
WARING'S PROBLEM WITH DIGITAL RESTRICTIONSJ�ORG M. THUSWALDNER AND ROBERT F. TICHYDediated to Professor Hillel FurstenbergAbstrat. The aim of this paper is to onsider an analogue of Waring's problem withdigital restritions. In partiular, we prove the following result. Let sq(n) be the q-adisum of digits funtion and let h;m be �xed positive integers. Then for s > 2k there existsn0 2 N suh that eah integer n � n0 has a representation of the formn = xk1 + � � �+ xks where sq(xi) � h(m):We will even give an asymptoti formula for the number of representations of n in thisway. The result is shown with help of the irle method in ombination with a \digital"version of Weyl's Lemma.
1. NotationAs usual, N ;Z;R and C denote the set of positive integers, integers, real and omplexnumbers, respetively. The abbreviation e(x) := exp(2�ix) will be used, bx is the greatestinteger less than or equal to x 2 R. Furthermore, we will write dxe for the smallest integergreater than or equal to x. For the ardinality of a set S we will write jSj. Vetors willbe written in bold fae. Conerning the indies of the elements of a vetor we will use theonventions r := (r1; : : : ; rk) and rj := (rj1; : : : ; rjk):We will use the notations f(x) = O (g(x)) as well as f(x) � g(x) to express that f(x) <g(x) for some onstant  and all suÆiently large x 2 R. If the implied onstant depends on a ertain parameter, say ", this will be either mentioned expliitly or indiatedby f(x)�" g(x).If I := fn 2 Z j a � n < bg is an interval of integers then we use the abbreviation(1) I := fn 2 Z j a � n < bgfor  2 N .Date: January 12, 2004.Key words and phrases. Waring's problem, Weyl sum, irle method, digital sum, orrelation.The �rst author was supported by the Austrian Siene Foundation projet S8310.The seond author was supported by the Austrian Siene Foundation projet S8308.1



2 J�ORG M. THUSWALDNER AND ROBERT F. TICHY2. IntrodutionLet A � N and s 2 N . If eah positive integer N 2 N admits a representation of theform(2) N = x1 + � � �+ xs with x1; : : : ; xs 2 Awe say that A is a basis of N of order s. If a representation of the shape (2) only existsif N is suÆiently large we all A an asymptoti basis of N of order s (f. for instaneNathanson [18℄).It is a fundamental problem in additive number theory to deide whether a given setA � N is a basis (resp. asymptoti basis) or not (f. Hua [14℄, Nathanson [18, 19℄,Vinogradov [30℄). If A turns out to be a basis one is interested to �nd its smallest possibleorder. We mention Goldbah's problem, where A is taken to be the set of primes orWaring's problem whih orresponds toA = Ak := fnk jn 2 Ng (k 2 N �xed):We use the ommon notations g(k) and G(k) for the smallest possible number s suh thatAk is a basis or asymptoti basis of order s, respetively. The best known bound for G(k)is due to Wooley [31℄ and readsG(k) � k(log k + log log k +O (1)):For results on g(k) we refer the reader to Vaughan [25, p. 1f℄. Hardy and Littlewood werethe �rst to give an asymptoti formula (now alled the Hardy-Littlewood formula) for thenumber of representations of a suÆiently large integer as the sum of s elements of Ak.We denote the smallest number of s for whih this formula holds by ~G(k) and remark thatthe best estimate for ~G(k) is due to Ford [9℄ and asserts that~G(k) � k2(log k + log log k +O (1)):For small values of k these results an be re�ned. We refer for instane to the resultsby Vaughan and Wooley in [26, 27, 28, 29℄. The present paper is devoted to a variantof Waring's problem with digital onstraints. To make this more preise let sq(n) be theq-adi sum of digits funtion whih assigns to eah positive integer n the sumsq(n) = 0 + � � �+ rof digits in its (unique) q-adi representationn = 0 + 1q + � � �+ rqr:With help of sq(n) we de�ne the setUh;m(N) := fn < N j sq(n) � h(m)g:This set has been studied for instane by Gelfond [12℄ and Mauduit-S�ark�ozy [16℄. Our goalis to show that eah suÆiently large N 2 N admits a representation of the shapeN = xk1 + � � �+ xks ; with x1; : : : ; xs 2 Uh;m(N)



WARING'S PROBLEM WITH DIGITAL RESTRICTIONS 3for eah �xed s > 2k if (m; q � 1) = 1. In other words, this means thatAk;h;m := �nk j sq(n) � h(m)	forms an asymptoti basis of order 2k+1. In fat, by very slight modi�ations we an proveeven more: we get that if s > 2k then eah suÆiently large N 2 N has a representationof the shape N = xk1 + � � �+ xks ; with sqi(xi) � hi(mi) (1 � i � s):Again the ondition (mi; qi � 1) = 1 is needed.Analogously to the notation for the ordinary Waring's problem we give the followingde�nition.De�nition 2.1. Let Gh;m(k) be the smallest integer s suh that Ak;h;m forms an asymptotibasis of order s of N. Furthermore, let gh;m(k) be the smallest integer s suh that Ak;h;m[f1gforms a basis of order s of N.Note that f1g has to be added to Ak;h;m in the de�nition of gh;m(k) beause otherwise 1ould not have any representation.There exist also other restrited versions of Waring's problem. One of them is theWaring's problem restrited to sums of k-th powers of primes. An aount of it an befound for instane in Hua [14℄ (f. also Br�udern's papers [4, 5℄ for a new approah to thissubjet). A more reent restrition of Waring's problem was investigated by Haros [13℄.Generalizing a result of Balog and S�ark�ozy [1℄ he onsidered Waring's problem for sumsof k-th powers of integers having not too large prime fators. In Br�udern-Fouvry [6℄ ananalogue of Lagrange's four squares theorem for almost primes was shown.The sum of digits funtion was the subjet of many papers in the last deades. Its basiproperty is q-additivity, i.e. if a; b; h 2 N with b < qh thensq(aqh + b) = sq(a) + sq(b):One of the �rst papers on sq(n) was Bellman-Shapiro [2℄ where the summatory funtionof sq(n) and its iterates were treated. An exat formula for the summatory funtion ofsq(n) was later proved by Delange [7℄. The distribution of sq(n) in residue lasses hasbeen studied in Gelfond [12℄. More reent results on sq(n) an be found for instane inDrmota-Shoissengeier [8℄, Mauduit-S�ark�ozy [16, 17℄ or Thuswaldner-Tihy [23℄. In orderto prove our results we will have to establish auto-orrelation results of the sum of digitsfuntion. Speial ases of these results an be found in B�esineau [3℄ and Kim [15℄, wherethe simultaneous distribution of sum of digits funtions with respet to di�erent bases isinvestigated. We have to extend these results in the present paper in order to establish a\digital" version of Weyl's Lemma. This result seems to be of interest also in its own right.We will use it in order to derive our result on Waring's problem with digital restritions.One ould ask whether it is possible to give results on a version of Waring's problemusing only k-th powers of primes with digital restritions. However, this seems to be veryhard to settle sine up to now it is not even known if there exist in�nitely many primenumbers whose sum of digits funtion satis�es a given ongruene. The best known resultin that diretion is ontained in Fouvry-Mauduit [10, 11℄.



