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ABSTRACT. The aim of this paper is to consider an analogue of Waring’s problem with
digital restrictions. In particular, we prove the following result. Let s,(n) be the g-adic
sum of digits function and let h, m be fixed positive integers. Then for s > 2* there exists
no € N such that each integer n > ng has a representation of the form

n=a¥+. . +2% where s,(z;) = h(m).

We will even give an asymptotic formula for the number of representations of n in this
way. The result is shown with help of the circle method in combination with a “digital”
version of Weyl’s Lemma.

1. NOTATION

As usual, N, Z,R and C denote the set of positive integers, integers, real and complex
numbers, respectively. The abbreviation e(z) := exp(2miz) will be used, |z | is the greatest
integer less than or equal to z € R. Furthermore, we will write [z] for the smallest integer
greater than or equal to z. For the cardinality of a set S we will write |S|. Vectors will
be written in bold face. Concerning the indices of the elements of a vector we will use the
conventions

r:=(ry,...,r,) and r;:= (7j1,...,7).

We will use the notations f(z) = O (g(z)) as well as f(z) < g(x) to express that f(z) <
cg(z) for some constant ¢ and all sufficiently large x € R. If the implied constant c
depends on a certain parameter, say ¢, this will be either mentioned explicitly or indicated
by f(z) <. g(2).

If I :={n€Z|a<n<b}is an interval of integers then we use the abbreviation

(1) cl:={ne€Z|ca<n<ch}

for c € N.
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2. INTRODUCTION

Let A C N and s € N. If each positive integer N € N admits a representation of the
form

(2) N=z1+ 4z, with zy,...,2,€ A

we say that A is a basis of N of order s. If a representation of the shape (2) only exists
if N is sufficiently large we call A an asymptotic basis of N of order s (cf. for instance
Nathanson [18]).

It is a fundamental problem in additive number theory to decide whether a given set
A C N is a basis (resp. asymptotic basis) or not (cf. Hua [14], Nathanson [18, 19],
Vinogradov [30]). If A turns out to be a basis one is interested to find its smallest possible
order. We mention Goldbach’s problem, where A is taken to be the set of primes or
Waring’s problem which corresponds to

A=A, :={n"|neN} (k&N fixed).

We use the common notations g(k) and G(k) for the smallest possible number s such that
Ay is a basis or asymptotic basis of order s, respectively. The best known bound for G(k)
is due to Wooley [31] and reads

G(k) < k(logk +loglogk + O (1)).

For results on g(k) we refer the reader to Vaughan [25, p. 1f]. Hardy and Littlewood were
the first to give an asymptotic formula (now called the Hardy-Littlewood formula) for the
number of representations of a sufficiently large integer as the sum of s elements of Ag.

We denote the smallest number of s for which this formula holds by G(k) and remark that
the best estimate for G(k) is due to Ford [9] and asserts that

G(k) < k*(logk + loglog k + O (1)).

For small values of k these results can be refined. We refer for instance to the results
by Vaughan and Wooley in [26, 27, 28, 29]. The present paper is devoted to a variant
of Waring’s problem with digital constraints. To make this more precise let s,(n) be the
g-adic sum of digits function which assigns to each positive integer n the sum

sqn)=co+-+¢
of digits in its (unique) g-adic representation
n=c +cq+--+cq.
With help of s,(n) we define the set
Unm(N) :={n < N|s4(n) = h(m)}.

This set has been studied for instance by Gelfond [12] and Mauduit-Sarkozy [16]. Our goal
is to show that each sufficiently large N € N admits a representation of the shape

N=af+...42% with z,...,2, € Uypn(N)
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for each fixed s > 2% if (m,q — 1) = 1. In other words, this means that
A = {n* [ 54(n) = h(m)}

forms an asymptotic basis of order 2¥ +1. In fact, by very slight modifications we can prove
even more: we get that if s > 2* then each sufficiently large N € N has a representation
of the shape

N=ob+. . +2b with s,(2)=h(m) (1<i<s).

Again the condition (m;, ¢; — 1) = 1 is needed.
Analogously to the notation for the ordinary Waring’s problem we give the following
definition.

Definition 2.1. Let G, (k) be the smallest integer s such that Ay p ., forms an asymptotic
basis of order s of N. Furthermore, let gnm (k) be the smallest integer s such that Ay m {1}
forms a basis of order s of N.

Note that {1} has to be added to Ay p , in the definition of gy, (k) because otherwise 1
could not have any representation.

There exist also other restricted versions of Waring’s problem. One of them is the
Waring’s problem restricted to sums of k-th powers of primes. An account of it can be
found for instance in Hua [14] (cf. also Briidern’s papers [4, 5] for a new approach to this
subject). A more recent restriction of Waring’s problem was investigated by Harcos [13].
Generalizing a result of Balog and Sarkozy [1] he considered Waring’s problem for sums
of k-th powers of integers having not too large prime factors. In Briidern-Fouvry [6] an
analogue of Lagrange’s four squares theorem for almost primes was shown.

The sum of digits function was the subject of many papers in the last decades. Its basic
property is g-additivity, i.e. if a,b,h € N with b < ¢" then

sq(aqh +0) = sq(a) + s4(b).

