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BENOÎT LORIDANT, ALI MESSAOUDI, PAUL SURER, AND JÖRG M. THUSWALDNER

Abstract. We study aperiodic and periodic tilings induced by the Rauzy fractal and its subtiles
associated to beta-substitutions related to the polynomial x3 − ax2 − bx− 1 for a ≥ b ≥ 1. In
particular, we compute the corresponding boundary graphs, describing the adjacencies in the
tilings. These graphs are a valuable tool for more advanced studies of the topological properties
of Rauzy fractals. The methods presented here may be used to obtain similar results for other
classes of substitutions.

1. Introduction

In 1982 Gérard Rauzy [21] studied the symbolic dynamical system over the alphabet {1, 2, 3}
induced by the substitution

1 7→ 12, 2 7→ 13, 3 7→ 1

and associated to it a set known as Rauzy fractal. It is a compact set equal to the closure of its
interior and it decomposes naturally into three subsets (subtiles). Moreover, the Rauzy fractal
induces two types of tilings: a periodic tiling whose central tile is the Rauzy fractal, and an
aperiodic tiling generated by the three subtiles. In [16, 18, 19], topological properties of the Rauzy
fractal were studied and the Hausdorff dimension of its boundary was computed.

Generalisations of this dynamical system and results concerning the associated fractal sets can
be found in the literature. In [3], the considerations of Rauzy are formulated in a general way for
primitive Pisot substitutions. The interiors of the subtiles associated to a primitive unimodular
Pisot substitution do not overlap provided that the substitution satisfies the so called strong
coincidence condition [3, 13]. Several classes of substitutions were shown to satisfy this condition.
For example, in [5] it was proven that every primitive irreducible Pisot substitution over an
alphabet consisting of two letters satisfies it. It is conjectured that this is true for alphabets of
arbitrary size but a general proof is still outstanding.

Rauzy fractals associated to primitive unimodular Pisot substitutions have been studied in
various articles [7, 9, 11, 12, 15, 20, 23, 24]. They appear naturally in connection to many topics as
numeration systems, geometrical representation of symbolic dynamical systems, multidimensional
continued fractions and simultaneous approximations, self-similar tilings and Markov partitions of
hyperbolic automorphisms of the torus.

In [13, 17] it was shown that the subtiles induce an aperiodic multiple tiling of the space, called
self-replicating multiple tiling. If the substitution is irreducible, the Rauzy fractals also provide a
periodic (or lattice) multiple tiling (see [3, 11]). Actually, a lattice multiple tiling even exists in
some reducible cases. A necessary and sufficient condition can be found in [22]. For large classes
of substitutions these multiple tilings are shown to be proper tilings, i.e., two different tiles have
disjoint interiors. Even if there is no known counterexample, it is up to now not possible to prove
this tiling property in general without requiring additional conditions like the super coincidence
condition or the finiteness property.
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The aim of this paper is to study the aperiodic (self-replicating) and periodic (lattice) tilings
induced by the substitutions

σa,b : 1 7→ 1 . . . 1
︸ ︷︷ ︸

a times

2

2 7→ 1 . . . 1
︸ ︷︷ ︸

b times

3

3 7→ 1

over the alphabet {1, 2, 3}, where 1 ≤ b ≤ a. For every such pair (a, b), σa,b is an irreducible
primitive unimodular Pisot substitution. Moreover, it satisfies the super coincidence condition.
Therefore, all the tilings are proper tilings.

The class of Rauzy fractals (central tile in the periodic tiling) associated to σa,b was first studied
by Sh. Ito and M. Kimura in [16]. They showed that for a = b = 1, the boundary of the Rauzy
fractal is a Jordan curve and they also computed its Hausdorff dimension. Later, for the same
case, A. Messaoudi [18] constructed a finite state automaton that generates the boundary of the
Rauzy fractal. This helped to prove that this boundary is a quase-circle. In [18], analog results
were obtained for the case a ≥ 1 and b = 1.

In [24], J. Thuswaldner gave an explicit formula for the fractal dimension of the boundary of
the Rauzy fractal in the case a ≥ b ≥ 1. This result was based on the self replicating tiling.

In our work, we will describe the boundary of the tiles by determining their neighbours in
the tilings. The results will be presented as self-replicating and lattice boundary graphs, recently
introduced in the context of Rauzy fractals by Siegel and Thuswaldner in [22]. The boundary
graphs are of great help in the topological study of a Rauzy fractal. Indeed, the topological
behaviour of a fractal tile is mainly determined by the number and configuration of the neighbours
of the tile in the tiling. For a given substitution, the computation of the boundary graphs is
algorithmic, but the treatment of a whole class is usually not possible. We manage to compute
the self-replicating boundary graph for the whole class of substitutions σa,b. Also, we obtain a
lower bound (depending on a, b) for the number of neighbours of the Rauzy fractal in the lattice
tiling. As a consequence we deduce that, if a < 2b−4, then the Rauzy fractal is not homeomorphic
to a topological disk. For restricted values of a, b, we are even able to compute the whole lattice
boundary graph. Although our analysis is restricted to the class of substitutions σa,b, we are
convinced that our considerations can be extended to other classes of substitutions.

The paper is organized as follows. In Section 2, we present the substitution class and define
the Rauzy fractal, the different types of tilings and the boundary graphs. In Section 3 we state
the main theorems of this paper and give some examples. Section 4 are some preparations for
the proofs of the main results in Sections 5 and 6. In Section 7, we give some comments on the
generalisation of our method to other classes of substitutions.

2. The class of substitutions σa,b

2.1. Notations and Definitions. Let A := {1, 2, 3} be the alphabet. We denote by A∗ the set
of finite words over A, including the empty word ε. For a word w ∈ A∗ we write |w| for its length,,
i.e. and the number of occurrences of a letter i in w is denoted by |w|i. This allows us to define
the abelianisation mapping

l : A∗ → N3

w 7→ (|w|i)i∈A.

For 1 ≤ b ≤ a, we call σ = σa,b : A∗ → A∗ the mapping

σ : 1 7→ 1 . . . 1
︸ ︷︷ ︸

a times

2

2 7→ 1 . . . 1
︸ ︷︷ ︸

b times

3

3 7→ 1,

extended to A∗ by concatenation. The incidence matrix M of the substitution σ is the 3 × 3
matrix obtained by abelianisation :

l(σ(w)) = Ml(w)



TILINGS INDUCED BY A CLASS OF CUBIC RAUZY FRACTALS 3

for all w ∈ A∗. Thus we have

M =





a b 1
1 0 0
0 1 0



 .

M is a primitive Matrix, i.e., Mk has only strictly positive entries for some power k ∈ N; we
denote by β the corresponding dominant Perron-Frobenius eigenvalue, satisfying β3 = aβ2+bβ+1.
The substitution σ has the following properties. It is

• primitive: the incidence matrix M is a primitive matrix;.
• unimodular: β is an algebraic unit;
• irreducible: the algebraic degree of β is exactly |A| = 3;
• Pisot: the Galois conjugates α1, α2 of β have modulus strictly smaller than 1.

Observe that the substitutions σa,b are so-called beta-substitutions, that is, the induced dynamical
system is intimately related to beta-expansions. Details can be found, for example, in [7].

2.2. Associated Rauzy fractals. There are several equivalent ways of constructing the Rauzy
fractal. For an overview of the different methods we refer to [6]. Here we will use the way via the
so-called prefix-suffix-automaton presented in [11].

Let uβ be a strictly positive right eigenvector and vβ a strictly positive left eigenvector of M
that correspond to the dominant eigenvalue β such that 〈uβ ,vβ〉 = 1. We set

vβ =(v1, v2, v3) = (1, β − a, β2 − aβ − b) = (1, β−2 + bβ−1, β−1),

uβ =
1

3β2 − 2aβ − b
(β2, β, 1).

Note that

(2.1) 1 = v1 > v2 > v3 > 0.

Moreover, let uαi
be the eigenvectors for the Galois conjugates obtained by replacing β by αi in

the coordinates of the vector uβ . We obtain the decomposition

R3 = He ⊕Hc,

where

• He is the expanding line, generated by uβ.
• Hc is the contracting space, generated by uα1

+ uα2
and −α2uα1

− α1uα2
.

We denote by π : R3 → Hc the projection onto Hc along He and by h the restriction of M on the
contractive space Hc. Note that if we define the norm

||x|| = max {|〈x,vα1
〉|, |〈x,vα2

〉|} ,

then h is a contraction with ‖hx‖ ≤ max{|α1|, |α2|} ‖x‖ < ‖x‖ for all x ∈ Hc. Furthermore, we
have

(2.2) ∀w ∈ A∗, h(π(l(w))) = π(Ml(w)) = π(l(σ(w))).

The prefix-suffix automaton Γσ is defined as follows (see also [10]). Let P be the finite set

P = {(p, i, s) ∈ A∗ ×A×A∗| ∃ j ∈ A, σ(j) = pis}.

Then Γσ is the directed graph with

• vertices : the letters of the alphabet A;

• edges : i
(p,i,s)
−−−−→ j if and only if σ(j) = pis, where (p, i, s) ∈ P .

The prefix-suffix automaton Γσa,b
of σa,b is

(2.3) 1 2 3

(ε,1,1b−13),...,(1b−1,1,3)

(ε,1,ε)

(1b,3,ε)

(1a,2,ε)
(ε,1,1a−12),...,(1a−1,1,2)
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Figure 1. Clippings around the origin of the self-replicating tiling (left) and the
lattice tiling (right) associated to the substititution σ1,1.

Here, for a letter i ∈ A, ik stands for i . . . i
︸ ︷︷ ︸

k times

.