4 J�ORG M. THUSWALDNER AND ROBERT F. TICHYIn earlier papers Diophantine equations with digital restritions have been onsidered.Generalizing a result of Stewart [22℄ on sets of numbers having small sum of digits funtionsimultaneously in two di�erent bases, Shlikewei [21℄ studied the solutions of a ertainDiophantine equation having bounded sum of digits. This result has been extended furtherto a more general notion of number systems in Peth}o-Tihy [20℄.The present paper is organized as follows. In the next setion we present our main results:the Hardy-Littlewood asymptoti formula for Waring's problem with digital onstraintstogether with the generalization mentioned above (Theorem 3.1 and Theorem 3.2), a higherauto-orrelation result for the sum of digits funtion (Theorem 3.3) and a \digital" versionof Weyl's Lemma (Theorem 3.4). Setions 4, 5 and 6 ontain preliminary results neededin order to prove Theorem 3.3. This result is �nally proved in Setion 7. Setion 8 isdevoted to the dedution of the variant of Weyl's Lemma from the auto-orrelation result.The variant of Weyl's Lemma is �nally used in Setion 9, where we show that Ak;h;m isan asymptoti basis of N for eah triple k; h;m 2 N and that the asymptoti formula inTheorem 3.2 holds. The proof of Theorem 3.1 turns out to run along exatly the samelines as the proof of the speial ase. Our main tool here is the irle method. The paperends with a short setion ontaining some onluding remarks.3. Statement of the main resultsWe will now state our results.Theorem 3.1. Let s; k 2 N, and hi; mi; qi 2 N (1 � i � s) with mi � 2, qi � 2 and(qi � 1; mi) = 1 . Let rk;s;hi;mi(N) be the number of representations of N in the formN = xk1 + � � �+ xks (sqi(xi) � hi(mi)):Then for s > 2k there exists a positive onstant Æ suh thatrk;s;hi;mi(N) = 1m1 � � �msS(N)��1 + 1k�s �� sk��1N sk�1 +O �N sk�1�Æ� :The implied onstant depends only on s, k and mi. S is an arithmeti funtion for whihthere exist positive onstants 0 < 1 < 2 depending only on k and s suh that1 < S(N) < 2:The following speial ase yields a new asymptoti basis of N .Theorem 3.2. Let s; k; h;m; q 2 N with m � 2, q � 2 and (q� 1; m) = 1 . Let rk;s;h;m(N)be the number of representations of N in the formN = xk1 + � � �+ xks (x1; : : : ; xk 2 Uh;m(N)):Then for s > 2k there exists a positive onstant Æ suh thatrk;s;h;m(N) = 1msS(N)��1 + 1k�s �� sk��1N sk�1 +O �N sk�1�Æ� :



WARING'S PROBLEM WITH DIGITAL RESTRICTIONS 5The implied onstant depends only on s, k and m. S is an arithmeti funtion for whihthere exist positive onstants 0 < 1 < 2 depending only on k and s suh that1 < S(N) < 2:This implies that Ak;h;m = fnk j sq(n) � h(m)g forms an asymptoti basis of order 2k + 1of N, i.e. Gh;m(k) � 2k + 1:The proof of these theorems relies on the irle method and on a orrelation result forthe sum of digits funtion. Before we state this result we reall the de�nition of the higherdi�erene operators �j. Let ' be an arithmeti funtion. Then�1('(x); y) := '(x+ y)� '(x):The higher di�erene operators are de�ned reursively by�j+1('(x); y1; : : : ; yj+1) := �1(�j('(x); y1; : : : ; yj); yj+1) (j � 1):In what follows we will use the funtion(3) p(k; q) := �2k(k + 2)q � 1 + 2k + 5� :We will need the following higher orrelation result for sq(n), whih is a generalization of[15, Proposition 1℄ and whih is of interest also in its own right.Theorem 3.3. Let k;m; h; q and N be positive integers with m � 2, q � 2 and m - h(q�1).Let I1; : : : ; Ik; J be intervals of integers with pN � jIjj; jJ j � N (1 � j � k). SetY (I1; : : : ; Ik; J) := Xh12I1 � � � Xhk2Ik �����Xn2J e� hm�k(sq(n); h1; : : : ; hk)������2 :Then Y (I1; : : : ; Ik; J)� jI1j � � � jIkjjJ j2N��holds with � := 1m2qp(k;q) > 0.This result leads to the following \digital" version of Weyl's Lemma whih will be usedin the proof of Theorem 3.2.Theorem 3.4. Let k;m; `; q and N be positive integers with m � 2, q � 2 and m - `(q�1).Then the estimate �����Xn<N e��nk + m̀sq(n)������� N1�holds uniformly in � 2 [0; 1) with  := �2�(k+1). Here � is as in Theorem 3.3.