One of the first papers on s,(n) was Bellman-Shapiro [2] where the summatory function
of s,(n) and its iterates were treated. An exact formula for the summatory function of
sq(n) was later proved by Delange [7]. The distribution of s,(n) in residue classes has
been studied in Gelfond [12]. More recent results on s,(n) can be found for instance in
Drmota-Schoissengeier [8], Mauduit-Sarkézy [16, 17] or Thuswaldner-Tichy [23]. In order
to prove our results we will have to establish auto-correlation results of the sum of digits
function. Special cases of these results can be found in Bésineau [3] and Kim [15], where
the simultaneous distribution of sum of digits functions with respect to different bases is
investigated. We have to extend these results in the present paper in order to establish a
“digital” version of Weyl’s Lemma. This result seems to be of interest also in its own right.
We will use it in order to derive our result on Waring’s problem with digital restrictions.

One could ask whether it is possible to give results on a version of Waring’s problem
using only k-th powers of primes with digital restrictions. However, this seems to be very
hard to settle since up to now it is not even known if there exist infinitely many prime
numbers whose sum of digits function satisfies a given congruence. The best known result
in that direction is contained in Fouvry-Mauduit [10, 11].



4 JORG M. THUSWALDNER AND ROBERT F. TICHY

In earlier papers Diophantine equations with digital restrictions have been considered.
Generalizing a result of Stewart [22] on sets of numbers having small sum of digits function
simultaneously in two different bases, Schlickewei [21] studied the solutions of a certain
Diophantine equation having bounded sum of digits. This result has been extended further
to a more general notion of number systems in Pethé-Tichy [20].

The present paper is organized as follows. In the next section we present our main results:
the Hardy-Littlewood asymptotic formula for Waring’s problem with digital constraints
together with the generalization mentioned above (Theorem 3.1 and Theorem 3.2), a higher
auto-correlation result for the sum of digits function (Theorem 3.3) and a “digital” version
of Weyl’s Lemma (Theorem 3.4). Sections 4, 5 and 6 contain preliminary results needed
in order to prove Theorem 3.3. This result is finally proved in Section 7. Section 8 is
devoted to the deduction of the variant of Weyl’s Lemma from the auto-correlation result.
The variant of Weyl’s Lemma is finally used in Section 9, where we show that Ay j ., is
an asymptotic basis of N for each triple k£, h,m € N and that the asymptotic formula in
Theorem 3.2 holds. The proof of Theorem 3.1 turns out to run along exactly the same
lines as the proof of the special case. Our main tool here is the circle method. The paper
ends with a short section containing some concluding remarks.

3. STATEMENT OF THE MAIN RESULTS

We will now state our results.

Theorem 3.1. Let s,k € N, and h;,m;,q¢; € N (1 < i < s) with m; > 2, ¢; > 2 and
(¢i —1,m;) =1 . Let v 5p,m;(N) be the number of representations of N in the form
N=2of4... 4 2F (8q; (i) = hi(my)).
Then for s > 2% there exists a positive constant § such that
e (N) = — e (142 T (f)_l Nily O (Ni19)
B my - myg k k .

The implied constant depends only on s, k and m;. & is an arithmetic function for which
there exist positive constants 0 < ¢; < co depending only on k and s such that

1 < G(N) < Cy.
The following special case yields a new asymptotic basis of N.

Theorem 3.2. Let s,k,h,m,q € Nwithm >2,q¢>2and (¢q—1,m)=1. Let ryspm(N)
be the number of representations of N in the form

N=ah4. . a2t (1, ...,z € Upm(N)).

Then for s > 2% there exists a positive constant § such that

s N )
o) = o8 (1) 7 () o (v,
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The implied constant depends only on s, k and m. & is an arithmetic function for which
there exist positive constants 0 < ¢; < ¢y depending only on k and s such that

1 < G(N) < C9.

This implies that Agpm = {n*|s,(n) = h(m)} forms an asymptotic basis of order 2F + 1
of N, i.e.
Grm(k) <2841,

The proof of these theorems relies on the circle method and on a correlation result for
the sum of digits function. Before we state this result we recall the definition of the higher
difference operators A;. Let ¢ be an arithmetic function. Then

Ai(p(@);y) = w(z +y) — p(z).
The higher difference operators are defined recursively by
Ajii((@), Y- Y1) = A(A((@)i v, YY) (5> 1),

In what follows we will use the function

3) plk,q) i= [2M

+2k+5-‘.
qg—1

We will need the following higher correlation result for s,(n), which is a generalization of

[15, Proposition 1] and which is of interest also in its own right.

Theorem 3.3. Let k,m, h,q and N be positive integers with m > 2, g > 2 and m t h(qg—1).
Let I, ..., Iy, J be intervals of integers with VN < |L;|,|J| < N (1 <j <k). Set

V(oo I D)= Y > D e (%Ak(sq(n);hla---ahk)> 2

hi€l hr€ly IneJ

Then
Y(Ii,..., I, J) < |I] -+ | I || JAN"
> 0.