The Rauzy fractal and its subtiles are geometric representations of the infinite walks in the
prefix-suffix automaton [11]:

T =







∑

k≥0

hkπ(l(pk))

∣
∣
∣
∣
∣

j0
(p0,j0,s0)
−−−−−−→ j1

(p1,j1,s1)
−−−−−−→ j2

(p2,j2,s2)
−−−−−−→ . . .

is an infinite path of Γσ







and for j ∈ A

(2.4) T (j) =







∑

k≥0

hkπ(l(pk))

∣
∣
∣
∣
∣

j0 = j
(p0,j0,s0)
−−−−−−→ j1

(p1,j1,s1)
−−−−−−→ j2

(p2,j2,s2)
−−−−−−→ . . .

is an infinite path of Γσ






.

Since σ is a primitive unimodular Pisot substitution satisfying the strong coincidence condition,
the subtiles have disjoint interiors (e.g., see [7]). Moreover, by [23] each subtile is the closure of
its interior.

Due to the connection with beta-expansions, the Rauzy fractals for our class coincide with
beta-tiles treated, for example, in [1, 8].

2.3. Tilings. For a substitution σa,b of our class, the Rauzy fractal gives rise to two types tilings
of the contracting space Hc: an aperiodic tiling and a periodic tiling, obtained as follows.

The self-replicating translation set is

(2.5) Γsrs :=
{
[π(x), i] ∈ π(Z3)×A | 0 ≤ 〈x,vβ〉 < vi

}
.

Then {T (i) + γ| [γ, i] ∈ Γsrs} is the self-replicating tiling of the contracting space (see [17]).
The lattice translation set is

Γlat =
{
[π(x), i] ∈ π(Z3)×A |x = (x1, x2, x3), x1 + x2 + x3 = 0

}
.

Then {T (i) + γ| [γ, i] ∈ Γlat} is the lattice tiling of the contracting space (see [3, 11]) .
By [2] the tilings are proper tiling, i.e., the tiles have disjoint interior. In particular, we have

the following properties:

• covering property: Hc =
⋃

[γ,i]∈Γsrs
T (i) + γ =

⋃

[γ,i]∈Γlat
T (i) + γ;

• tiling property: the interiors of two tiles T (i) + γ, T (j) + γ′ with [γ, i] 6= [γ′, j] ∈ Γsrs or
[γ, i] 6= [γ′, j] ∈ Γlat are disjoint;

• local finiteness: for each compact subset B of Hc, the subsets {[γ, i] ∈ Γsrs| (T (i)+γ)∩B 6=
∅} and {[γ, i] ∈ Γlat| (T (i) + γ) ∩B 6= ∅} are finite.

Figure 1 shows the self-replicating tiling (left) and the lattice tiling (right) for the Tribonacci
substitution σ1,1. The lattice tiling and topological properties of T have been already studied in
[18, 19].
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2.4. Boundary graphs. Graphs that describe the intersection of two tiles in the above tilings
were introduced by Siegel and Thuswaldner [22]. The aim of this paper is the computation of these
graphs for the whole class σa,b introduced in Subsection 2.1. We recall briefly their definitions in
terms of our class σa,b.

We call neighbours two subtiles of the self-replicating (or lattice) tiling if their intersection
is non-empty. The intersection T (i) ∩ (T (j) + γ) will be described by the vertex [i, γ, j] in the
boundary graph. Since [j,−γ, i] would correspond to the same intersection translated by −γ, we
impose the vertices to belong to

D =
{
[i, γ, j] ∈ A× π

(
Z3

)
×A | γ = π(x), (〈x,vβ〉 > 0) or (γ = 0 and i < j)

}
.

Definition 2.1 (cf. [22]). The self-replicating boundary graph G
(B)
srs (lattice boundary graph G

(B)
lat ,

respectively) is the largest graph with the following properties.

(1) The vertices [i, γ, j] are elements of D such that

(2.6) ‖γ‖ ≤
2max(p,j,s)∈Pσ

‖πl(p)‖

1−max{|α1|, |α2|}
.

(2) There is an edge from [i, γ, j] to [i′, γ′, j′] if and only if there exist [i, γ, j] ∈ A×π(Z3)×A
and (p1, a1, s1), (p2, a2, s2) ∈ P such that







[i′, γ′, j′] = [i, γ, j] (Type 1) or [i′, γ′, j′] = [j,−γ, i] (Type 2),
a1 = i and p1a1s1 = σ(i),
a2 = j and p2a2s2 = σ(j),
hγ = γ + π(l(p2)− l(p1)).

The edge is labelled by

η =

{
πl(p1), 〈l(p1),vβ〉 ≤ 〈l(p2) + x,vβ〉,
πl(p2) + γ, otherwise;

where x ∈ Z3 such that π(x) = γ.
(3) Each vertex belongs to an infinite walk starting from a vertex [i, γ, j] with [γ, j] ∈ Γsrs

([γ, j] ∈ Γlat \ ({0} × A), respectively).

There exist algorithms to compute G
(B)
srs and G

(B)
lat for any given substitution (see [22]). However,

the bound (2.6) in Definition 2.1 is inconvenient when working with a whole class like σa,b. We

will formulate an equivalent definition for G
(B)
srs in Section 4 without this bound (see Theorem 4.1).

The following three propositions contain information on the structure and the use of the bound-
ary graphs. The proofs can be found in [22].

Proposition 2.2 (cf. [22, Proposition 5.5]). The self-replicating boundary graph G
(B)
srs and the

lattice boundary graph G
(B)
lat are well defined and finite.

Proposition 2.3 (cf. [22, Theorem 5.7]). Let [i, γ, j] be a vertex in the self-replicating boundary

graph G
(B)
srs . Then [γ, j] ∈ Γsrs.

Unfortunately, an analogue assertion for the lattice boundary graph does not hold. For this
reason, our results concerning the lattice boundary graph will be weaker than for the self-replicating
boundary graph.

Proposition 2.4 (cf. [22, Corollary 5.9]). Let [i, γ, j] ∈ D. A point ξ ∈ Hc belongs to the

intersection T (i) ∩ (T (j) + γ) with [γ, j] ∈ Γsrs if and only if there exists an infinite walk in G
(B)
srs

starting from [i, γ, j] and labelled by (η(k))≥0 such that

ξ =
∑

k≥0

hkη(k).
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Vertex Edge(s) to Label(s) Type Condition
[1, π(0, 0, 0), 2] [1, π(0, 0, 1), 1] {π(a − 1, 0, 0)} 1

[1, π(0, 0, 0), 3]
[1, π(0, 0, 0), 2] {π(b, 0, 0)} 1 a 6= b
[1, π(0, 0, 1), 2] {π(b − 1, 0, 0)} 1
[2, π(0, 0, 1), 2] {π(b − 1, 0, 0)} 1 b = 1

[1, π(0, 0, 1), 1]

[1, π(0, 1, 0), 1] {π(e, 0, 0)| 0 ≤ e ≤ a − b − 1} 1 a 6= b
]1, π(0, 1,−1), 1] {π(e, 0, 0)| 0 ≤ e ≤ a − b} 1
[1, π(0, 1,−1), 2] {π(0, 0, 0)} 1
[3, π(0, 1,−1), 2] {π(0, 0, 0)} 1

[1, π(0, 0, 1), 2]
[1, π(0, 1, 0), 1] {π(a − b, 0, 0)} 1
[1, π(0, 1,−1), 1] {π(a − b + 1, 0, 0)} 1 b 6= 1

[1, π(0, 1, 0), 1]
[1, π(1, 0,−1), 1] {π(0, 0, 0)} 1 a 6= b
[2, π(1, 0,−1), 1] {π(0, 0, 0)} 1
[3, π(1, 0,−1), 1] {π(0, 0, 0)} 1

[1, π(0, 1,−1), 1]
[2, π(1,−1, 0), 1] {π(e, 0, 0)| 0 ≤ e ≤ b − 1} 1
[1, π(1,−1, 1), 1] {π(e, 0, 0)| 0 ≤ e ≤ b − 2} 1 b ≥ 2
[2, π(1,−1, 1), 1] {π(e, 0, 0)| 0 ≤ e ≤ b − 2} 1 b ≥ 2

[1, π(0, 1,−1), 2]
[1, π(1,−1, 1), 1] {π(b − 1, 0, 0)} 1 b ≥ 2
[2, π(1,−1, 1), 1] {π(b − 1, 0, 0)} 1

[3, π(0, 1,−1), 2] [2, π(1,−1, 0), 1] {π(b, 0, 0)} 1

[2, π(1, 0,−1), 1]
[1, π(0, 1, 0), 1] {π(a − b, 0,−1)} 2 a 6= b
[1, π(0, 1,−1), 1] {π(a − b + 1, 0,−1)} 2

[3, π(1, 0,−1), 1]
[1, π(0, 1,−1), 2] {π(1, 0,−1)} 2
[3, π(0, 1,−1), 2] {π(1, 0,−1)} 2

[2, π(1,−1, 0), 1]
[1, π(1, 0,−1), 1] {π(1,−1, 0)} 2 a 6= b or a ≥ 4
[2, π(1, 0,−1), 1] {π(1,−1, 0)} 2
[3, π(1, 0,−1), 1] {π(1,−1, 0)} 2

]2, π(1,−1, 1), 1]
[2, π(1,−1, 0), 1] {π(b,−1, 1)} 2
[1, π(1,−1, 1), 1] {π(b − 1,−1, 1)} 2 b ≥ 2
[2, π(1,−1, 1), 1] {π(b − 1,−1, 1)} 2 b ≥ 2

Vertex exists if b = 1
[2, π(0, 0, 1), 2] [1, π(0, 1,−1), 1] {π(a, 0, 0)} 1 b = 1

Vertex exists if a = b

[2, π(0, 0, 0), 3] [1, π(0, 0, 0), 2] {π(a, 0, 0)} 1 a = b

Vertex exists if a 6= b or a ≥ 4

[1, π(1, 0,−1), 1]
[1, π(0, 1, 0), 1] {π(e, 0,−1)| 1 ≤ e ≤ a − b − 1} 2 a ≥ b + 2
[1, π(0, 1,−1), 1] {π(e, 0,−1)| 1 ≤ e ≤ a − b} 2 a 6= b

Vertex exists if b ≥ 2

[1, π(1,−1, 1), 1]
[2, π(1,−1, 0), 1] {π(e,−1, 1)| 1 ≤ e ≤ b − 1} 2 b ≥ 2
[1, π(1,−1, 1), 1] {π(e,−1, 1)| 1 ≤ e ≤ b − 2} 2 b ≥ 3
[2, π(1,−1, 1), 1] {π(e,−1, 1)| 1 ≤ e ≤ b − 2} 2 b ≥ 3

Adjacency Table 1. The subgraph S(1) of the self-replicating boundary graph.

