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BASIC PROPERTIES OF SHIFT RADIX SYSTEMS

SHIGEKI AKIYAMA, TIBOR BORBÉLY, HORST BRUNOTTE, ATTILA PETHŐ AND
JÖRG M. THUSWALDNER

Abstract. Certain dynamical systems on the set of integer vectors Zd are in-
troduced and their basic properties are described. Applications to β-expansions
and canonical number systems reveal unexpected relations between different
radix representation concepts.

1. Introduction

Let r = (r1, . . . , rd) ∈ Rd (d ≥ 1). We are interested in the mapping τr : Zd → Zd

defined by1

τr(a) = (a2, . . . , ad,−br1a1 + · · ·+ rdadc)
for a = (a1, . . . , ad) ∈ Zd. The mapping τr is called a shift radix system (SRS for
short) if for all a ∈ Zd we can find some n ∈ N with τn

r (a) = (0, . . . , 0). In this note
we give a short summary of basic properties and applications of SRS and mention
some open problems. For more detailed background information and proofs the
reader is referred to the original papers [1, 3].

Throughout we shall use the following sets which are closely connected to the
orbits of τr:

D0
d :=

{
r ∈ Rd | τr is a SRS

}
and

Dd :=
{
r ∈ Rd | for all a ∈ Zd the sequence (τn

r (a))n∈N is ultimately periodic
}

.

Some subsets of these sets will be given later (see Sections 2 and 3), here we restrict
to a few preliminary examples.

Examples. (i) D1 = [−1, 1] , D0
1 = [0, 1) (see [1]).

(ii) D \ {(1, y) ∈ R2 | 0 < |y| < 1 or 1 < |y| < 2} ⊆ D2 ⊆ D where

D = {(x, y) ∈ R2 | |x| ≤ 1, |y| ≤ 1 + x, (x, y) 6= (1,−2), (1, 2)}
\{(x,−x− 1) ∈ R2 | 0 < x < 1} (see [3]).
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1b. . .c denotes the floor function.
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Figure 1. An approximation of D0
2.

(iii) Set

E1 =
{

(x, y) ∈ R2

∣∣∣∣ x < 1, y < 2x,
2x

3
+ 1 ≤ y

}
,

E2 =
{

(x, y) ∈ R2

∣∣∣∣ x < 1,
x

2
+ 1 < y < 2x, y <

2x

3
+ 1

}
,

E3 =
{

(x, y) ∈ R2

∣∣∣∣ x < 1,−2x + 1 ≤ y < −1
2
x

}
, and

L =
{

(x, y) ∈ R2

∣∣∣∣0 ≤ x ≤ 5
6
, y < x + 1, y ≥ −x

}
.

Then D0
2 ∩ L = L \ (E1 ∪ E2 ∪ E3) (see [3]).

In Figure 1 the gray points sketch an approximation of D0
2; note that the coor-

dinate system is changed to be easier comparable to Figure 2 in Section 2.2.

2. Applications of shift radix systems

The main applications of SRS which have been dealt with so far are related to
radix representations.

2.1 Shift radix systems and β-expansions. The so-called β-expansions have
first been studied by A. Rényi [18] and W. Parry [15] and have subsequently
been intensively studied.

Let β > 1 be a non-integral real number. Then each γ ∈ [0,∞) can be repre-
sented uniquely by

(1) γ = amβm + am−1β
m−1 + · · ·

with ai ∈ {0, 1, . . . , bβc} such that

(2) 0 ≤ γ −
m∑

i=n

aiβ
i < βn

holds for all n ≤ m. Since by condition (2) the digits ai are selected as large as
possible, the representation in (1) is called the greedy expansion of γ with respect
to β.

Apart from the SRS notion the following theorem is basically due to M. Hol-
lander [7].

Theorem 1 (M. Hollander). Let d > 1 and β > 1 be a real algebraic integer with
minimal polynomial Xd− b1X

d−1−· · ·− bd−1X− bd ∈ Z[X]. Define r2, . . . , rd ∈ R
by

Xd − b1X
d−1 − · · · − bd−1X − bd = (X − β)(Xd−1 + r2X

d−2 + · · ·+ rd),
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Figure 2. CNS polynomials X3 + p2X
2 + p1X + 474.

hence rj = bjβ
−1+bj+1β

−2+· · ·+bdβ
j−d−1 (2 ≤ j ≤ d). Then (rd, . . . , r2) ∈ D0

d−1

if and only if Z[ 1
β ] ∩ [0,∞) coincides with the set of positive real numbers having

finite greedy expansion with respect to β.

Proof. See [1]. ¤

A. Bertrand [4] and K. Schmidt [19] proved that if β is a Pisot number then
the β-expansion of every element of Q(β)∩ [0,∞) is ultimately periodic. The above
mentioned finiteness property can only hold for Pisot numbers β (see [5], Lemma 1).

We remark that the characterization of Pisot numbers with the above mentioned
finiteness property is not even known for degree d = 3.

2.1. Shift radix systems and canonical number systems. An example of a
canonical number system was first studied by D. E. Knuth [11, 12]. His notion was
extended by W. J. Gilbert, I. Kátai, B. Kovács and J. Szabó ([6, 8, 9, 10])
to quadratic number fields and by B. Kovács [13] to arbitrary number fields as
straightforward generalizations of the well-known radix representation of ordinary
integers.

This concept was further generalized by the fourth author [17] by defining CNS
polynomials: A monic integral polynomial P (X) is called a CNS polynomial if every
coset of Z[X]/P (X)Z[X] contains an element of the form

a0 + a1x + · · ·+ alx
l

with a0, . . . , al ∈ {0, 1, . . . , |P (0)| − 1} where x denotes the image of X under the
canonical epimorphism from Z[X] to Z[X]/P (X)Z[X].