1
m2qP(ka‘1

holds with n =

This result leads to the following “digital” version of Weyl’s Lemma which will be used
in the proof of Theorem 3.2.

Theorem 3.4. Let k,m, {,q and N be positive integers with m > 2, ¢ > 2 and m { £(¢—1).

Then the estimate
14
Ont + —
Z e ( n' + msq(n)>

n<N

< N7

holds uniformly in 0 € [0,1) with v := n2~*+Y . Here n is as in Theorem 3.3.
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Remark 3.1. If one does not care about its order, the assertion that Ay, forms an
asymptotic basis can be proved easily in the following way.

Suppose that the set A of non-negative integers has positive asymptotic density. Suppose
further that for each prime p there exist numbers a,,b, € A such that p | a, and p 1 b,.
Then for any integer k the set AF := {nF|n € A} is an asymptotic basis. This can be
shown by combining arguments about Schnirel’'man density and the observation that the set
of s-fold sums of elements of A¥ has positive asymptotic density for s > 28=1. The latter
follows from [24, Theorem 2|, which implies that

Hnl,...,nQS6A(N)‘n’f+...+n'§:n’§+1+...+n'§s}‘

<Hn1,...,n25<N\n’f+...+ ’;:n§+1+...+n’55}‘

<< NZS*]C

holds for s > 2¥71. Here A(N) :={n < N|n € A}.

It is easy to show that the choice A := {n|sq(n) = h(m)} fulfills the above conditions.
In particular, we see from Fermat’s theorem that we can define the integers a, and b, by
choosing I and J in the expression

I-1 J-1
Z qi(p—l) + Z q1+j(p—1)
i=0 j=0

properly.

Remark 3.2. The bound for s in Theorem 3.1 and Theorem 3.2 is surely not best possible.
In order to make it smaller at least in Theorem 3.2, better estimates of the norm

(4) /01 S e (en'wr %sq(n)>

n<N
are needed for certain values of j € N. Obtaining such estimates may be doable but is
certainly quite involved (a very special case of a similar integral as in (4) has been treated
in [10]). Furthermore, we expect that these estimates will not lead to results of the same
quality as the refinements of Hua’s Lemma in Waring’s problem (as for instance in [31]).

J

do

4. OPERATORS ON A CLASS OF DISCRETE FUNCTIONS

In order to prove Theorem 3.3 we need some tricky but elementary calculations. The
key step in the proof of this result is done by selecting two terms of the form e(z) from
a certain exponential sum and proving that the sum of these two terms has modulus less
than two. In order to be able to select the proper terms we set up a class of functions
together with some operators acting on it.

Consider the sets

M:={1,2,....k} and M':={0,1,2,....k+1}
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and define the class of functions
F = {f:QM—>M'}

(here 2 denotes the set of all subsets of M). Especially two elements of F will be
important in the following discussions. These are

(5) Fo(S) == 0 forall S C M,
1 iftS=M
6 F(S) = .
(6) 1(S) {0 otherwise
On F we want to define the operator
i+ s+ f(S
Er,z(f)(s) — \‘ Z]ESq] f( )J
for each vector r = (rq,...,7) € {0,...,¢— 1}* and each 0 < i < q.

Lemma 4.1. For each pair r,i we have
Eei(F) CF.

Proof. We have to show that =,;(f)(S) always lies in M'. Since f € F and with the
restrictions on r,: we see that

i+ st (S —
q q
and we are done. O
We will need iterates of =, ;. These are defined by
E{I’z,izhgsz = ErL,iL 00 Er1,i1'
Dividing k by ¢ — 1 yields a representation
(7) k=dlg—1)+p (0<p<g-—1).
Set L" := L%J + 1. If p=10 set
vi = (va,...,vg) € ZF  with
1 ify {—1D(g—1D+1,....0(¢g—1
- ifje{t-1g-1+1....lg—1)} a<ie<1)
j
0 otherwise

If on the contrary p > 0 set

vi = (1,...,1,0,...,0) € Z*,
——
p times

vi = (vp,...,vg) € ZF  with

Vpj =

{1 ifje{(t—2)(g—1)+p+1,....(—1(g—1)+p}
0 otherwise
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for2</¢<1L”.

Lemma 4.2. The following two assertions hold:
(i) Let f € F be arbitrary. Then

5{0,0}15[51:, (f) = FO

ULM:{%EEW+1.

log g
(ii) Let

, 1, ifp=20

1 = . )
q—p, ifp>0

iw = 0 2<e<L" and

ry, = Vy (1 S l S L”).

Then E{rl:il}lgzgy’ (F[]) = Fl.