3. Main theorems

The main results of this paper consist in a description of the boundary graphs associated to
the substitutions of the class defined in Subsection 2.1. For convenience, we set

m(a, b) := max

{

1,

⌊
a

a− b+ 2

⌋}

.

Note that m(a, b) = 1 if and only if a ≥ 2b− 3.

3.1. The self-replicating boundary graph. For 1 ≤ t ≤ m(a, b), we call S(t) the graph whose
nodes and edges are given in Adjacency Table 1 (t = 1) and Adjacency Table 2 (t ≥ 2). For
1 ≤ t ≤ m(a, b)− 1, we denote by S ′(t) the graph described by Adjacency Table 3. Finally, let S
denote the union of these graphs:

S =

m(a,b)
⋃

t=1

S(t) ∪

m(a,b)−1
⋃

t=1

S ′(t).

Theorem 3.1. The self-replicating boundary graph G
(B)
srs related to the substitution σa,b is equal

to the graph S. Its nodes and edges can be read off from Adjacency Tables 1, 2 and 3.

We will prove the theorem in Section 5. The subdivision into several subgraphs has technical
reasons that will become apparent in the proof.
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Vertex Edge(s) to Label(s) T Condition

[1, π(2 − t, t − 1,−t), 1]
[1, π(1 − t, t,−t), 1] {π(e + 2 − t, t − 1,−t)| 0 ≤ e ≤ δt − 3} 2
[1, π(1 − t, t,−t), 2] {π(e+ 2 − t, t − 1,−t)| 0 ≤ e ≤ δt−1 − 1} 2

[2, π(2 − t, t − 1,−t), 1] [1, π(1 − t, t,−t), 1] {π(δt − t, t − 1,−t)} 2
[3, π(2 − t, t − 1,−t), 1] [1, π(1 − t, t,−t), 2] {π(δt − a + b − t, t − 1,−t)} 2

[3, π(t − 1, 1 − t, t − 1), 1] [1, π(t − 1, 1 − t, t), 2] {π(a − δt + t, 1 − t, t − 1)} 2

[1, π(t − 1, 1 − t, t), 1]
[1, π(1 − t, t,−t), 1] {π(e, 0, 0)| 0 ≤ e ≤ δt − 2} 1
[1, π(1 − t, t,−t), 2] {π(e, 0, 0)| 0 ≤ e ≤ δt + b − a − 2} 1

[1, π(t − 1, 1 − t, t), 2] [1, π(1 − t, t,−t), 1] {π(δt − 1, 0, 0)} 1

[1, π(1 − t, t,−t), 1]
[1, π(t,−t, t), 1] {π(e, 0, 0)| 0 ≤ e ≤ a − δt} 1 a ≥ δt + 1
[2, π(t,−t, t), 1] {π(e, 0, 0)| 0 ≤ e ≤ a − δt} 1

[1, π(1 − t, t,−t), 2]
[1, π(t,−t, t), 1] {π(a − δt + 1, 0, 0)} 1 a ≥ δt + 1
[2, π(t,−t, t), 1] {π(a − δt + 1, 0, 0)} 1

[2, π(t,−t, t), 1]
[1, π(t,−t, t), 1] {π(a − δt + t,−t, t)} 2 a ≥ δt + 1
[2, π(t,−t, t), 1] {π(a − δt + t,−t, t) 2

Vertex exists if a ≥ δt + 1

[1, π(t,−t, t), 1]
[1, π(t,−t, t), 1] {π(e+ t,−t, t)| 0 ≤ e ≤ a − δt − 1} 2 a ≥ δt + 1
[2, π(t,−t, t), 1] {π(e+ t,−t, t)| 0 ≤ e ≤ a − δt − 1} 2 a ≥ δt + 1

Adjacency Table 2. The subgraph S(t) of the self-replicating boundary graph,
where 2 ≤ t ≤ m(a, b) (δt = t(a− b + 2)).

Vertex Edge(s) to Label(s) T Condition

[1, π(2 − t, t − 1,−t), 1]
[1, π(1 − t, t,−t − 1), 1] {π(e + 2 − t, t − 1,−t)| 0 ≤ e ≤ δt − 2} 2
[2, π(1 − t, t,−t − 1), 1] {π(e + 2 − t, t − 1,−t)| 0 ≤ e ≤ δt − 2} 2
[3, π(1 − t, t,−t − 1), 1] {π(2 − t, t − 1,−t)} 2

[2, π(2 − t, t − 1,−t), 1]
[1, π(1 − t, t,−t − 1), 1] {π(δt + 1 − t, t − 1,−t)} 2
[2, π(1 − t, t,−t − 1), 1] {π(δt + 1 − t, t − 1,−t)} 2

[1, π(t − 1, 1 − t, t), 1]
[1, π(1 − t, t,−t − 1), 1] {π(e, 0, 0)| 0 ≤ e ≤ δt − 1} 1
[2, π(1 − t, t,−t − 1), 1] {π(e, 0, 0)| 0 ≤ e ≤ δt − 1} 1
[3, π(1 − t, t,−t − 1), 1] {π(0, 0, 0)} 1

[1, π(t − 1, 1 − t, t), 2]
[1, π(1 − t, t,−t − 1), 1] {π(δt, 0, 0)} 1
[2, π(1 − t, t,−t − 1), 1] {π(δt, 0, 0)} 1

[1, π(1 − t, t,−t), 1]
[3, π(t,−t, t), 1] {π(0, 0, 0)} 1

[1, π(t,−t, t + 1), 1] {π(e, 0, 0)| 0 ≤ e ≤ a − δt − 1} 1
[1, π(t,−t, t + 1), 2] {π(e, 0, 0)| 0 ≤ e ≤ b − δt − 1} 1

[1, π(1 − t, t,−t), 2] [1, π(t,−t, t + 1), 1[ {π(a − δt, 0, 0)} 1
[2, π(t,−t, t), 1] [1, π(t,−t, t + 1), 1] {π(a − δt − 1 + t,−t, t)} 2

[1, π(t,−t, t), 1]
[3, π(t,−t, t), 1] {π(t,−t, t)} 2

[1, π(t,−t, t + 1), 1] {π(e + t,−t, t)| 0 ≤ e ≤ a − δt − 2} 2
[1, π(t,−t, t + 1), 2] {π(e+ t,−t, t)| 0 ≤ e ≤ b − δt − 2} 2

Adjacency Table 3. The subgraph S ′(t) of the self-replicating boundary graph,
where 1 ≤ t ≤ m(a, b)− 1 (δt = t(a− b + 2)).

,

3.2. The lattice boundary graph. As already mentioned, we are not able to characterize G
(B)
lat

completely for all possible values of a and b. We give a complete description of the lattice boundary

graph for the case m(a, b) = 1 and conjecture the shape of G
(B)
lat for the other cases. For 1 ≤ t ≤

m(a, b), we call L(t) the graph whose nodes and edges are given in Adjacency Table 4 (t = 1)
and Adjacency Table 5 (t ≥ 2). For 1 ≤ t ≤ m(a, b) − 1, we denote by L′(t) the graph described
by Adjacency Table 6. Note that in these tables the vertices that correspond to elements of the
lattice translation set Γlat are highlighted in grey. We denote by L the union of all these graphs:

L =

m(a,b)
⋃

t=1

L(t) ∪

m(a,b)−1
⋃

t=1

L′(t).

Theorem 3.2. For all a, b, the graph L is a subgraph of the lattice boundary graph G
(B)
lat related

to σa,b.

For m(a, b) = 1, we can prove the reverse inclusion.

Theorem 3.3. Let a ≥ 2b − 3. Then the lattice boundary graph G
(B)
lat related to the substitution

σa,b equals L.