6 J�ORG M. THUSWALDNER AND ROBERT F. TICHYRemark 3.1. If one does not are about its order, the assertion that Ak;h;m forms anasymptoti basis an be proved easily in the following way.Suppose that the set A of non-negative integers has positive asymptoti density. Supposefurther that for eah prime p there exist numbers ap; bp 2 A suh that p j ap and p - bp.Then for any integer k the set Ak := fnk jn 2 Ag is an asymptoti basis. This an beshown by ombining arguments about Shnirel'man density and the observation that the setof s-fold sums of elements of Ak has positive asymptoti density for s � 2k�1. The latterfollows from [24, Theorem 2℄, whih implies that���nn1; : : : ; n2s 2 A(N) ��nk1 + : : :+ nks = nks+1 + : : :+ nk2so���� ���nn1; : : : ; n2s < N ��nk1 + : : :+ nks = nks+1 + : : :+ nk2so���� N2s�kholds for s � 2k�1. Here A(N) := fn < N jn 2 Ag.It is easy to show that the hoie A := fn j sq(n) � h(m)g ful�lls the above onditions.In partiular, we see from Fermat's theorem that we an de�ne the integers ap and bp byhoosing I and J in the expressionI�1Xi=0 qi(p�1) + J�1Xj=0 q1+j(p�1)properly.Remark 3.2. The bound for s in Theorem 3.1 and Theorem 3.2 is surely not best possible.In order to make it smaller at least in Theorem 3.2, better estimates of the norm(4) Z 10 �����Xn<N e��nk + m̀sq(n)������j d�are needed for ertain values of j 2 N. Obtaining suh estimates may be doable but isertainly quite involved (a very speial ase of a similar integral as in (4) has been treatedin [10℄). Furthermore, we expet that these estimates will not lead to results of the samequality as the re�nements of Hua's Lemma in Waring's problem (as for instane in [31℄).4. Operators on a lass of disrete funtionsIn order to prove Theorem 3.3 we need some triky but elementary alulations. Thekey step in the proof of this result is done by seleting two terms of the form e(x) froma ertain exponential sum and proving that the sum of these two terms has modulus lessthan two. In order to be able to selet the proper terms we set up a lass of funtionstogether with some operators ating on it.Consider the setsM := f1; 2; : : : ; kg and M0 := f0; 1; 2; : : : ; k + 1g



WARING'S PROBLEM WITH DIGITAL RESTRICTIONS 7and de�ne the lass of funtions F := �f : 2M !M0	(here 2M denotes the set of all subsets of M). Espeially two elements of F will beimportant in the following disussions. These areF0(S) := 0 for all S �M;(5) F1(S) := (1 if S =M0 otherwise :(6)On F we want to de�ne the operator�r;i(f)(S) := � i +Pj2S rj + f(S)q �for eah vetor r = (r1; : : : ; rk) 2 f0; : : : ; q � 1gk and eah 0 � i < q.Lemma 4.1. For eah pair r; i we have�r;i(F) � F :Proof. We have to show that �r;i(f)(S) always lies in M0. Sine f 2 F and with therestritions on r; i we see that0 � � i +Pj2S rj + f(S)q � � (k + 1)(q � 1) + k + 1q = k + 1and we are done. �We will need iterates of �r;i. These are de�ned by�fr`;i`g1�`�L := �rL;iL Æ � � � Æ �r1;i1:Dividing k by q � 1 yields a representation(7) k = d(q � 1) + � (0 � � < q � 1):Set L00 := jk�1q�1k+ 1. If � = 0 setv` := (v`1; : : : ; v`k) 2 Zk withv`j := (1 if j 2 f(`� 1)(q � 1) + 1; : : : ; `(q � 1)g0 otherwise (1 � ` � L00):If on the ontrary � > 0 setv1 := (1; : : : ; 1| {z }� times ; 0; : : : ; 0) 2 Zk;v` := (v`1; : : : ; v`k) 2 Zk withv`j := (1 if j 2 f(`� 2)(q � 1) + � + 1; : : : ; (`� 1)(q � 1) + �g0 otherwise



8 J�ORG M. THUSWALDNER AND ROBERT F. TICHYfor 2 � ` � L00.Lemma 4.2. The following two assertions hold:(i) Let f 2 F be arbitrary. Then�f0;0g1�`�L0 (f) = F0if L0 := j log(k+1)log q k+ 1.(ii) Let i1 := (1; if � = 0q � �; if � > 0 ;i` := 0 (2 � ` � L00) andr` := v` (1 � ` � L00):Then �fr`;i`g1�`�L00 (F0) = F1.Proof. (i) Let f 2 F and S �M be arbitrary. Then�0;0(f)(S) = �f(S)q � � f(S)q :Iterating L0 times shows�f0;0g1�`�L0 (f)(S) � �f(S)qL0 � = 0for all S.(ii) Let � = 0. The proof of the ase � > 0 runs along the same lines. From thede�nitions of �r;i and v1 we get�r1;i1(F0)(S) = 666666641 + Pt2S\f1;:::;q�1g 1!q 77777775= (1 if f1; 2; : : : ; q � 1g � S0 otherwise :Now we proeed by indution. Suppose that(8) �fr`;i`g1�`�j�1(F0) = (1 if f1; : : : ; (j � 1)(q � 1)g � S0 otherwise