Proof. (i) Let f € F and S C M be arbitrary. Then

ﬂ&J<f$)
¢ 1= q

Z0al1)(S) = |

Iterating L' times shows

1)

= (0000w (1)(8) < { 2

for all S.
(ii) Let p = 0. The proof of the case p > 0 runs along the same lines. From the

definitions of =, ; and v; we get
1+ > 1
teSN{1,...,.q—1}

q

El‘l,il (FU) (8) =

{1 if {1,2,...,q— 1} C 8

0 otherwise

Now we proceed by induction. Suppose that

Lif{l,...,-1)@-1)}CS
0 otherwise

(8) E{rz,iz}1gz5j—1(F0) = {
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holds for some j < L". Then, again by the definition of =, ; and v; we obtain that

f ( s 1)+1
teSN{(G—1)(g—1)+1,....5(¢—1)} if {1, . (] . 1)((] . 1)} g S

q

E{I’z,izhgzgj(FO) = {

q

1
\jesm{(]l)(ql)ﬂ ----- Jj(g—1)} ‘ otherwise

holds. It is easy to see that this yields (8) for j instead of j — 1. Thus by induction
we get

1 if {1,...,k} CS
0 otherwise

E{"Z:iz}lglgyl (FO) - {

because L"(q—1) > k. Since the only subset of M which has {1,...,k} as a subset
is M itself the last function is F; and we are done.
O

5. RECURRENCES FOR AUTO-CORRELATION FUNCTIONS OF s4(n)

In this section we set up a recurrence for functions related to the auto-correlation function
Y(IL,..., I}, J) defined in Theorem 3.3. This is done by “multiplying” all the intervals
I,... I, J by g in the sense defined in (1) and exploiting the g-additivity of s,(n).

Let I,..., I}, J be intervals of integers. Define the following functions.
h
q)(hlaahkajaf) = Ze <E Z(_l)ki‘s‘sq <n+th+f(8)>) )
nelJ SCM tes
(g)qj(hla"'ahkfl;Ikaj;flaf2) = Z (I)(h’la7hk7J:fl)q)(h1:7hk:J7f2)7
hy €I}

X(Ila---alka‘];flan) = Z Z \I](hla"'ahk—l;lka‘];flan)-

hiel hip_1€l_1

Here the h; (1 <i < k) are integers and f, f1, fo € F.
Note that

h
Ze <Eﬁk(5q(”); hi, ..., hk)) = ®(hy,..., e J; Fy).

neJ
Thus for the sum Y ([y, ..., I}, J) defined in Theorem 3.3

Y(Il,...,lk,J) :X(Il,...,lk,J;Fg,Fg)

holds. We will derive estimates for X (Iy,..., It, J; f1, fo) for each pair fi, fo € F. From
this obviously follows the estimate for Y (I3, ..., Iy, J).
In the sequel we will use for short the vectors

r:=(ry,...,r) and h:=(hy, ..., hg).
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Proposition 5.1. Let fi, fo € F and let I,..., I, J be intervals of integers. Then

qg—1 qg—1 g—1 ¢g—1

X(qlla e ;qlkan: flaf?) = Z o Z Zza(f1:f27railai2)
7'1:[] rk:(]il:Oig:U
XX(ID"';[IHJ; Er,il(fl);Er,ig(f2))-

Here
o h _ . .
a(flaf?arallal2) = € (E Z (_]-)k ‘S‘(b(flasa r, Zl) - b(f?asa r, Z?))) .
SCM

The integer b(f,S,r,i) € {0,...,q—1} is defined as the remainder occurring at the division
of i + 3 et + f(S) by q.

Proof. We start with the first of the functions given in (9). Note that for 1 <ry,...,r, <gq
we have

(10)  @(¢h+r;qJ; f) =
ZZe <% Z (—1)F15Is, <qn—|—2qht +i+z7“t+f(5))) :

Now, by the definition of =, ; and b(f, S, r,i) we have
i+ Y+ FS) = Zes)(S)a + b(f, Sor, ).

By the g-additivity of s,(n) this implies that

Sq <qn+2qht+i+2rt+f(5)) = s, (qn+2qht +¢=i(f)(S) +b(f,8,r,i)>

tes tes tes
= s, <n+th+Er,i(f)(8)> +b(f, S, r,1).
tes

Inserting this in (10) yields

O(gh+r;qJ; f) = ie (% Z (=) 18lp( £, S, r, z)) ®(h; J; Z,4(f)).

i=0 SCM
Using the definition of the auto-correlation function ¥ in (9) this immediately leads to

U(ghy +r1,..., qhg—y +mi—13 0, qJ; f1, f2) =
qg—1 g—1 q—1

Z Z Za(fla fo,x, i, 09)

re=0171=0122=0

X\Ij(hla ey hk—l; Ika J Er,i1(f1)a Er,ig(f2))-
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Summing up over hy, ..., hy_; finally yields

g—1 ¢g—1 g1

qg—1
X(gh - salesad; fofo) = D > Y > alfi, fo,ryi1,00)

7'1:[] Tk:[] i1:0 iQZU
XX(Ila ey Ika J; Er,il (fl); Er,ig (f2))
]

In what follows we will need a more explicit representation of «(f1, fa, r, i1, io) for certain
values of the parameters. In particular, we will show the following result.