We will prove these theorems in Section 6. The following conjecture remains.
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Vertex Edge(s) to Label(s) Type Condition
[2, π(1,−1, 0), 1] {π(e, 0, 0)| 0 ≤ e ≤ b − 1} 1
[1, π(1,−1, 1), 1] {π(e, 0, 0)| 0 ≤ e ≤ b − 2} 1 b ≥ 2[1, π(0, 1,−1), 1]
[2, π(1,−1, 1), 1] {π(e, 0, 0)| 0 ≤ e ≤ b − 2} 1 b ≥ 2
[1, π(1,−1, 1), 1] {π(b − 1, 0, 0)} 1 b ≥ 2

[1, π(0, 1,−1), 2]
[2, π(1,−1, 1), 1] {π(b − 1, 0, 0)} 1

[3, π(0, 1,−1), 2] [2, π(1,−1, 0), 1] {π(b, 0, 0)} 1
[1, π(0, 1, 0), 1] {π(a − b, 0,−1)} 2 a 6= b

[2, π(1, 0,−1), 1]
[1, π(0, 1,−1), 1] {π(a − b + 1, 0,−1)} 2
[1, π(0, 1,−1), 2] {π(1, 0,−1)} 2

[3, π(1, 0,−1), 1]
[3, π(0, 1,−1), 2] {π(1, 0,−1)} 2
[1, π(1, 0,−1), 1] {π(1,−1, 0)} 2 a 6= b or a ≥ 4
[2, π(1, 0,−1), 1] {π(1,−1, 0)} 2[2, π(1,−1, 0), 1]
[3, π(1, 0,−1), 1] {π(1,−1, 0)} 2

[2, π(1,−1, 1), 1]
[2, π(1,−1, 0), 1] {π(b,−1, 1)} 2
[1, π(1,−1, 1), 1] {π(b − 1,−1, 1)} 2 b ≥ 2
[2, π(1,−1, 1), 1] {π(b − 1,−1, 1)} 2 b ≥ 2

Vertex exists if a 6= b

[1, π(0, 1, 0), 1]
[1, π(1, 0,−1), 1] {π(0, 0, 0)} 1 a 6= b
[2, π(1, 0,−1), 1] {π(0, 0, 0)} 1
[3, π(1, 0,−1), 1] {π(0, 0, 0)} 1

Vertex exists if a 6= b or a ≥ 4
[1, π(0, 1, 0), 1] {π(e, 0,−1)| 1 ≤ e ≤ a − b − 1} 2 a ≥ b + 2

[1, π(1, 0,−1), 1]
[1, π(0, 1,−1), 1] {π(e, 0,−1)| 1 ≤ e ≤ a − b} 2 a 6= b

Vertex exists if b ≥ 2

[1, π(1,−1, 1), 1]
[2, π(1,−1, 0), 1] {π(e,−1, 1)| 1 ≤ e ≤ b − 1} 2 b ≥ 2
[1, π(1,−1, 1), 1] {π(e,−1, 1)| 1 ≤ e ≤ b − 2} 2 b ≥ 3
[2, π(1,−1, 1), 1] {π(e,−1, 1)| 1 ≤ e ≤ b − 2} 2 b ≥ 3

Adjacency Table 4. The subgraph L(1) of the lattice boundary graph.

Vertex Edge(s) to Label(s) T Condition
[1, π(0, t − 1, 1 − t), 3] [1, π(t − 1, 1 − t, t), 2] {π(b − 3 − δt−1 + t, 0, 0)} 1

[1, π(t,−t, t), 1] {π(e, 0, 0)| 0 ≤ e ≤ a − 1 − δt + t} 1 a ≥ δt + 1
[1, π(0, t,−t), 1]

[2, π(t,−t, t), 1] {π(e, 0, 0)| 0 ≤ e ≤ a − 1 − δt + t} 1
[1, π(t,−t, t), 1] {π(a − δt + t, 0, 0)} 1 a ≥ δt + 1

[1, π(0, t,−t), 2]
[2, π(t,−t, t), 1] {π(a − δt + t, 0, 0)} 1

[1, π(1 − t, t,−t), 1] {π(e + 1, t − 1,−t)| 0 ≤ e ≤ δt − t − 2} 2
[1, π(1, t − 1,−t), 1]

[1, π(1 − t, t,−t), 2] {π(e + 1, t − 1,−t)| 0 ≤ e ≤ δt−1 − t} 2
[2, π(1, t − 1,−t), 1] [1, π(1 − t, t,−t), 1] {π(δt − t, t − 1,−t)} 2
[3, π(1, t − 1,−t), 1] [1, π(1 − t, t,−t), 2] {π(δt−1 − t + 2, t − 1,−t)} 2

[1, π(2 − t, t − 1,−t), 1]
[1, π(1 − t, t,−t), 1] {π(e + 2 − t, t − 1,−t)| 0 ≤ e ≤ δt − 3} 2
[1, π(1 − t, t,−t), 2] {π(e+ 2 − t, t − 1,−t)| 0 ≤ e ≤ δt−1 − 1} 2

[2, π(2 − t, t − 1,−t), 1] [1, π(1 − t, t,−t), 1] {π(δt − t, t − 1,−t)} 2
[3, π(2 − t, t − 1,−t), 1] [1, π(1 − t, t,−t), 2] {π(δt − a + b − t, t − 1,−t)} 2

[3, π(t − 1, 1 − t, t − 1), 1] [1, π(t − 1, 1 − t, t), 2] {π(a − δt + t, 1 − t, t − 1)} 2

[1, π(t − 1, 1 − t, t), 1]
[1, π(1 − t, t,−t), 1] {π(e, 0, 0)| 0 ≤ e ≤ δt − 2} 1
[1, π(1 − t, t,−t), 2] {π(e, 0, 0)| 0 ≤ e ≤ δt + b − a − 2} 1

[1, π(t − 1, 1 − t, t), 2] [1, π(1 − t, t,−t), 1] {π(δt − 1, 0, 0)} 1

[1, π(1 − t, t,−t), 1]
[1, π(t,−t, t), 1] {π(e, 0, 0)| 0 ≤ e ≤ a − δt} 1 a ≥ δt + 1
[2, π(t,−t, t), 1] {π(e, 0, 0)| 0 ≤ e ≤ a − δt} 1

[1, π(1 − t, t,−t), 2]
[1, π(t,−t, t), 1] {π(a − δt + 1, 0, 0)} 1 a ≥ δt + 1
[2, π(t,−t, t), 1] {π(a − δt + 1, 0, 0)} 1

[2, π(t,−t, t), 1]
[1, π(t,−t, t), 1] {π(a − δt + t,−t, t)} 2 a ≥ δt + 1
[2, π(t,−t, t), 1] {π(a − δt + t,−t, t) 2

Vertex exists if a ≥ δt + 1

[1, π(t,−t, t), 1]
[1, π(t,−t, t), 1] {π(e+ t,−t, t)| 0 ≤ e ≤ a − δt − 1} 2 a ≥ δt + 1
[2, π(t,−t, t), 1] {π(e+ t,−t, t)| 0 ≤ e ≤ a − δt − 1} 2 a ≥ δt + 1

Adjacency Table 5. The subgraph L(t) of the lattice boundary graph, where
2 ≤ t ≤ m(a, b) (δt = t(a− b+ 2)).

Conjecture 3.4. L coincides with the lattice boundary graph G
(B)
lat related to the substitution σa,b

for all a ≥ b ≥ 1.

Theorem 3.2 shows that for a ≤ 2b− 4, i.e., m(a, b) ≥ 2, the each tile in the lattice tiling has 10
or more neighbours. Using a classical result concerning lattice tilings (see, for example, [4, Lemma
5.1] or [14]), we conclude that the Rauzy fractal in these cases are not disk-like.

Corollary 3.5. If a ≤ 2b − 4 then the Rauzy fractal T induced by the substitution σa,b is not
homeomorphic to a topological disk.
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Vertex Edge(s) to Label(s) T Condition
[3, π(t,−t, t), 1] {π(δt − t, 0, 0)} 1

[1, π(t,−t, t + 1), 1] {π(e, 0, 0)| 0 ≤ e ≤ a − 2 − δt + t} 1[1, π(0, t,−t), 1]
[1, π(t,−t, t + 1), 2] {π(e, 0, 0)| 0 ≤ e ≤ b − 2 − δt + t} 1

[1, π(0, t,−t), 2] [1, π(t,−t, t + 1), 1] {π(a − 1 − δt + t, 0, 0)} 1
[1, π(1 − t, t,−t − 1), 1] {π(e + 1, t − 1,−t)| 0 ≤ e ≤ δt − t − 1} 2
[2, π(1 − t, t,−t − 1), 1] {π(e + 1, t − 1,−t)| 0 ≤ e ≤ δt − t − 1} 2[1, π(1, t − 1,−t), 1]
[3, π(1 − t, t,−t − 1), 1] {π(1, t − 1,−t)} 2
[1, π(1 − t, t,−t − 1), 1] {π(δt − t + 1, t − 1,−t)} 2

[2, π(1, t − 1,−t), 1]
[2, π(1 − t, t,−t − 1), 1] {π(δt − t + 1, t − 1,−t)} 2

[1, π(2 − t, t − 1,−t), 1]
[1, π(1 − t, t,−t − 1), 1] {π(e + 2 − t, t − 1,−t)| 0 ≤ e ≤ δt − 2} 2
[2, π(1 − t, t,−t − 1), 1] {π(e + 2 − t, t − 1,−t)| 0 ≤ e ≤ δt − 2} 2
[3, π(1 − t, t,−t − 1), 1] {π(2 − t, t − 1,−t)} 2

[2, π(2 − t, t − 1,−t), 1]
[1, π(1 − t, t,−t − 1), 1] {π(δt + 1 − t, t − 1,−t)} 2
[2, π(1 − t, t,−t − 1), 1] {π(δt + 1 − t, t − 1,−t)} 2

[1, π(t − 1, 1 − t, t), 1]
[1, π(1 − t, t,−t − 1), 1] {π(e, 0, 0)| 0 ≤ e ≤ δt − 1} 1
[2, π(1 − t, t,−t − 1), 1] {π(e, 0, 0)| 0 ≤ e ≤ δt − 1} 1
[3, π(1 − t, t,−t − 1), 1] {π(0, 0, 0)} 1

[1, π(t − 1, 1 − t, t), 2]
[1, π(1 − t, t,−t − 1), 1] {π(δt, 0, 0)} 1
[2, π(1 − t, t,−t − 1), 1] {π(δt, 0, 0)} 1

[1, π(1 − t, t,−t), 1]
[3, π(t,−t, t), 1] {π(0, 0, 0)} 1

[1, π(t,−t, t + 1), 1] {π(e, 0, 0)| 0 ≤ e ≤ a − δt − 1} 1
[1, π(t,−t, t + 1), 2] {π(e, 0, 0)| 0 ≤ e ≤ b − δt − 1} 1

[1, π(1 − t, t,−t), 2] [1, π(t,−t, t + 1), 1[ {π(a − δt, 0, 0)} 1
[2, π(t,−t, t), 1] [1, π(t,−t, t + 1), 1] {π(a − δt − 1 + t,−t, t)} 2

[1, π(t,−t, t), 1]
[3, π(t,−t, t), 1] {π(t,−t, t)} 2

[1, π(t,−t, t + 1), 1] {π(e + t,−t, t)| 0 ≤ e ≤ a − δt − 2} 2
[1, π(t,−t, t + 1), 2] {π(e+ t,−t, t)| 0 ≤ e ≤ b − δt − 2} 2

Adjacency Table 6. The subgraph L′(t) of the lattice boundary graph, where
1 ≤ t ≤ m(a, b)− 1 (δt = t(a− b+ 2)).