WARING'S PROBLEM WITH DIGITAL RESTRICTIONS 9holds for some j � L00. Then, again by the de�nition of �r;i and vj we obtain that�fr`;i`g1�`�j (F0) = 8>>>>>><>>>>>>:
66664 Pt2S\f(j�1)(q�1)+1;:::;j(q�1)g 1!+1q 77775 if f1; : : : ; (j � 1)(q � 1)g � S$ Pt2S\f(j�1)(q�1)+1;:::;j(q�1)g 1q % otherwiseholds. It is easy to see that this yields (8) for j instead of j� 1. Thus by indutionwe get �fr`;i`g1�`�L00 (F0) = (1 if f1; : : : ; kg � S0 otherwisebeause L00(q�1) � k. Sine the only subset ofM whih has f1; : : : ; kg as a subsetis M itself the last funtion is F1 and we are done. �5. Reurrenes for auto-orrelation funtions of sq(n)In this setion we set up a reurrene for funtions related to the auto-orrelation funtionY (I1; : : : ; Ik; J) de�ned in Theorem 3.3. This is done by \multiplying" all the intervalsI1; : : : ; Ik; J by q in the sense de�ned in (1) and exploiting the q-additivity of sq(n).Let I1; : : : ; Ik; J be intervals of integers. De�ne the following funtions.�(h1; : : : ; hk; J ; f) := Xn2J e hm XS�M(�1)k�jSjsq n+Xt2S ht + f(S)!! ;	(h1; : : : ; hk�1; Ik; J ; f1; f2) := Xhk2Ik �(h1; : : : ; hk; J ; f1)�(h1; : : : ; hk; J ; f2);(9) X(I1; : : : ; Ik; J ; f1; f2) := Xh12I1 � � � Xhk�12Ik�1	(h1; : : : ; hk�1; Ik; J ; f1; f2):Here the hi (1 � i � k) are integers and f; f1; f2 2 F .Note that Xn2J e� hm�k(sq(n); h1; : : : ; hk)� = �(h1; : : : ; hk; J ;F0):Thus for the sum Y (I1; : : : ; Ik; J) de�ned in Theorem 3.3Y (I1; : : : ; Ik; J) = X(I1; : : : ; Ik; J ;F0; F0)holds. We will derive estimates for X(I1; : : : ; Ik; J ; f1; f2) for eah pair f1; f2 2 F . Fromthis obviously follows the estimate for Y (I1; : : : ; Ik; J).In the sequel we will use for short the vetorsr := (r1; : : : ; rk) and h := (h1; : : : ; hk):



10 J�ORG M. THUSWALDNER AND ROBERT F. TICHYProposition 5.1. Let f1; f2 2 F and let I1; : : : ; Ik; J be intervals of integers. ThenX(qI1; : : : ; qIk; qJ ; f1; f2) = q�1Xr1=0 � � � q�1Xrk=0 q�1Xi1=0 q�1Xi2=0�(f1; f2; r; i1; i2)�X(I1; : : : ; Ik; J ; �r;i1(f1);�r;i2(f2)):Here �(f1; f2; r; i1; i2) := e hm XS�M(�1)k�jSj(b(f1;S; r; i1)� b(f2;S; r; i2))! :The integer b(f;S; r; i) 2 f0; : : : ; q�1g is de�ned as the remainder ourring at the divisionof i+Pt2S rt + f(S) by q.Proof. We start with the �rst of the funtions given in (9). Note that for 1 � r1; : : : ; rk < qwe have �(qh+ r; qJ ; f) =(10) q�1Xi=0 Xn2J e hm XS�M(�1)k�jSjsq qn+Xt2S qht + i+Xt2S rt + f(S)!! :Now, by the de�nition of �r;i and b(f;S; r; i) we havei +Xt2S rt + f(S) = �r;i(f)(S)q + b(f;S; r; i):By the q-additivity of sq(n) this implies thatsq qn+Xt2S qht + i +Xt2S rt + f(S)! = sq qn+Xt2S qht + q�r;i(f)(S) + b(f;S; r; i)!= sq n+Xt2S ht + �r;i(f)(S)!+ b(f;S; r; i):Inserting this in (10) yields�(qh + r; qJ ; f) = q�1Xi=0 e hm XS�M(�1)k�jSjb(f;S; r; i)!�(h; J ; �r;i(f)):Using the de�nition of the auto-orrelation funtion 	 in (9) this immediately leads to	(qh1 + r1; : : : ; qhk�1 + rk�1; qIk; qJ ; f1; f2) =q�1Xrk=0 q�1Xi1=0 q�1Xi2=0�(f1; f2; r; i1; i2)�	(h1; : : : ; hk�1; Ik; J ; �r;i1(f1);�r;i2(f2)):



WARING'S PROBLEM WITH DIGITAL RESTRICTIONS 11Summing up over h1; : : : ; hk�1 �nally yieldsX(qI1; : : : ; qIk; qJ ; f1; f2) = q�1Xr1=0 � � � q�1Xrk=0 q�1Xi1=0 q�1Xi2=0�(f1; f2; r; i1; i2)�X(I1; : : : ; Ik; J ; �r;i1(f1);�r;i2(f2)): �In what follows we will need a more expliit representation of �(f1; f2; r; i1; i2) for ertainvalues of the parameters. In partiular, we will show the following result.Lemma 5.1. Let F0 and F1 be as in (5) and (6). Furthermore, let0 := (0; : : : ; 0| {z }k times ):Then we have �(F0; F0; 0; 0; 0) = e (0) ;�(F1; F0; 0; 0; 0) = e� hm� and�(F1; F0; 0; q � 1; 0) = e� hm(1� q)� :Proof. Reall that�(f1; f2; r; i1; i2) := e hm XS�M(�1)k�jSj(b(f1;S; r; i1)� b(f2;S; r; i2))! ;where b(f;S; r; i) is the remainder ourring at the division of i+Pt2S rt + f(S) by q.� If f = F0 and all rt as well as i is zero, this remainder has to be zero for eahS �M. Thus also XS�M(�1)k�jSjb(F0;S; 0; 0) = 0:� If f = F1 and all rt as well as i is zero, b(F1;S; 0; 0) = 0 unless S = M. In thelatter ase it is equal to 1. This means thatXS�M(�1)k�jSjb(F1;S; 0; 0) = 1:� If f = F1, all rt are zero and i = q � 1, then again b(F1;S; 0; q � 1) = q � 1 unlessS =M. For the latter ase we note thati+Xt2M rt + f(M) = q � 1 + 1 = q:



12 J�ORG M. THUSWALDNER AND ROBERT F. TICHYSine q � 0(mod q) we onlude that b(F1;M; 0; q � 1) = 0. This implies thatXS�M(�1)k�jSjb(F1;S; 0; q � 1) = �q + 1 + XS�M(�1)k�jSj(q � 1)= 1� q + (q � 1) kXj=0 �kj�(�1)k�j= 1� q:It is easily seen that these onsiderations imply the result. �6. Estimating exponential sums ourring in the iteration proessIn the present setion we iterate the reurrene formula obtained in Setion 5 for severaltimes. This yields a new (more ompliated) reurrene formula whose oeÆients areexponential sums. Using the notions set up in Setion 4 we give a nontrivial estimate forthe oeÆient of X(I1; : : : ; Ik; J ;F0; F0). This is the key step in the proof of Theorem 3.3.We now want to iterate Proposition 5.1. For this purpose we use the following abbrevi-ations. Q` := f0; : : : ; q � 1g`. Furthermore, for vetors we user` = (r`1; : : : ; r`k) and i` = (i`1; i`2):Then the L-fold iteration of Proposition 5.1 yieldsX(qLI1; : : : ; qLIk; qLJ ; f1; f2) = Xr1;:::;rL2Qk Xi1;:::;iL2Q2(11)  LỲ=1 �(�frj ;ij1g1�j�`�1(f1);�frj ;ij2g1�j�`�1(f2); r`; i`1; i`2)!�X(I1; : : : ; Ik; J ; �fr`;i`1g1�`�L(f1);�fr`;i`2g1�`�L(f2)):Note that in the fator orresponding to ` = 1 the set in the index of � in the argumentof � is empty. Thus the orresponding oeÆient � reads �(f1; f2; r1; i11; i12).Now we selet L := L0+L00+3 where L0 and L00 are de�ned as in Setion 4. Furthermore,let k = d(q � 1) + � with 0 � � < q � 1. We want to extrat two summands from the sumin (11) whih we will inspet more losely. The �rst summand is the one orresponding tothe following seletion.r` = (0; : : : ; 0); i` = (0; 0) (1 � ` � L0) ;r` = v1; i` = ((1; 1); if � = 0(q � �; q � �); if � > 0 (` = L0 + 1) ;r` = v`�L0 ; i` = (0; 0) (L0+2 � ` � L�3) ;r` = (0; : : : ; 0); i` = (q � 1; 0) (` = L� 2) ;r` = (0; : : : ; 0); i` = (q � 1; 0) (` = L� 1) ;r` = (0; : : : ; 0); i` = (0; 0) (` = L) :



WARING'S PROBLEM WITH DIGITAL RESTRICTIONS 13We all the summand in (11) orresponding to this seletion V1. The seond seletion isthe same as the �rst apart fromiL�1 = (0; 0) instead of iL�1 = (q � 1; 0):The summand in (11) orresponding to this seletion will be alled V2. First we examineV1. To this matter we use the abbreviationA(f1; f2) :=  L�2Ỳ=1 �(�frj ;ij1g1�j�`�1(f1);�frj ;ij2g1�j�`�1(f2); r`; i`1; i`2)! :Note that from the de�nition of �r;i we get�0;q�1(F0) = F0;�0;0(F1) = F0;(12) �0;q�1(F1) = F1:Applying Lemma 4.2 we see that�frj ;ij1g1�j�L�2(f1) = �frj ;ij1gL0+1�j�L�2(F0)= �0;q�1(F1)(13) = F1(Lemma 4.2 (i) has been applied for the �rst, Lemma 4.2 (ii) for the seond and (12) forthe third equality). In an analogous way we see that(14) �frj ;ij2g1�j�L�2(f2) = F0:All this yields together with (11) thatV1 = A(f1; f2)��(�frj ;ij1g1�j�L�2(f1);�frj ;ij2g1�j�L�2(f2); rL�1; iL�1;1; iL�1;2)��(�frj ;ij1g1�j�L�1(f1);�frj ;ij2g1�j�L�1(f2); rL; iL1; iL2)�X(I1; : : : ; Ik; J ; �frj ;ij1g1�j�L(f1);�frj ;ij2g1�j�L(f2))= A(f1; f2)�(F1; F0; rL�1; iL�1;1; iL�1;2)��(�rL�1;iL�1;1(F1);�rL�1;iL�1;2(F0); rL; iL1; iL2)�X(I1; : : : ; Ik; J ; �frj ;ij1gL�1�j�L(F1);�frj ;ij2gL�1�j�L(F0))= A(f1; f2)�(F1; F0; 0; q � 1; 0)�(F1; F0; 0; 0; 0)�X(I1; : : : ; Ik; J ;F0; F0):In the �rst equality we applied (13) and (14), the seond equality follows from (12). In thesame way we obtainV2 = A(f1; f2)�(F1; F0; 0; 0; 0)�(F0; F0; 0; 0; 0)X(I1; : : : ; Ik; J ;F0; F0):



14 J�ORG M. THUSWALDNER AND ROBERT F. TICHYNow we an apply Lemma 5.1 in order to obtainV1 = A(f1; f2)e� hm(2� q)�X(I1; : : : ; Ik; J ;F0; F0);V2 = A(f1; f2)e� hm�X(I1; : : : ; Ik; J ;F0; F0):Thus we an rewrite (11) asX(qLI1; : : : ; qLIk; qLJ ; f1; f2) =XD  LỲ=1 �(�frj ;ij1g1�j�`�1(f1);�frj ;ij2g1�j�`�1(f2); r`; i`1; i`2)!�X(I1; : : : ; Ik; J ; �fr`;i`1g1�`�L(f1);�fr`;i`2g1�`�L(f2)) + V1 + V2:Here D denotes the range of summation in (11) apart from the two seletions of theparameters orresponding to V1 and V2.If we rearrange the terms in this sum we arrive atX(qLI1; : : : ; qLIk; qLJ ; f1; f2) =0BB� Xg1;g22F(g1;g2)6=(F0;F0) a0(f1; f2; g1; g2)X(I1; : : : ; Ik; J ; g1; g2)1CCA+�a0(F0; F0) + A(f1; f2)�e� hm(2� q)�+ e� hm����X(I1; : : : ; Ik; J ;F0; F0);where a0(g1; g2) is the sum of all �(�), whih our as oeÆients of X(g1; g2) in the sumover D. Sine D has qk+2L� 2 summands eah of whih has a oeÆient of modulus 1, weonlude that for all f1; f2 2 FXg1;g22F ja0(f1; f2; g1; g2)j � q(k+2)L � 2:Set a(f1; f2; g1; g2) := a0(f1; f2; g1; g2) if (g1; g2) 6= (F0; F0);a(f1; f2; F0; F0) := a0(f1; f2; F0; F0) + A(f1; f2)�e� hm(2� q)�+ e� hm�� :Sine m - h(q � 1) we have����e� hm(2� q)�+ e� hm����� � ����1 + e� 1m����� � 2� � �2m�2 :