Lemma 5.1. Let Fy and Fy be as in (5) and (6). Furthermore, let
0:=(0,...,0).
——
k times
Then we have

O[(F[], F(), 0, 0, 0) = € (0) s

CY(Fl,F(),0,0,0) = €

CY(Fl,FU,O,q—l,O) - 6(

Proof. Recall that

a(fl;f?arailaiZ) = € (ﬁ Z (_1)k7‘8‘(b(f178; r, Zl) - b(f?a‘s: r, Z2))> )

m
SCM

where b(f, S, r,4) is the remainder occurring at the division of i + 3, g7 + f(S) by ¢.

o If f = F, and all r;, as well as i is zero, this remainder has to be zero for each
S C M. Thus also

S (~1)FS(F,. S,0,0) = 0.
SCM

o If f = Fy and all r;, as well as ¢ is zero, b(F1,S5,0,0) = 0 unless S = M. In the
latter case it is equal to 1. This means that

S (~1)F IS, 8,0,0) = 1.
SCM

o If f = F, all r; are zero and i = ¢ — 1, then again b(F;,S,0,q — 1) = g — 1 unless
S = M. For the latter case we note that

i) rntfM)=qg-1+1=q.

teM
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Since ¢ = 0(mod ¢) we conclude that b(F;, M,0,q — 1) = 0. This implies that

> (=D EIFR,S,0,g-1) = —g+1+ > (1) Fl(g-1)

SCM SCM
[k
- 1-e+-0Y ()
— \J
j
= 1—gq.
It is easily seen that these considerations imply the result. 0

6. ESTIMATING EXPONENTIAL SUMS OCCURRING IN THE ITERATION PROCESS

In the present section we iterate the recurrence formula obtained in Section 5 for several
times. This yields a new (more complicated) recurrence formula whose coefficients are
exponential sums. Using the notions set up in Section 4 we give a nontrivial estimate for
the coefficient of X (I4,..., Iy, J; Fo, Fo). This is the key step in the proof of Theorem 3.3.

We now want to iterate Proposition 5.1. For this purpose we use the following abbrevi-
ations. Qp := {0,...,q — 1}%. Furthermore, for vectors we use

ry, = (Tgl,...,’l“gk) and ig = (ifl,ifQ).
Then the L-fold iteration of Proposition 5.1 yields

(11) X(qul,---;qLIkaqLJ;flafZ) = Z Z

ri,..,r€Qg i17"':iL€Q2

L
(H Oé(E{l‘lehgjg[A (fl)a E{I’j,iﬂ}lg]‘gzq (fZ)a Ty, ig1, ié2)>
(=1

XX(Ila oo A, E{l‘z,iuhgsz(fl)a E{I’z,inhgsz (f2))

Note that in the factor corresponding to ¢ = 1 the set in the index of = in the argument
of v is empty. Thus the corresponding coefficient o reads «(fy, fo, 1,711, 112).

Now we select L := L'+ L" 43 where L' and L" are defined as in Section 4. Furthermore,
let k =d(qg—1)+ p with 0 < p < g—1. We want to extract two summands from the sum
in (11) which we will inspect more closely. The first summand is the one corresponding to
the following selection.

re=(0,...,0), ;= (0,0) (1<t<1I),

ry = vy, 1y = (1,1), lfp_o (KZL’—FI),
(@=pg=p), ifp>0

ry = Vy_p/ g: (0,0) (LI+2§€§L—3),

r=(0,...,0), i=(q—1,0) ((=L-2),

r=(0.....0), i,=(qg—1,0) ((=L-1),

I'ZZ(O,. ;0)7 1[2(0,0) (EZL)
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We call the summand in (11) corresponding to this selection V;. The second selection is
the same as the first apart from

iL_1 == (0, 0) instead of iL_1 == (q - 1, 0)

The summand in (11) corresponding to this selection will be called V5. First we examine
Vi. To this matter we use the abbreviation

L2
A(fri. fo) = (HG(E{rj,ijl}lsjgl(fl),E{rj,z‘jg}lsjg1(f2),1‘£,i£1,ie2))-

=1
Note that from the definition of =, ; we get
Zoq-1(Fo) = Fy,

(12) EO,O(FI) — F(),
EO,q—l(Fl) = B

Applying Lemma 4.2 we see that

E{rj’ijl}lgng—Q(fl) = E{rﬁijl}L’—nggL—Q (Fo)
(13) = Zoq-1(F1)
= F

(Lemma 4.2 (i) has been applied for the first, Lemma 4.2 (ii) for the second and (12) for
the third equality). In an analogous way we see that

(14) E{rjyijQ}lgng—Q (fQ) = Fo.
All this yields together with (11) that

i = A(f1, f2)

X e i icier o (1), 2 rinticien o (f2) Pty i1, i0-12)
X a(E{rj:ijl}lstL—l(fl)’ E{rj:ija}lstL—l (f2),rryinsirs)
X XL D T3 By gyen (1) Efryigehicar (f2))

= A(f1, f2)a(F1, Fo,rpo1,ip-11,00-12)
X ;i1 (F1), Zepryin 1. (FO)s L, i1, 02)
X X (I, ..., Iy, J; E{rj:ijl}L—lgng (Fy), E{rj:iﬂ}L—lgng(FO))

= A(f1, fo)a(F1, Fo,0,q9 — 1,0)a(Fy, Fy,0,0,0)
XX (1, I, J; Fy, Fy).