3.3. Examples.

Example 3.6. Let a = 3 and b = 2. The self-replicating boundary graph G
(B)
srs of σ3,2 consists of

14 vertices. The graph is shown in (3.1). Edges of Type 1 are drawn solid while those of Type 2
are dashed. The labels can be obtained from Adjacency Table 1. The lattice boundary graph

G
(B)
lat has a similar shape. Indeed, it can be obtained from (3.1) by removing the darkgrey vertices

(and the associated edges). The vertices that correspond to elements of Γlat are the lightgrey
ones. Figure 2 shows the Rauzy fractal and its neigbours in the self-replicating tiling (left) and
the lattice tiling (right). T (1) is the biggest subtile, followed by T (2) and T (3). The numbers
inside show the corresponding translation. The boundaries between subtiles with respect to the
same translation are grey.

(3.1)

[1,π(0,1,0),1]

[1,π(1,0,−1),1] [1,π(0,0,0),2]

[2,π(1,−1,0),1] [2,π(1,0,−1),1] [1,π(0,0,0),3]

[3,π(1,0,−1),1]

[3,π(0,1,−1),2]

[1,π(1,−1,1),1] [1,π(0,1,−1),1] [1,π(0,0,1),2]

[2,π(1,−1,1),1] [1,π(0,1,−1),2] [1,π(0,0,1),1]

Example 3.7. We consider the substitution σ4,4. We use Theorem 3.1 to obtain its self-replicating
boundary graph. It consists of 24 vertices. The graph is sketched in [22, Figure 5.7] (without
labels). The labels can be taken from Adjacency Tables 1, 2 and 3. By Theorem 3.2, the lattice
boundary graph for this example has at least 24 vertices and the Rauzy fractal has 10 neighbours
in the lattice tiling. Thus, it is not homeomorphic to a disk. The two tilings can be found
in [22, Figure 3.2]. The actual graph is depicted in [22, Figure 5.3]. We see that in this case,
Conjecture 3.4 holds.
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ΠH0,0,0L

ΠH0,0,1L

ΠH0,1,0L

ΠH0,1,-1L
ΠH1,0,-1L

ΠH1,-1,0L

ΠH1,-1,1L

ΠH0,0,0L

ΠH-1,0,1L

ΠH-1,1,0L

ΠH0,1,-1L
ΠH1,0,-1L

ΠH1,-1,0L

ΠH0,-1,1L

Figure 2. The neighbours of the Rauzy fractal in the self-replicated (left) and
the lattice (right) tiling for σ3,2.

4. Some preparations

We are collecting here several theorems and lemmas needed for the proof of the main results of
the paper. In fact, they could be derived for other types of substitutions. As already mentioned
at the end of Section 2, we give an alternative definition of the self-replicating boundary graph.
Actually, the following theorem can be can directly be generalised to each primitive unimodular
Pisot substitution.

Theorem 4.1. The sef replicated boundary graph G
(B)
srs equals the largest graph with

(1) vertex set that consists of elements [i, γ, j] ∈ D with [γ, j] ∈ Γsrs;
(2) an edge from [i, γ, j] to [i′, γ′, j′] if and only if there exist [i, γ, j] ∈ A × π(Z3) × A and

(p1, a1, s1), (p2, a2, s2) ∈ P such that






[i′, γ′, j′] = [i, γ, j] (Type 1) or [i′, γ′, j′] = [j,−γ, i] (Type 2),
a1 = i and p1a1s1 = σ(i),
a2 = j and p2a2s2 = σ(j),
hγ = γ + π(l(p2)− l(p1)).

The edge is labelled by

η =

{
πl(p1), 〈l(p1),vβ〉 ≤ 〈l(p2) + x,vβ〉,
πl(p2) + γ, otherwise;

where x ∈ Z3 such that π(x) = γ;
(3) every vertex lies on a path that ends up in a strongly connected component.

Proof. Denote by G the largest graph fulfilling (1), (2) and (3) from above. We want to prove

that G = G
(B)
srs . The edges are defined in the same way, hence, it suffices to prove that both graphs

have the same set of vertices.

By Proposition 2.3 for every vertex [i, γ, j] of G
(B)
srs we have [γ, j] ∈ Γsrs. Furthermore, G

(B)
srs is

finite by Proposition 2.2 and every vertex of G
(B)
srs lies on an infinite walk by Definition 2.1. This

implies that every vertex, in fact, lies on a path ending up in a strongly connected component.

Hence, G
(B)
srs is a subgraph of G.

Now consider [i, γ, j] ∈ G. Obviously, [i, γ, j] ∈ G
(B)
srs as soon as γ satisfies (2.6). Indeed, the

other points of Definition 2.1 are easily seen to be fulfilled.
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By (3) there exists a (finite) path from [i, γ, j] to a vertex belonging to a strongly connected
component of G. Therefore, there is an infinite path

[i, γ, j] −→ [i1, γ1, j1] −→ [i2, γ2, j2] −→ . . .

in G ending in a cycle, thus going through finitely many vertices. Using the relation hγk+1 =

±γk±π(l(p
(k)
2 )− l(p

(k)
1 )) that holds for each edge of this walk and the fact that h is a contraction,

one obtains that γ satisfies (2.6). �

In the following lemma we estimate the number and shape of the predecessors of a given vertex
in the boundary graph. The computations could be derived for every irreducible beta-substitution.

Lemma 4.2. Consider an edge from [i, π(x), j] to [i′, π(x′, y′, z′), j′] in the self-replicating bound-

ary graph G
(B)
srs . Then

(4.1) x =
(
−
⌊
x′

(
β−2 + bβ−1

)
+ y′β−1

⌋
, x′, y′

)

if the edge is of Type 1 and

(4.2) x =
(⌈
x′

(
β−2 + bβ−1

)
+ y′β−1

⌉
,−x′,−y′

)

if the edge is of Type 2.

Proof. If the edge is of Type 1, by the definition of G
(B)
srs and (2.2), we have

(4.3) h(π(x′, y′, z′)) = π(M(x′, y′, z′)) = π((ax′ + by′ + z′, x′, y′)) = π(x) − π(l(p1)) + π(l(p2))

with σ(i′) = p1is2 and σ(j′) = p2js2. Now observe that for every x1,x2 ∈ Q3 we have

π(x1) = π(x2) ⇐⇒ 〈x1,vβ〉 = 〈x2,vβ〉 ⇐⇒ x1 = x2.

The first equivalence can be obtained by considering Galois conjugates (cf. [22, Equation (2.5)]),
the second one is a consequence of the irreducibility of the substitution. In particular, this shows
that π is injective for integer vectors. Therefore (4.3) can only hold if

(4.4) x = (ax′ + by′ + z′ − e2 + e1, x
′, y′)

where l(p1) = (e1, 0, 0) and l(p2) = (e2, 0, 0) are integer vectors (by the shape of σa,b the prefixes

p1 and p2 consist of the symbols ε or 1 only). Since [i, π(x), j] is a vertex of G
(B)
srs we have, by

Proposition 2.3, 0 ≤ 〈x,vβ〉 < vj < 1. Applying this on (4.4) gives

0 ≤ 〈x,vβ〉 = 〈(ax′ + by′ + z′ − e2 + e1, x
′, y′),vβ〉

=ax′ + by′ + z′ − e2 + e1 + x′
(
β−2 + bβ−1

)
+ y′β−1 < 1.

Since ax′ + by′ + z′ − e2 + e1 is an integer we immediately obtain ax′ + by′ + z′ − e2 + e1 =
−
⌊
x′

(
β−2 + bβ−1

)
+ y′β−1

⌋
. Inserting this into (4.4) yields the assertion.

If the edge is of Type 2 we obtain, analogously to (4.4),

(4.5) x = (−ax′ − by′ − z′ − e2 + e1,−x′,−y′)

with σ(j′) = p1is2, σ(i
′) = p2js2, l(p1) = (e1, 0, 0) and l(p2) = (e2, 0, 0). The same considerations

as above yield

−ax′ − by′ − z′ − e2 + e1 = −
⌊
−x′

(
β−2 + bβ−1

)
− y′β−1

⌋
=

⌈
x′

(
β−2 + bβ−1

)
+ y′β−1

⌉

which gives (4.2). �

We see that for a predecessor [i, π(x), j] of a vertex [i′, γ′, j′] in the self-replicating boundary
graph there are at most 2 possible choices for x, one connected via an edge of Type 1, another
connected via an edge of Type 2. We also see that, if there is a predecessor of the form [i, γ, j]
with γ = 0, then all predecessors are of this shape. In the proof of Theorem 3.1 we will frequently

make use of this fact. Again, an analogue to Lemma 4.2 for G
(B)
lat does not exist and makes the

proof of Theorem 3.2 more complicated.