WARING'S PROBLEM WITH DIGITAL RESTRICTIONS 15Thus(15) Xg1;g22F ja(f1; f2; g1; g2)j � q(k+2)L � � �2m�2 :Let B be the jFj2 � jFj2 matrix(16) B := (ja(f1; f2; g1; g2)j)(f1;f2)2F2;(g1;g2)2F2 :Then we onlude that(jX(qLI1; : : : ; qLIk; qLJ ; f1; f2)j)(f1;f2)2F2 �(17) B (jX(I1; : : : ; Ik; J ; g1; g2)j)(g1;g2)2F2 :The inequality is meant omponentwise.7. Proof of the orrelation resultIn this setion we �nish the proof of Theorem 3.3. The remaining part of this proofproeeds along similar lines as Kim [15, p. 325{328℄.First de�ne the abbreviationsp := qL and " := �24m2pk+2 :By (15) the row sums of the matrix B in (16) are less than or equal to pk+2(1� "). Sineall the entries of B are non-negative, this implies that for eah ` 2 N the row sums in B`are less than or equal to p(k+2)`(1� ")`. Thus the `-fold iteration of the matrix inequality(17) together with the trivial estimatejX(I1; : : : ; Ik; J ; f1; f2)j � jI1j � � � jIkjjJ j2yields(18) jX(p`I1; : : : ; p`Ik; p`J ; f1; f2)j � (1� ")`(p`jI1j) � � � (p`jIkj)(p`jJ j)2:Set t := �10 logN21 log p � ;then pt < pN . Now letIj = [aj; bj℄ (1 � j � k); J = [ak+1; bk+1℄be the intervals ourring in the statement of Theorem 3.3. Then we an writeaj = ptuj + rj and bj = ptvj + sj (1 � j � k + 1)with 0 � rj; sj < pt in a unique way. Here juj � vjj � 1 beause all the intervals havelength greater than pN by assumption. Now set~Ij := [uj; vj℄ (1 � j � k); ~J := [uk+1; vk+1℄:



16 J�ORG M. THUSWALDNER AND ROBERT F. TICHYFrom the de�nition of X (note that the summands in the innermost sum have all modulus1) we easily deriveX(I1; : : : ; Ik; J ; f1; f2) = X(pt ~I1; : : : ; pt ~Ik; pt ~J ; f1; f2)(19) +O�jI1j � � � jIkjjJ j2 ptpN� :Sine (1� ")t < e�t", (19) yields together with (18) the estimate(20) X(I1; : : : ; Ik; J ; f1; f2)� �e�t" + ptpN� jI1j � � � jIkjjJ j2:From the de�nition of t we easily derive (if N is large enough)�"t � �10 logN22 log p �24m2pk+2 � � logNm2pk+2 log p � � logNm2qL(k+2)+1 :Sine L = L0 + L00 < 2 kq�1 + 2 this yields�"t � � logNm2qp(q;k)with p(q; k) as in (3). Furthermore,ptpN � exp �1021 logN�pN = N� 142 :Inserting this in (20) and speializing f1 = f2 = F0 yields Theorem 3.3.8. Proof of the \digital" version of Weyl's LemmaIn this setion we want to show Theorem 3.4. The proof will be done by using the �rstpart of ordinary Weyl's Lemma (f. [25, Lemma 2.3℄) together with the orrelation resultin Theorem 3.3. Let ' be an arithmeti funtion. The sum in Theorem 3.4 is of the shape(21) T (') := Xn<N e('(n)):The following lemma is the starting point for the dedution of the estimate in Theorem 3.4.Lemma 8.1 (�rst part of Weyl's Lemma, f. [25, Lemma 2.3℄). Let T (') be as in (21).Then the estimate jT (')j2j � (2N)2j�j�1 Xjh1j<N � � � Xjhj j<N Tjholds. Here Tj := Xn2Hj(h1;:::;hj) e(�j('(n); h1; : : : ; hj))and the integer intervals H` satisfyH1(h1) � [1; N ℄ \ N ;H`(h1; : : : ; h`) = H`�1(h1; : : : ; h`�1) \ fx j x+ h` 2 H`�1(h1; : : : ; h`�1)g:



WARING'S PROBLEM WITH DIGITAL RESTRICTIONS 17In what follows, we need the k-th di�erenes(22) �k ��nk + m̀sq(n); h1; : : : ; hk� :It is easy to see that the di�erene operators �j are linear. Thus we may treat thesummands in (22) separately. It is well known that�k(�nk; h1; : : : ; hk) = �k!h1 � � �hk:Furthermore, linearity of �k yields�k �m̀sq(n); h1; : : : ; hk� = m̀�k (sq(n); h1; : : : ; hk) :Using these two identities and applying Lemma 8.1 with '(n) = �nk+ m̀sq(n) we arrive at����T ��nk + m̀sq(n)�����2k ������(2N)2k�k�1 Xjh1j<N � � � Xjhkj<N Xn2Hk(h1;:::;hk)e��h1 � � �hkk! + m̀�k(sq(n); h1; : : : ; hk)� �����= �����(2N)2k�k�1 Xjh1j<N � � � Xjhkj<Ne (�h1 � � �hkk!) Xn2Hk(h1;:::;hk) e�m̀�k(sq(n); h1; : : : ; hk)� �����:Shifting the modulus to the innermost sum yields����T ��nk + m̀sq(n)�����2k � (2N)2k�k�1 Xjh1j<N � � � Xjhkj<N(23) ������ Xn2Hk(h1;:::;hk) e�m̀�k(sq(n); h1; : : : ; hk)������� :The sum in (23) resembles the sum estimated in Theorem 3.3. The only defets are thefollowing.� The range of the innermost sum depends on h1; : : : ; hk.� The modulus of the innermost sum is not squared.The �rst of these defets an be mended by splitting the sums in several bloks ofreasonable size. In these bloks the range of the innermost sum an be made onstant at