In the first equality we applied (13) and (14), the second equality follows from (12). In the
same way we obtain

V2 = A(flafQ)Q(FI’FO’O’an)a(FﬂaFOaOaOaO)X(Ila cee alka J; F[]aF[])-
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Now we can apply Lemma 5.1 in order to obtain

Vvl = A(flaf?)e (%(Q_Q)> X(Ila"':Ikaj;FbaFU)a
h
m

Vo = A(fl,f2)6< )X(Il,---,fk,J;Fano)-

Thus we can rewrite (11) as

X(¢"L,. ... q" I, q"T; fi, f2) =

L
Z (H a(E{l‘j,ijl}lgjgz—l (fl)a E{I‘j,iﬁ}lg]‘gz—l (fQ)a Ty, lg1, i£2)>

D =1
XX(Ila oy Iy T E{l‘z,iahngL(fl)a E{rz,izz}lgsz (f2)) +Vi+ Vs

Here D denotes the range of summation in (11) apart from the two selections of the
parameters corresponding to Vi and V5.
If we rearrange the terms in this sum we arrive at

X(q"n,....q" I, q"J; fi, fo) =

Z a'(fi. f2o 91, 92) X (L1, ., Ik, 3 91, 92)

915926}-
(91,92)#(Fo,Fo)

#(Em + A ) (e (2e-0) +e (1))

XX(Il,...,Ik,J;FU,F[]),

where a'(g1, go) is the sum of all «(+), which occur as coefficients of X(g;,¢g2) in the sum
over D. Since D has ¢**2L — 2 summands each of which has a coefficient of modulus 1, we
conclude that for all f, fo € F

Z ‘a’(flaf2;91;92)\ < q(k+2)L — 9.

91,92€F

Set
a(fi, f2, g1,92) = d'(fi, f2,01,92) it (g1, 92) # (Fo, Fo),
o BB = Gt A1 (¢ (B 0)) e (2))

m
1
l—i—e(—)
m

Since m { h(q — 1) we have

(ae0) ()

<
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Thus
2
(15) Z la(f1, for g1. 92)] < ¢*F2" — <%> :
91,92€F
Let B be the |F|* x |F|* matrix
(16) B = (la(f1. f2: 91, 92) ) (11,121 e72 (91 g2)e 72

Then we conclude that

(17) (‘X(qula---aqLIkaqLJ;f17f2)|)(f1,f2)e]-'2 <
B (‘X(Ila - 'alka J gla92)|)(gl,92)€}'2-

The inequality is meant componentwise.

7. PROOF OF THE CORRELATION RESULT

In this section we finish the proof of Theorem 3.3. The remaining part of this proof
proceeds along similar lines as Kim [15, p. 325-328].
First define the abbreviations
L m?
P =q and e = W

By (15) the row sums of the matrix B in (16) are less than or equal to p**2(1 — ¢). Since
all the entries of B are non-negative, this implies that for each ¢ € N the row sums in B¢
are less than or equal to p(**2(1 — ). Thus the ¢-fold iteration of the matrix inequality
(17) together with the trivial estimate

‘X([la"'alk:‘]; fl:f?)‘ S |Il| o ‘Ik||‘]‘2

yields
(18) XL, P L p s i )] < (L= o) (L)) - (P (P T])2.
Set

| 10log N |

[ 21logp |’

then p' < v/N. Now let
Ij=laz. 0] (1<j<k), J = [ags1, bii]
be the intervals occurring in the statement of Theorem 3.3. Then we can write
a; = pluj +r; and b; = p'vj + s 1<j<k+1)

with 0 < r;,s; < p' in a unique way. Here |u; — v;| > 1 because all the intervals have
length greater than v/ /N by assumption. Now set

I v=u;v] (1<j<k), J = [Upr1, Ups1)-
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From the definition of X (note that the summands in the innermost sum have all modulus
1) we easily derive

(19) X(Ila"'alk:J;fI;fZ) = X(ptfla"':ptik;ptj;flaf2)
¢
p
+O | |L]---]I J2—>.
(1]l
Since (1 —¢)" < e ', (19) yields together with (18) the estimate
t
(20) X(L, ... I, T i, o) < (e‘“+ %) TR ALY/

From the definition of ¢ we easily derive (if V is large enough)
10logN 72 log N log N
—ct < — < < _ .
= 22logp 4m2pk+t2 =  m2pk+2logp =  m2qLk+2)+1

Since L = L' + L" < 2% + 2 this yields

with p(q, k) as in (3). Furthermore,
pt < exp (22 log V) N
VN VN

Inserting this in (20) and specializing f; = fo = Fp yields Theorem 3.3.

&. PROOF OF THE “DIGITAL” VERSION OF WEYL'S LEMMA

In this section we want to show Theorem 3.4. The proof will be done by using the first
part of ordinary Weyl’s Lemma (cf. [25, Lemma 2.3]) together with the correlation result
in Theorem 3.3. Let ¢ be an arithmetic function. The sum in Theorem 3.4 is of the shape

(21) T(p) = elp(n)).

n<N
The following lemma is the starting point for the deduction of the estimate in Theorem 3.4.

Lemma 8.1 (first part of Weyl’s Lemma, cf. [25, Lemma 2.3]). Let T'(¢) be as in (21).