Notation 4.3. Given an edge from [i, π(x, y, z), j] to [i′, π(x′, y′, z′)), j′] we call the term ax′ +
by′+z′−x (when the edge is of Type 1) or the term ax′+by′+z′+x (when the edge is of Type 2),
respectively, the significant difference.
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We are interested in the pairs (i, j), (i′, j′) inducing significant differences. This is shown in
Table 7. There is an entry in the cell in row (i, j) and column (i′, j′) if there are p1, p2, s1, s2 ∈ A∗

such that σ(i′) = p1is1 and σ(j′) = p2js2, i.e., if there are edges i
(p1,i,s1)
−−−−−→ i′ and j

(p2,j,s2)
−−−−−→ j′ in

Γσ. The corresponding entry is then a list of all possibilities for e2 − e1 with (e1, 0, 0) = l(p1) and
(e2, 0, 0) = l(p2). Note that, by construction, n is an element of the list in row (i, j) and column
(i′, j′) if and only if −n is an element of the list in row (j, i) and column (j′, i′).

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)

(1, 1)
−a + 1, −a + 1, −a + 1, −b + 1, −b + 1, −b + 1, 0, . . . , 0, . . . ,

0
. . . , a − 1 . . . , b − 1 . . . , 0 . . . , a − 1 . . . , b − 1 . . . , 0 a − 1 b − 1

(1, 2) 1, . . . , a
a − b + 1,

a
. . . , a

(1, 3)
b − a + 1,

1, . . . , b b
. . . , b

(2, 1) −a, . . . ,−1
−a, . . . ,

−a
−a + b − 1

(2, 2) 0
(2, 3) b − a

(3, 1)
−b, . . . ,

−b, . . . ,−1 −b
a − b − 1

(3, 2) a − b

(3, 3) 0

Table 7. The Table shows all possible differences for the prefixes of the labels
of the product automaton Γσ × Γσ

The use of this table is enlightened in the following lemma.

Lemma 4.4. Consider an edge from [i, π((x, y, z)), j] to [i′, π((x′, y′, z′), j′] in the self-replicating

boundary graph G
(B)
srs . If the edge is of Type 1 then ax′ + by′+ z′− x is contained in the list in row

(i, j) and column (i′, j′) of Table 7. If the edge is of Type 2 then ax′ + by′ + z′ + x is contained in
the list in row (j, i) and column (i′, j′) of Table 7.

Proof. Let p1, p2 as in (2) of Definition 2.1. By the shape of the substitution we have l(p1) =
(e1, 0, 0) and l(p2) = (e2, 0, 0) with e1, e2 ≥ 0. Suppose the edge is of Type 1. By construction of
Table 7, e2 − e1 is an element of the list in row (i, j) and column (i′, j′) and by (4.4) we have that
e2 − e1 = ax′ + by′ + z′ − x.

If the edge is of Type 2, e1 − e2 is element of the list in row (j, i) and column (i′, j′). On the
other hand, (4.5) shows that ax′ + by′ + z′ + x = e1 − e2. �

5. Proof of Theorem 3.1

The present section is devoted to the proof of Theorem 3.1. The first lemma (Lemma 5.1) shows
that the vertices of S defined in Section 3.1 are really related to the self-replicating translation set
Γsrs, i.e., that S satisfies Proposition 2.3. Afterwards, in Lemma 5.2, we characterise the strongly
connected component of the self-replicating boundary graph. Finally we will use Theorem 4.1 to
prove Theorem 3.1.

Lemma 5.1. For each vertex [i, π(x), j] of S, [π(x), j] ∈ Γsrs.

Proof. By definition, [π(x), j] ∈ Γsrs if and only if 0 ≤ 〈x,vβ〉 < vj . Recall that vβ = (v1, v2, v3) =
(1, β − a, β2 − aβ − b). For x = 0 the statement is trivial. If x 6= 0 we consider six cases.

Case 1. x = (0, 1, 0): using (2.1) we see

0 ≤ 〈(0, 1, 0),vβ〉 = v2 < v1.

Thus [π(x), 1] ∈ Γsrs.
Case 2. x = (1,−1, 0): again, (2.1) immediately yields

0 ≤ 〈(1,−1, 0),vβ〉 = v1 − v2 < v1,

hence [π(x), 1] ∈ Γsrs.
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Case 3. x = (t,−t, t) (1 ≤ t ≤ m(a, b)): we have 〈(t,−t, t),vβ〉 = tc with

c := 〈(1,−1, 1),vβ〉 = 1− (β−2 + bβ−1) + β−1 =
a− b+ 2

β + 1
.

Hence,

〈(t,−t, t),vβ〉 = tc = t
a− b+ 2

β + 1
≥ 0

for each t ≥ 0. On the other hand, if a
a−b+2 ≥ 1, we have t ≤ a

a−b+2 . Then

〈(t,−t, t),vβ〉 ≤
a

a− b+ 2
c =

a

β + 1
< 1 = v1

since a < β. If a
a−b+2 < 1 (and therefore t = 1) we have b < 2 and, hence, b = 1. Thus

〈(t,−t, t),vβ〉 = c =
a− b+ 2

β + 1
=

a+ 1

β + 1
< 1.

In both cases, [π(x), 1] ∈ Γsrs.
Case 4. x = (2 − t, t− 1,−t) (1 ≤ t ≤ m(a, b)):

〈(2− t, t− 1,−t),vβ〉 = 1− (t− 1)
a− b+ 2

β + 1
− β−1 < 1.

On the other hand,

〈(2 − t, t− 1,−t),vβ〉 =2− bβ−1 − β−2 − t
a− b+ 2

β + 1

=(1− bβ−1 − β−2

︸ ︷︷ ︸

>0

) + (1− t
a− b+ 2

β + 1
︸ ︷︷ ︸

>0

) > 0.

Thus [π(x), 1] ∈ Γsrs.
Case 5. x = (t− 1, 1− t, t) (1 ≤ t ≤ m(a, b)): we use the previous case to estimate

0 < v3 = 〈(0, 0, 1),vβ〉 ≤ 〈(t− 1, 1− t, t− 1),vβ〉
︸ ︷︷ ︸

≥0 by Case 3

+ 〈(0, 0, 1),vβ〉 = 〈(t− 1, 1− t, t),vβ〉

=− 1 + 〈(t,−t, t),vβ〉+ 〈(0, 1, 0),vβ〉 < 〈(0, 1, 0),vβ〉 = v2.

(5.1)

Hence [π(x), 1], [π(x), 2] ∈ Γsrs.
Case 6. x = (1 − t, t,−t) (1 ≤ t ≤ m(a, b)): by Case 3,

〈(1 − t, t,−t),vβ〉 = 1− 〈(t,−t, t),vβ〉 > 0.

Lower estimation yields

〈(1− t, t,−t),vβ〉 = − (t− 1) 〈(1,−1, 1),vβ〉+ 〈(0, 1, 0),vβ〉 − 〈(0, 0, 1),vβ〉

< 〈(0, 1, 0),vβ〉 = v2.

This shows that [π(x), 1], [π(x), 2] ∈ Γsrs.

�

In the following lemma we will characterize the strongly connected components of the self-
replicating boundary graph. Let

C(1) := {[1, π(0, 1,−1), 1], [1, π(0, 1,−1), 2], [3, π(0, 1,−1), 2], [2, π(1, 0,−1), 1],

[3, π(1, 0,−1), 1], [2, π(1,−1, 0), 1], [2, π(1,−1, 1), 1]}

∪

{

{[1, π(0, 1, 0), 1], [1, π(1, 0,−1), 1]} if a 6= b

∅ otherwise

∪

{

{[1, π(1,−1, 1), 1]} if b ≥ 2

∅ otherwise
.
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and, for t ∈ {2, . . . ,m(a, b)}, set

C(t) = {[2, π(t,−t, t), 1]} ∪

{

{[1, π(t,−t, t), 1]} if a > t(a− b+ 2)

∅ otherwise
.

We will show that the vertices of the strongly connected components of G
(B)
srs are contained in the

sets C(t). For our aims this is enough here. In fact, using Theorem 3.1, one can easily verify
that there are exactly m(a, b) strongly connected components whose vertices coincide with C(t)
for t = 1, . . . ,m(a, b).

Lemma 5.2. The vertices of the strongly connected components of the self-replicating boundary

graph G
(B)
srs are contained in

⋃m(a,b)
t=1 C(t).

Proof. The vertices of the strongly connected components are exactly those vertices that are
contained in cycles. Therefore, consider a cycle of the self-replicating boundary graph pass-
ing the vertices [in, π(xn, yn, zn), jn], n ∈ {0, . . . , q − 1}. By Proposition 2.3, for every n ∈
{0, . . . , q − 1} we have [π(xn, yn, zn), jn] ∈ Γsrs and, by definition, [in, π(xn, yn, zn), jn] and
[in+1, π(xn+1, yn+1, zn+1), jn+1] (indices modulo q) satisfy (2) of Definition 2.1. Let

t := max
n∈{0,...,q−1}

‖(xn, yn, zn)‖∞ .

At first suppose that t ≥ 2. We start with proving that t ≤ m(a, b) and deduce that for
all n ∈ {0, . . . , q − 1} we have (xn, yn, zn) = (t,−t, t). We first claim that xn 6= −t for all
n ∈ {0, . . . , q − 1}. Suppose xn equals −t. Then, by the fact that [in, π(xn, yn, zn), jn] ∈ D, we
have

〈(xn, yn, zn),vβ〉 = −t+ yn(bβ
−1 + β−2) + znβ

−1 ≥ 0.