18 J�ORG M. THUSWALDNER AND ROBERT F. TICHYthe ost of an error term whih is small enough to be harmless. The seond defet an beeasily removed by an appliation of the Cauhy-Shwarz inequality.Let � be as in Theorem 3.3 and selet real numbers �; �; " with� > �2 ; � � 12 ; � + � = 1; 0 < " � �� �2 :With these seletions we an rewrite the sumS := Xjh1j<N � � � Xjhkj<N ������ Xn2Hk(h1;:::;hk) e�m̀�k(sq(n); h1; : : : ; hk)�������by deomposing the sums outside the modulus in bloks of length bN� as follows.(24) S = bN�+1Xj1=�bN��1 � � � bN�+1Xjk=�bN��1R(j1; : : : ; jk) +O �Nk�+1�with R(j1; : : : ; jk) := (j1+1)bN��1Xh1=j1bN� � � � (jk+1)bN��1Xhk=jkbN������� Xn2Hk(h1;:::;hk) e�m̀�k(sq(n); h1; : : : ; hk)������� :Now we want to estimate the sums R(j1; : : : ; jk). To this matter we distinguish two ases.(i) Suppose that jHk(h1; : : : ; hk)j > N�+" for all(25) jrbN� � hr < (jr + 1)bN� (1 � r � k):From Lemma 8.1 one an easily see that the bounds of the interval H(h1; : : : ; hk)depend linearly on h1; : : : ; hk. Furthermore, by (25) eah of these variables anvary only in an interval of length bN�. Thus there exist positive integers u and vsuh that H(h1; : : : ; hk) = �u+O �N�� ; v +O �N��� \ Nfor eah k-tuple (h1; : : : ; hk) satisfying (25). The implied onstants are easily seento be uniform in j1; : : : ; jk. Now setH 0(j1; : : : ; jk) := [u; v℄ \ N :H 0(j1; : : : ; jk) is independent of (h1; : : : ; hk) as long as (25) holds. Furthermore, itsatis�es jH 0(j1; : : : ; jk)4H(h1; : : : ; hk)j � N�



WARING'S PROBLEM WITH DIGITAL RESTRICTIONS 19where 4 denotes the symmetri di�erene. Thus we getR(j1; : : : ; jk) = (j1+1)bN��1Xh1=j1bN� � � � (jk+1)bN��1Xhk=jkbN������� Xn2H0k(j1;:::;jk)e�m̀�k(sq(n); h1; : : : ; hk)�������+O �N (k+1)�� :Applying the Cauhy-Shwarz inequality yieldsR(j1; : : : ; jk) =  Nk� (j1+1)bN��1Xh1=j1bN� � � � (jk+1)bN��1Xhk=jkbN������� Xn2H0k(j1;:::;jk) e�m̀�k(sq(n); h1; : : : ; hk)�������2! 12+O �N (k+1)�� :Sine � � 12 the onditions for the appliations of Theorem 3.3 are satis�ed and anappliation of this theorem yields(26) R(j1; : : : ; jk)� Nk�+1� �2 +N (k+1)� � Nk�+1� �2 :(ii) Now suppose at the ontrary that jHk(h1; : : : ; hk)j � N�+" for at least one k-tuple(h1; : : : ; hk) satisfying (25). Sine the bounds of the interval H(h1; : : : ; hk) dependlinearly on h1; : : : ; hk, this implies thatjHk(h1; : : : ; hk)j � N�+"holds for all k-tuples (h1; : : : ; hk). Thus estimating R(j1; : : : ; jk) trivially in thisase yields(27) R(j1; : : : ; jk)� N (k+1)�+" � Nk�+1� �2 :Inserting (26) and (27) in (24) we arrive atS � Nk�+k�+1� �2 = Nk+1� �2 :Using this in (23) we get ����T ��nk + m̀sq(n)�����2k � N2k� �2 :Taking the 2k-th root yields the result.



20 J�ORG M. THUSWALDNER AND ROBERT F. TICHY9. Appliation of the irle methodIn this setion we will prove Theorem 3.2. Then we will indiate how this proof has tobe modi�ed in order to get Theorem 3.1. We do it this way in order to avoid umbersomenotations in the proof. First we want to reformulate the problem of expressing integers inthe way indiated in Theorem 3.2 in terms of exponential sums. To this matter we willuse the well-known irle method (f. for instane Vaughan [25℄).Let P := �N1=k�and let F (z) be given by the seriesF (z) := Xn2Uh;m(P ) znk :Then F (z)s an be expanded in a Taylor seriesF (z)s =Xn�0 Cnzn:It is easy to see that CN is the number of representations of N asN = xk1 + � � �+ xks ; xj 2 Uh;m(P ):Thus in order to show Theorem 3.2 we need the asymptoti behaviour of the oeÆientsCN of this Taylor series. Cauhy's formula yields thatCN = 12�i I F (z)sz�N�1dz= Z 10 Xn12Uh;m(P ) � � � Xns2Uh;m(P ) e (�(nk1 + � � �+ nks �N )) d�:In order to get rid of the set Uh;m(P ) in the range of summation we use a trik whihgoes bak to Gelfond [12℄. Namely, for an arithmeti funtion ' setH`('; P ) := P�1Xn=0 e�'(n) + m̀sq(n)� :Then m�1X̀=0 e��`hm�H`('; P ) = P�1Xn=0 m�1X̀=0 e�`sq(n)� hm � e('(n))= m Xn2Uh;m(P ) e('(m)):



