

I2 = o
(

(#S(m))
(s−k)

)

= o
(

q(s−k)S(m)
)

and the theorem is proven.

Remark 7.5. It is easy to generalize this result to the investigation of the following case

N = P k
1 + · · · + P k

s (fij (Pj) ≡ Jij mod Mij ),

where every summand has its own set of Bij -additive functions fij together with his own congru-
ence relation ≡ Jij mod Mij . This can be done in quite the same way and is therefore left to the
reader.
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[11] B. Kovács and A. Pethő. On a representation of algebraic integers. Studia Sci. Math. Hungar., 27(1-2):169–172,
1992.

[12] M. G. Madritsch. Waring’s problem with digital restrictions in Fq[x]. Mathematica Slovaca, 2009. to appear.
[13] M. G. Madritsch and J. M. Thuswaldner. Weyl sums in Fq[x] with digital restrictions. Finite Fields Appl.,

14(4):877–896, 2008.
[14] K. Scheicher and J. M. Thuswaldner. Digit systems in polynomial rings over finite fields. Finite Fields Appl.,

9(3):322–333, 2003.
[15] K. Scheicher and J. M. Thuswaldner. On the characterization of canonical number systems. Osaka J. Math.,

41(2):327–351, 2004.
[16] J.-P. Serre. Corps locaux. Hermann, Paris, 1968. Deuxième édition, Publications de l’Université de Nancago,
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