Since |yn| ≤ t, |zn| ≤ t and t ≥ 2 we necessarily have that yn and zn are positive and at least one
of them is strictly greater than 1. Furthermore, we have

yn(bβ
−1+β−2)+znβ

−1 ≥ t ⇒ yn(aβ
−1+bβ−2+β−3)+zn(bβ

−1+β−2) ≥ tβ−1+ynaβ
−1+znbβ

−1.

Using Lemma 4.2 we can estimate

|〈(xn+1, yn+1, zn+1),vβ〉| =|〈(yn, zn, zn+1),vβ〉|

≥
∣
∣yn(aβ

−1 + bβ−2 + β−3) + zn(bβ
−1 + β−2)

∣
∣ −

∣
∣zn+1β

−1
∣
∣

≥tβ−1 + ynaβ
−1 + znbβ

−1 − tβ−1 = ynaβ
−1 + znbβ

−1 > 1,

which contradicts the assumption that [π(xn+1, yn+1, zn+1), jn+1] ∈ Γsrs. Therefore, for all n ∈
{0, . . . , q − 1}, xn 6= −t.

By this consideration and Lemma 4.2, we may assume without loss of generality that x0 = t.
We have

(5.2) 〈(x0, y0, z0),vβ〉 = t(aβ−1 + bβ−2 + β−3

︸ ︷︷ ︸

=1

) + y0(bβ
−1 + β−2) + z0β

−1.

By the definition of t, it is clear that we have −t ≤ y0, z0 ≤ t. Suppose that −t+ 1 ≤ y0 ≤ t. We
will derive a contradiction. There are two cases.

Case 1. 0 ≤ y0 ≤ t: in this case (5.2) reduces to

〈(x0, y0, z0),vβ〉 ≥ t(a− 1)β−1 + tbβ−2 + tβ−3.

Our assumption that t ≥ 2 implies that, if a > 1, we have t(a− 1) ≥ a. Therefore

〈(x0, y0, z0),vβ〉 ≥ aβ−1 + tbβ−2 + tβ−3 > 1.

If a = 1 then b = 1, which is the classical Tribonacci case, it is easy to verify that

t(β−2 + β−3) ≥ 2(β−2 + β−3) > 1,

too. In both cases, this contradicts the fact that [π(x0, y0, z0), j0] ∈ Γsrs.
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Case 2. −t+ 1 ≤ y0 ≤ −1: here (5.2) gives

〈(x0, y0, z0),vβ〉 ≥ 1 + (t− 1)
(
(a− b − 1)β−1 + (b − 1)β−2 + β−3

)
+ (z0 + t− 1)β−1.

If a > b + 1 this expression is again greater than 1 since z0 ≥ −t. Also for a = b+ 1 and
z0 ≥ −t + 1 as well as for a = b and z0 ≥ 0 we have 〈(x0, y0, z0),vβ〉 > 1. Thus we have
two subcases left.

• Suppose a = b + 1 and z0 = −t. Whenever the edge from [i0, π(x0, y0, z0), j0] to
[i1, π((x1, y1, z1)), j1] is of Type 1, the significant difference is

ax1 + by1 + z1 − x0 ≥ −a.

Using (4.4) we obtain

z1 ≥ −ax1 − by1 + x0 − a = −ay0 − bz0 + x0 − a ≥ a+ bt+ t− a > t.

Similarly, if the edge is of Type 2, we deduce z1 < −t. In both cases this contradicts
the definition of t.

• The case a = b and −t ≤ z0 ≤ −1 is treated analogously.

Therefore the only possibility is y0 = −t. By Lemma 4.2 this implies that x1 = ±t. Thus,
by the beginning of this proof, x1 = t. We can prove in a similar way that y1 = −t. Now it
follows from Lemma 4.2 that the edge is necessarily of Type 2 and, hence, z0 = t. We infer that
(xn, yn, zn) = (t,−t, t) for all n ∈ {0, . . . , q − 1}.

Since all the edges are of Type 2, the significant difference is at− bt+ t+ t = t(a− b+2) ≤ a by

(4.5). This yields t ≤ a
a−b+2 and, since t is an integer, t =

⌊
a

a−b+2

⌋

= m(a, b), as it was claimed.

Up to now we have proved that, for a cycle ([in, π(xn, yn, zn), jn])n∈{0,...,q−1} in Γsrs, if we
set t := maxn∈{0,...,q−1} ‖(xn, yn, zn)‖∞ and suppose t ≥ 2, then t ≤ m(a, b) and for all n,
(xn, yn, zn) = (t,−t, t).

To determine the exact set of vertices we use Lemma 4.4. More precisely, for an edge of Type 2
to exist from [i, π(t,−t, t), j] to [i′, π(t,−t, t), j′], the list in row (j, i) and column (i′, j′) in Table 7
must necessarily contain t(a − b + 2). Thus, we search in Table 7 for values between a − b + 2
(t = 1) and a (t = m(a, b)). Note that we allow t = 1 - this case will be needed later. The cells of
Table 8 contain all such pairs ((i, j), (i′, j′)). We do not have to take care of the pairs ((2, 3), (2, 1))
and ((1, 3), (2, 1)) since a− b+ 2 > a− b > a− b− 1.

(1, 1) (1, 1) (2, 1) (1, 1) (1, 1) (1, 2) (3, 1) (1, 2) (1, 1) (2, 1) (2, 1) (2, 1)
(1, 1) (2, 2) (3, 1) (2, 2) (1, 1) (3, 1) (2, 1) (3, 1) (1, 1) (3, 2) (3, 1) (3, 2)

Table 8

Each cell represents possible edges with the same initial vertex and terminal vertex. An edge that
has its origin (destination, respectively) in a vertex that is not destination (origin, respectively)
of another edge cannot be part of a strongly connected component of the graph. Therefore, we
successively delete the cells whose first element does not appear as second element of another cell
and vice versa. Finally, only the four cells highlighted in grey remain:

((1, 1), (1, 1)), ((1, 1), (2, 1)), ((2, 1), (1, 1)) and ((2, 1), (2, 1)).

Consequently, if a strongly connected component contains a cycle with t ≥ 2, then a vertex of this
component is either [1, π(t,−t, t), 1] or [2, π(t,−t, t), 1]. Note that for t(a− b + 2) = a the vertex
[1, π(t,−t, t), 1] has no outgoing edge and therefore this point cannot be a vertex of the strongly
connected component.

Therefore, we have shown that the vertices of the strongly connected components are contained
in C(t) for 2 ≤ t ≤ a

a−b+2 .
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Shape from to Type significant difference
1 [i, π(0, 1, 0), j] [i′, π(1, 0,−1), j′] Type 1 a− 1 ≥ 0
2 [i, π(0, 1,−1), j] [i′, π(1,−1, 0), j′] Type 1 a− b ≥ 0
3 [i, π(0, 1,−1), j] [i′, π(1,−1, 1), j′] Type 1 a− b+ 1 ≥ 1
4 [i, π(1, 0,−1), j] [i′, π(0, 1, 0), j′] Type 2 b+ 1 ≥ 2
5 [i, π(1, 0,−1), j] [i′, π(0, 1,−1), j′] Type 2 b

6 [i, π(1,−1, 0), j] [i′, π(1, 0,−1), j′] Type 2 a

7 [i, π(1,−1, 1), j] [i′, π(1,−1, 0), j′] Type 2 a− b+ 1 ≥ 1
8 [i, π(1,−1, 1), j] [i′, π(1,−1, 1), j′] Type 2 a− b+ 2 ≥ 2

Table 9

We now treat the case of the possible strongly connected components whose vertices [i, π(x), j]
satisfy ‖x‖∞ ≤ 1. There are 27 Z3-vectors whose maximum norm is less or equal to 1. For these
vertices to belong to the self-replicating boundary graph we must have 0 ≤ 〈x,vβ〉 < 1. Thus, we
can restrict to

x ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1,−1), (1, 0,−1), (1,−1, 0), (1,−1, 1), (0, 1, 1), (−1, 1, 1)}.

The vectors (0, 1, 1) and (−1, 1, 1) can be excluded. Their possible successors in a strongly
connected component would have the form [i, π(1, 1, z′), j] with z′ ≥ −1. But then 〈(1, 1, z′),vβ〉 ≥
1 + v2 − v3 > 1, thus [π(1, 1, z′), j] is not in the tiling set Γsrs, a contradiction.

The point x = (0, 0, 0) does not give rise to a strongly connected component for the following
reason. By Lemma 4.2, the only possible predecessor for a vertex of the form [i′,0, j′] is of the
shape [i,0, j]. By Lemma 4.4 the list in row (i, j) (row (j, i), respectively) and column (i′, j′) in
Table 7 must contain 0. Since by definition i 6= j and i′ 6= j′ we easily see that such edges may only
occur for (i, j) = (1, 3) and (i′, j′) = (1, 2) and for (i, j) = (2, 3) and (i′, j′) = (1, 2). This leads to
[1, (0, 0, 0), 3] → [1, (0, 0, 0), 2] and [2, (0, 0, 0), 3] → [1, (0, 0, 0), 2] as the only possible edges in the
strongly connected component. But combining these two edges does not give rise to a component.
Therefore, x = (0, 0, 0) cannot show up in a strongly connected component.

Since x = (0, 0, 0) does not induce vertices of a strongly connected component we can exclude
x = (0, 0, 1) completely (again, by Lemma 4.2).

By Lemma 4.2, the remaining possibilities for x provide eight different shapes of edges shown
in Table 9.