Theorem 2. Let p0, . . . , pd−1 ∈ Z with p0 > 1. Then
(

1
p0

, pd−1
p0

, . . . , p1
p0

)
∈ D0

d if

and only if Xd + pd−1X
d−1 + · · ·+ p0 is a CNS polynomial.

Proof. See [1]. ¤

As an illustration the grey points in Figure 2 represent all cubic CNS polynomials
with constant term equal to 474.

The complete description of CNS polynomials of degree d > 2 is still open.

3. Basic properties of shift radix systems

For r = (r1, . . . , rd) ∈ Rd the mapping τr differs from a linear mapping by
a certain additive term. Although being small this term is the reason for the
difficulties in controlling the iterates of τr: More precisely, we have for a ∈ Zd

τn
r (a) = R(r)na +

n∑

i=1

R(r)n−ivi
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for all n ∈ N with the matrix

R(r) :=




0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 1
−r1 −r2 · · · · · · −rd




and vectors vi ∈ Rd with ‖ vi ‖∞< 1 (see [1]).

Theorem 3. (i) The characteristic polynomial of R(r) is given by

Xd + rdX
d−1 + · · ·+ r2X + r1.

(ii) If r ∈ Dd then the spectral radius of R(r) is less than or equal to 1.
(iii) If the spectral radius of R(r) is less than 1 then r ∈ Dd.
(iv) Let r ∈ Rd with spectral radius of R(r) less than 1. Then there exists an

effectively computable constant cr ∈ R with the property: r ∈ D0
d if for each

a ∈ Zd with ‖ a ‖∞≤ cr the orbit of a under the iterates of τr falls into the
zero cycle.

Proof. For (i), (ii), (iii) see [1] (note that the analogue of (ii) for canonical number
systems is well known, see e. g. [6]). The proof of (iv) is analogous to that of
Theorem 1 in [16]. ¤

By statement (iii) Dd contains the bounded set

Ed =
{
(r1, . . . , rd) ∈ Rd | all roots of Xd + rdX

d−1 + · · ·+ r1

lie inside the open unit circle}
which can be described by polynomial inequalities (for more information see the
Schur-Cohn criterion (e. g. [14], Theorem 2.4.4)), and the closure of this set contains
Dd by statement (ii).

Statement (iv) shows in particular that one can algorithmically decide whether
or not a given r belongs to D0

d (for a different algorithm and computational issues
see [1]).

The next theorem exhibits a large subset of D0
d.

Theorem 4. If 0 ≤ r1 ≤ r2 ≤ · · · ≤ rd < 1 then r ∈ D0
d.

Proof. See [3]. ¤
Theorem 5. For each d ∈ N the sets Dd and D0

d are Lebesgue measurable. Further
λ(Dd) = λ(Ed) where λ denotes the d-dimensional Lebesgue measure.

Proof. See [1]. ¤
The geometrical structure of D0

d is quite complicated. For each r ∈ Dd \ D0
d one

can pick a point in Zd which gives rise to a periodic orbit under the iterates of τr.
On the other hand, given a point a ∈ Zd one may consider the collection of all
r ∈ Rd such that the sequences (τn

r (a))n∈N are periodic: More precisely, let

(a1+j , . . . , ad+j) (0 ≤ j ≤ L− 1)

with aL+1 = a1, . . . , aL+d = ad be vectors of Zd. We ask for which r = (r1, . . . , rd) ∈
Rd we have τL

r (a) = a. By the definition of τr this is the case if and only if the
inequalities

0 ≤ r1a1+j + · · ·+ rdad+j + ad+j+1 < 1 (0 ≤ j ≤ L− 1)

hold simultaneously. Hence, these points r form a (possibly degenerate) polyhedron
in Rd. As we saw in Example (i) we get D0

1 by simply taking away a single point
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Figure 3. The behavior of N0(3, M)/M2 for 2 ≤ M ≤ 464.

and a line segment from D1. However, it turns out that for d > 1 infinitely many
polyhedra have to be removed from Dd in order to arrive at D0

d.

Theorem 6. Let d ≥ 2. Then D0
d emerges from Dd by cutting out countably many

polyhedra.

Proof. See [1]. ¤

4. Some open problems

By what has been said above, the investigation of SRS leaves several questions
open (see [1] and [3]). Here we only mention three problems.

1. We conjecture that D2 coincides with the set D defined in Example (ii). The
truth of this conjecture would imply that D2 is convex. Results concerning this
conjecture, including that the point (1, 1+

√
5

2 ) belongs to D2 can be found in [2].
2. We conjecture that if r ∈ D0

d then the spectral radius of R(r) is less than 1.
This is clear for d = 1 (see Example (i) in Section 1), and for d = 2 it is proved in
[3].

3. The following conjecture seems to be even more challenging: Let M be a
positive integer and

N0(d,M) = |{(p1, . . . , pd−1) ∈ Zd−1 |M + p1X + · · ·+ pd−1X
d−1 + Xd

is a CNS polynomial}|.
Then

lim
M→∞

N0(d + 1,M)
Md

exists and is equal to the Lebesgue measure of D0
d. On Figure 3 we displayed2

N0(3,M)/M2 for 2 ≤ M ≤ 464. It seems that the quotient stabilizes after the first
few values, which support the truth of the conjecture. An analogous conjecture has
been formulated for the set Dd as well.

2We thank Andrea Huszti for preparing the Figure.
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representations and dynamical systems. I. Acta Math. Hungar., 108(3):207–238, 2005.
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