Then the estimate , o
T()” <@V 3 - 3 T,

|hi|<N |hj|<N

Ti= Y eldjlp(n)ih, ..., hy)
n€H;(h1,...,hj)
and the integer intervals H, satisfy
Hi(h;) C [1,N]NN,
H[(hl, e hg) = Hffl(hla ce ey hgfl) N {ZL' | x + h( € Hgfl(hl, ce ey hl*l)}-

holds. Here
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In what follows, we need the k-th differences
14
(22) Ak <9nk + Esq(n); hl, ceey hk> .

It is easy to see that the difference operators A; are linear. Thus we may treat the
summands in (22) separately. It is well known that

Ag(On* by, ... ) = 0k\hy - - By,

Furthermore, linearity of A, yields

l l
A | — thy,...,h | = —A thi, ..., hg).
(i) = A sy )i )
Using these two identities and applying Lemma 8.1 with o(n) = OnF + %Sq(n) we arrive at
2k
<

(s Lo
DI M s

‘h1‘<N ‘hk‘<N nEHk(h17"':hk)

14
e <9h1 o hek! EAk(sq(n); hi,..., hk)> ‘

(QN)2"4H Z Z

|h1[<N |he|<N

e(Ohy - hekl) > e<%Ak(sq(n);h1,...,hk)>‘.

TLEHk(hl ..... hk)

Shifting the modulus to the innermost sum yields

ok

(23) T <9n’“+%sq(n)> < NN N

|hi|<N |hi|<N

> e%Ak(sq(n);hl,...,hk)).

nEHk(hl,...,hk)

The sum in (23) resembles the sum estimated in Theorem 3.3. The only defects are the
following.

e The range of the innermost sum depends on Ay, ..., hg.
e The modulus of the innermost sum is not squared.

The first of these defects can be mended by splitting the sums in several blocks of
reasonable size. In these blocks the range of the innermost sum can be made constant at
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the cost of an error term which is small enough to be harmless. The second defect can be
easily removed by an application of the Cauchy-Schwarz inequality.
Let n be as in Theorem 3.3 and select real numbers «, 3, e with

1
a>g, 625, a+ =1, 0<6§a—g.

With these selections we can rewrite the sum

=Y Y% e(%Ak(sq(n);hl,...,hkO

|h1|<N |hi|<N |n€Hy(h1,...;hy)

by decomposing the sums outside the modulus in blocks of length | N?] as follows.

[N |+1 [N |+1
(24) S= Y Y R(i....0)+ O (N
Ji=—[Ne|-1  jp=—[N*]-1
with
DN |=1 Get1) NP1
R(jla"'ajk) = Z Z
hi=j1|N5| hy=jx|NP|
1
Z e EAk(sq(n);hl,...,hk) :
nEHk(h17"':hk)

Now we want to estimate the sums R(jy,. .., jx). To this matter we distinguish two cases.

(25)

(i) Suppose that |Hy(h1, ..., hy)| > NP+ for all

GNP < hy < (y+ D[NP] (1< r<k).

From Lemma 8.1 one can easily see that the bounds of the interval H(hy, ..., hy)
depend linearly on hy, ..., h;. Furthermore, by (25) each of these variables can
vary only in an interval of length | N”]. Thus there exist positive integers u and v
such that

H(hi,...,h) = [u+ O (N?), v+ 0O (N?)] NN

for each k-tuple (hq,..., hy) satisfying (25). The implied constants are easily seen
to be uniform in jq, ..., jx. Now set

H'(j1, .. jr) = [u,v] NN

H'(j41,...,7k) is independent of (hy, ..., hy) as long as (25) holds. Furthermore, it
satisfies

|HI(]17a]k)AH(hlaahk)‘ <<Nﬁ
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where /A denotes the symmetric difference. Thus we get

(L+DINPI-1 (e +1) [N -1

R(ji..de) = Y )

hi=j1|NF] hy=ji [N

> 6<%Ak(sq(n);h1,...,hk)>

neH]’g(]l::]k)
Lo (N(k+1)[3) .
Applying the Cauchy-Schwarz inequality yields

Gr+D[NP -1 (p+1) (NP1

R(jr, - dk) = (N’“ﬁ > 2

hi=j1|N5| hi=jk NP
2

> e<%Ak(sq(n);hl,...,hk)> )é

neH]’g(]l::]k)

+O (N*HDEY

Since [ > % the conditions for the applications of Theorem 3.3 are satisfied and an
application of this theorem yields

(26) R(j1, ..., k) < NFEB+1=-3 | Nk+DB o NkB+1-T

(i) Now suppose at the contrary that |Hy(hy, ..., h;)| < NP+ for at least one k-tuple
(hi, ..., hg) satisfying (25). Since the bounds of the interval H(hy, ..., hy) depend
linearly on hq, ..., hy, this implies that

|Hk(h’1; - '7hk)| < N6+E

holds for all k-tuples (hy,...,hs). Thus estimating R(j;,...,Jx) trivially in this
case yields

(27) R(ju,. ... jx) < NUEFDBTE  NFOHI=G,
Inserting (26) and (27) in (24) we arrive at
S < Nka+kﬁ+1—g _ Nk"'l_%,

Using this in (23) we get
ok
n

< N¥*-3,

(i Lo

Taking the 2¥-th root yields the result.
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9. APPLICATION OF THE CIRCLE METHOD

In this section we will prove Theorem 3.2. Then we will indicate how this proof has to
be modified in order to get Theorem 3.1. We do it this way in order to avoid cumbersome
notations in the proof. First we want to reformulate the problem of expressing integers in
the way indicated in Theorem 3.2 in terms of exponential sums. To this matter we will
use the well-known circle method (cf. for instance Vaughan [25]).