WARING'S PROBLEM WITH DIGITAL RESTRICTIONS 21With help of this identity we may writeXn2Uh;m(P ) e ��nk� = m�1X̀=0 e��`hm�H`(�nk; P )= 1m m�1X̀=0 P�1Xn=0 e�`sq(n)� hm � e(�nk):Inserting this in the integral representation of CN we arrive atCN = 1ms Z 10 Xn1<P � � �Xns<P m�1X̀1=0 � � �m�1X̀s=0e�`1 sq(n1)� hm � � � � e�`s sq(ns)� hm � e ��(nk1 + : : :+ nks �N)� d�:The integral an be split in two parts, one orresponding to the seletion `1 = � � � = `s = 0,the other orresponding to the remaining seletions for the `j. We getCN = 1ms Z 10 Xn1<P � � �Xns<P e �� �nk1 + � � �+ nks �N�� d�+ 1ms Z 10 Xn1<P � � �Xns<P m�1X̀1=0 � � �m�1X̀s=0| {z }`1+���+`s 6=0e�`1 sq(n1)� hm � � � � e�`s sq(ns)� hm � e ��(nk1 + � � �+ nks �N)� d�=: I1 + I2:The integral I1 is well-known from the ordinary Waring's problem and an be treated alongthe known lines. This integral will ontribute the main term in Theoren 3.2. Thus we areleft with the integral I2. Let L = (`1; : : : ; `s) 6= 0. Then I2 onsists of integrals of theshape JL := Z 10  Xn1<P e��nk1 + `1 sq(n1)� hm �! � � � Xns<P e��nks + `ssq(ns)� hm �! e(�N�)d�:It turns out that these integrals do not ontribute to the main term, i.e. we have no majorars.For onveniene set Sj(�) :=Xn<P e��nk + `jmsq(n)� :



22 J�ORG M. THUSWALDNER AND ROBERT F. TICHYSine s > 2k we an estimate JL by(28) jJLj � sup�;j �jSj(�)js�2k�maxt �Z 10 jSt(�)j2kd�� :Analgously to the proof of the lassial Lemma of Hua (f. [25, Lemma 2.5℄) we rewritethe last integral asZ 10 jSt(�)j2kd� = Xn1;:::;n2k e0�`t 2k�1Xr=1 sq(nr)� sq(n2k�1+r)1A :(29)Here the sum is extended over all n1; : : : ; n2k < P ful�llingnk1 + � � �+ nk2k�1 = nk2k�1+1 + � � �+ nk2k :Thus the sum in (29) an be obviously estimated by���nn1; : : : ; n2k < P ��nk1 + : : :+ nks = nks+1 + : : :+ nk2so���:Applying Vaughan [24, Theorem 2℄ this yieldsZ 10 jSt(�)j2kd� � P 2k�k:Inserting this together with Theorem 3.4 in estimate (28) we arrive atJL � P s�k�:The last estimate follows from the lower bound for s.Summing up we have shown that JL � P s�k� for all L 6= (0; : : : ; 0). This implies thatI2 � P s�k�:As mentioned above, the integral I1 is m�s times the integral ourring in the ordinaryWaring's problem. Thus its evaluation yields m�s times the known Hardy-Littlewoodasymptoti formula (f. for instane Vaughan [25, Theorem 2.6℄). Adding I1 and I2 yieldsTheorem 3.2. Note that only I1 ontributes to the main term.In order to prove Theorem 3.1 we start with the funtionsFi(z) := Xn<Psqi(n)�hi(mi) znk (1 � j � s):In what follows we have to work with sYi=1 Fi(z)instead of F (z)s. This does not alter the proof. The only di�erene is that we have to keeptrak of the indies of hi; mi and qi.



WARING'S PROBLEM WITH DIGITAL RESTRICTIONS 2310. Conluding remarksWe already mentioned in Remark 3.2 that there is some spae to improve the bound fors in Theorem 3.2. We even think that the following should be true.Conjeture 10.1. For eah k 2 N Gh;m(k) = G(k)holds for all h;m 2 N.By Wooley [31℄ this would imply a big improvement for the bound of s in our result. Forthe ase k = 2 the onjeture would yield that Lagrange's theorem on the representabilityof integers as sum of four squares holds asymptotially with digital restritions. Of ourse,one an not expet a similar result for gh;m(k), whose value depends at least on m.In this ontext it would be interesting to determine gh;m(k) at least for speial values ofh;m and k. Even for k = 1 this seems to be a nontrivial problem.Referenes[1℄ A. Balog and A. S�ark�ozy. On sums of integers having small prime fators I. Studia Si. Math. Hungar.,19:35{47, 1984.[2℄ R. Bellman and H. N. Shapiro. On a problem in additive number theory. Ann. of Math. (2), 49:333{340, 1948.[3℄ J. B�esineau. Ind�ependane statistique d'ensembles li�es �a la fontion \somme des hi�res". Ata Arith.,20:401{416, 1972.[4℄ J. Br�udern. A sieve approah to the Waring-Goldbah problem. I. Sums of four ubes. Ann. Si. �EoleNorm. Sup. (4), 28:461{476, 1995.[5℄ J. Br�udern. A sieve approah to the Waring-Goldbah problem. II. On the seven ubes theorem. AtaArith., 72:211{227, 1995.[6℄ J. Br�udern and E. Fouvry. Lagrange's four squares theorem with almost prime variables. J. ReineAngew. Math., 454:59{96, 1994.[7℄ H. Delange. Sur la fontion sommatoire de la fontion \somme des hi�res". Enseign. Math. (2),21:31{47, 1975.[8℄ M. Drmota and J. Shoissengeier. Digital expansions with respet to di�erent bases. Monatsh. Math.,to appear.[9℄ K. B. Ford. New estimates for mean values of Weyl sums. Internat. Math. Res. Noties, (3):155{171(eletroni), 1995.[10℄ E. Fouvry and C. Mauduit. M�ethodes de rible et fontions sommes des hi�res. Ata Arith., 77:339{351, 1996.[11℄ E. Fouvry and C. Mauduit. Sommes des hi�res et nombres presque premiers.Math. Ann., 305(3):571{599, 1996.[12℄ A. O. Gelfond. Sur les nombres qui ont des propri�et�es additives et multipliatives donn�ees. Ata Arith.,13:259{265, 1968.[13℄ G. Haros. Waring's problem with small prime fators. Ata Arith., 80:165{185, 1997.[14℄ L.-K. Hua. Additive theory of prime numbers. Translations of Mathematial Monographs, Vol. 13Amerian Mathematial Soiety, Providene, R.I. 1965[15℄ D.-H. Kim. On the joint distribution of q-additive funtions in residue lasses. J. Number Theory,74:307{336, 1999.[16℄ C. Mauduit and A. S�ark�ozy. On the arithmeti struture of sets haraterized by sum of digits prop-erties. J. Number Theory, 61:25{38, 1996.
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