Let

P :=|N'*|
and let F(z) be given by the series
F(z):= Z P
nEUh,m(P)
Then F(z)* can be expanded in a Taylor series
= Z Cpz".
n>0
It is easy to see that C'y is the number of representations of N as
N:l'llc—i-—i—l'];, ijUh’m(P).

Thus in order to show Theorem 3.2 we need the asymptotic behaviour of the coefficients
Cy of this Taylor series. Cauchy’s formula yields that

1

- = s ,—N-1
Cy = 57 F(z)°z dz
:/ Z Y @k 4k - N))db.
n1€Uh m TlseUh,m(P)

In order to get rid of the set Uy ,,(P) in the range of summation we use a trick which
goes back to Gelfond [12]. Namely, for an arithmetic function ¢ set

-8 )

n

Then

w

Se(-Bymer - S5 ( h) e(on)

n £=0

I
=)

= m
nGUh,m(P)
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With help of this identity we may write

> e(mt) = mAe(—éS)fhthP)

nEUh,m(P) =0

Inserting this in the integral representation of C'y we arrive at

Cv = mi/ol Zznf:i;

ni<P ns<P £1=0
‘ (zu) (zu) e (00 + ...+ — N)) db.
m m

The integral can be split in two parts, one corresponding to the selection ¢; = --- = £, = 0,
the other corresponding to the remaining selections for the ¢;. We get

Cy = ;%/ﬂE:-~§:ew0ﬁ+-~+nf—N»d9

—_———
£1+"'+és¢0
e<a%m” ) e<@%m9_h>ewwﬁ+-~+n§—Nnda
m

= Il +I2.

The integral Z; is well-known from the ordinary Waring’s problem and can be treated along
the known lines. This integral will contribute the main term in Theoren 3.2. Thus we are
left with the integral Z,. Let L = (¢1,...,0s) # 0. Then Z, consists of integrals of the

shape
J. = /01 (Z e <9n’f+élw>)
(Z e <9n’§ MSWD e(—N8)do.

It turns out that these integrals do not contribute to the main term, i.e. we have no major
arcs.
For convenience set

54@::§:e<mﬁ4—%§gm>.

n<P
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Since s > 2* we can estimate J;, by

25 01 < s (1500 ) mas ([ 007 a0).

Analgously to the proof of the classical Lemma of Hua (cf. [25, Lemma 2.5]) we rewrite
the last integral as

ok—1

1
(29) / SOPd = 3 e |63 s,n) = sylnaer,)
0 —
N1 yeeny TL2;c r=1
Here the sum is extended over all ny,...,ny < P fulfilling

k k k k
n1+"'+n2k—1:ngk—1+1+"'+n2k-

Thus the sum in (29) can be obviously estimated by
Hnl,...,nzk <P‘n’f+...+nf:nf+1+...+n§s}‘.

Applying Vaughan [24, Theorem 2| this yields
1
/ 15,(0)*" do < P>
0

Inserting this together with Theorem 3.4 in estimate (28) we arrive at
NIR<< Ps_k_,y.

The last estimate follows from the lower bound for s.
Summing up we have shown that J;, < P* %77 for all L # (0,...,0). This implies that

T, < Pk,

As mentioned above, the integral Z; is m * times the integral occurring in the ordinary
Waring’s problem. Thus its evaluation yields m™® times the known Hardy-Littlewood
asymptotic formula (cf. for instance Vaughan [25, Theorem 2.6]). Adding Z; and Z, yields
Theorem 3.2. Note that only Z; contributes to the main term.

In order to prove Theorem 3.1 we start with the functions

Fiz)= Y 2" (1<j<s).
n<P
sqi(n)zhi(mi)

In what follows we have to work with
[[F)
i=1

instead of F'(2)*. This does not alter the proof. The only difference is that we have to keep
track of the indices of h;, m; and g¢;.
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10. CONCLUDING REMARKS

We already mentioned in Remark 3.2 that there is some space to improve the bound for
s in Theorem 3.2. We even think that the following should be true.

Conjecture 10.1. For each k € N
Ghm(k) = G(k)
holds for all h,m € N.

By Wooley [31] this would imply a big improvement for the bound of s in our result. For
the case k = 2 the conjecture would yield that Lagrange’s theorem on the representability
of integers as sum of four squares holds asymptotically with digital restrictions. Of course,
one can not expect a similar result for g, (k), whose value depends at least on m.

In this context it would be interesting to determine g, (k) at least for special values of
h,m and k. Even for k£ = 1 this seems to be a nontrivial problem.
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