Similarly as before we use Lemma 4.4 and Table 7 and write down all possible edges. Table 10
consists of eight blocks corresponding to the eight shapes of edges. According to Lemma 4.4
the cells of a block contain all pairs (i, j) and (i′, j′) with suitable significant difference found in
Table 7. Note that [π(0, 1, 0), 2], [π(0, 1, 0), 3] 6∈ Γsrs. Hence, we do not write pairs ((i, j), (i′, j′)
involving these elements.

Now we can easily determine the possible strongly connected component algorithmically by suc-
cessively deleting pairs (edges) whose origin does not appear as destination of another edge, in the
same way as we have done in Table 8. In particular, we delete a cell whenever its left pair does not
appear as a right pair in another cell of a suitable block or its right pair does not appear as a left
pair in another cell of a suitable block (according to the shape of edges). A detailed proceeding
can be found in the annex. The remaining cells are highlighted in grey. The corresponding vertices
read as follows.

[1, π(0, 1, 0), 1], [1, π(0, 1,−1), 1], [1, π(0, 1,−1), 2], [3, π(0, 1,−1), 2], [1, π(1, 0,−1), 1],

[2, π(1, 0,−1), 1], [3, π(1, 0,−1), 1], [2, π(1,−1, 0), 1], [1, π(1,−1, 1), 1], [2, π(1,−1, 1), 1].
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Block 1 [i, π(0, 1, 0), j] −→ [i′, π(1, 0,−1), j′]
(1, 1) (1, 1) (1, 1) (1, 2) (1, 1) (1, 3) (1, 1) (2, 1) (1, 1) (2, 2) (1, 1) (2, 3)
(1, 1) (3, 1) (1, 1) (3, 2) (1, 1) (3, 3)

Block 2 [i, π(0, 1,−1), j] −→ [i′, π(1,−1, 0), j′]
(1, 1) (1, 1) (1, 2) (1, 1) (2, 2) (1, 1) (1, 1) (1, 2) (1, 3) (1, 2) (2, 3) (1, 2)
(1, 1) (1, 3) (1, 1) (2, 1) (3, 2) (2, 1) (1, 1) (2, 2) (1, 3) (2, 2) (3, 3) (2, 2)
(1, 1) (2, 3) (1, 1) (3, 1) (1, 1) (3, 2) (1, 3) (3, 2) (1, 1) (3, 3)

Block 3 [i, π(0, 1,−1), j] −→ [i′, π(1,−1, 1), j′]
(1, 1) (1, 1) (1, 2) (1, 1) (1, 1) (1, 2) (1, 3) (1, 2) (1, 1) (2, 1) (1, 2) (2, 1)
(1, 1) (2, 2) (1, 3) (2, 2) (1, 1) (3, 1) (1, 2) (3, 1) (1, 1) (3, 2) (1, 3) (3, 2)

Block 4 [i, π(1, 0,−1), j] −→ [i′, π(0, 1, 0), j′]
(1, 1) (1, 1) (2, 1) (1, 1) (1, 1) (2, 1) (1, 3) (2, 1) (2, 1) (2, 1) (2, 3) (2, 1)
(1, 1) (3, 1) (2, 1) (3, 1)

Block 5 [i, π(1, 0,−1), j] −→ [i′, π(0, 1,−1), j′]
(1, 1) (1, 1) (2, 1) (1, 1) (3, 1) (1, 2) (1, 1) (2, 1) (1, 3) (2, 1) (2, 1) (2, 1)
(2, 3) (2, 1) (3, 1) (2, 2) (1, 1) (3, 1) (2, 1) (3, 1) (3, 1) (3, 2)

Block 6 [i, π(1,−1, 0), j] −→ [i′, π(1, 0,−1), j′]
(2, 1) (1, 1) (3, 1) (1, 2) (2, 1) (2, 1) (3, 1) (2, 2) (2, 1) (3, 1) (3, 1) (3, 2)

Block 7 [i, π(1,−1, 1), j] −→ [i′, π(1,−1, 0), j′]
(1, 1) (1, 1) (2, 1) (1, 1) (1, 1) (1, 2) (3, 1) (1, 2) (1, 1) (2, 1) (2, 1) (2, 1)
(1, 1) (2, 2) (3, 1) (2, 2) (1, 1) (3, 1) (2, 1) (3, 1) (1, 1) (3, 2) (3, 1) (3, 2)

Block 8 [i, π(1,−1, 1), j] −→ [i′, π(1,−1, 1), j′]
(1, 1) (1, 1) (2, 1) (1, 1) (1, 1) (1, 2) (3, 1) (1, 2) (1, 1) (2, 1) (2, 1) (2, 1)
(1, 1) (2, 2) (3, 1) (2, 2) (1, 1) (3, 1) (2, 1) (3, 1) (1, 1) (3, 2) (3, 1) (3, 2)

Table 10

We note that these vertices match with the vertices of C(1) for a > b > 1. Hence, in this case the
lemma is proved.

In the case b = 1, no type of edge that start in [1, π(1,−1, 1), 1] (shapes 7 and 8) exists. Thus,
the vertex [1, π(1,−1, 1), 1] cannot be contained in the strongly connected components. This shows
the lemma in the case a > b = 1.

Finally, suppose a = b. We see that there is no edge of shape 4, because the significant difference
a+ 1 does not show up. But this would be the only incoming edge for the vertex [1, π(0, 1, 0), 1].
Hence we deduce that [1, π(0, 1, 0), 1] cannot be a vertex of the strongly connected components in
this case. The same applies to the vertex [1, π(1, 0,−1), 1]. Hence, the lemma holds also for all
a = b ≥ 1. �

Proof of Theorem 3.1. From Lemma 5.1 we know that for all vertices [i, γ, j] of S we have [γ, j] ∈
Γsrs. It is also easy to verify that all edges satisfy (2) of Theorem 4.1. Furthermore, each vertex

lies on a path ending in a strongly connected component. Therefore, S is a subgraph of G
(B)
srs .

Now we are going to check that G
(B)
srs is a subgraph of S.

In Lemma 5.2 we showed that the vertices of the strongly connected components of G
(B)
srs are

contained in the sets C(1), . . . , C(m(a, b)). Observe that S contains all these vertices. The fact that

every vertex in G
(B)
srs lies on a path that ends up in a strongly connected component immediately

implies that such a path passes a vertex of S.
We claim that it is impossible to add additional edges (and vertices) to S that satisfy (1) and

(2) in Theorem 4.1. This obviously proves the theorem. For this purpose we go through all types
of vertices of S and investigate the possible incoming edges. The strategy is always the same:
we use Lemma 4.2 to show that a predecessor [i, γ, j] of a vertex [i′, γ′, j′] can obtain at most
two different values for γ and then we use Lemma 4.4 to determine i and j. Here, we show this
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explicitly for vertices of the form [i′, π(0, 0, 0), j′]. For the other vertices everything runs more or
less analogously. A detailed proof can be found in the annex. By Lemma 4.2 the only possible
incoming edges have an initial vertex of the shape [i, π(0, 0, 0), j]. Moreover, i < j by Observe the
definition of the self-replicating boundary graph. We have to investigate the following pairs.

(i′, j′) = (1, 2): we use Table 7 to find out the possible edges. In column (1, 2) there occur
three lists that may include 0. The list in line (1, 1) is not relevant since i = j = 1 is
not allowed. Hence, we only consider (i, j) = (1, 3) or (i, j) = (2, 3). For a = b row
(1, 3) contains strictly positive values only, hence, this edge cannot occur in this case. For
a 6= b we consult Γσ and see that there is only one edge from 3 to 2 labelled by (1b, 3, ε).

Hence, we have only one possible edge [1, π(0, 0, 0), 3]
π(b,0,0)
−−−−−→ [1, π(0, 0, 0), 2] (of Type

1). Analogously, (i, j) = (2, 3) gives one edge from [2, π(0, 0, 0), 3] labelled by π(a, 0, 0)
provided that a = b. In both cases the edges can already be found in Adjacency Table 1.

(i′, j′) = (1, 3) or (2, 3): these vertices cannot have any incoming edge since in columns (1, 3)
and (2, 3) of Table 7 the only list including 0 is the one in row (1, 1), which is not relevant
here.

�

6. Proof of Theorem 3.2 and Theorem 3.3

The proof of Theorem 3.2 runs analogously to the first part of Theorem 3.1.

Proof of Theorem 3.2. It is quite easy to see that L is a subgraph of G
(B)
lat . Indeed, all vertices

lie on a finite path that ends in a vertex of G
(B)
srs . These vertices satisfy (2.6). Using a similar

argumentation as in the second part of the proof of Theorem 4.1, one can show that actually each
vertex of L satisfies (2.6). �

The lack of statements similar to Proposition 2.3 and Theorem 4.1 leads us to consider an

alternative strategy to prove that L coincides with G
(B)
lat . The self-replicating boundary graph

G
(B)
srs gives us a list of all subtiles that intersect with the Rauzy fractal in the aperiodic tiling.

We use this information to construct a tube around the central tile. To show that our graph L
is exactly the lattice boundary graph, we will prove that the neighbours occuring in L cover the
whole tube. As a consequence, the neighbour set cannot be bigger. In the last step we deduce
the exact set of vertices and edges. However, the computation in the general case seems to be
difficult. Hence, we will restrict here to the most simple case, when m(a, b) = 1.

According to Definition 2.4 and the prefix-suffix automaton Γσ, the Rauzy fractal T is the
solution of a graph directed function system: for every i ∈ A,

(6.1) T (i) =
⋃

σ(j)=pis

π(l(p)) + h(T (j)).

For convenience, we denote by B(i) the finite set

(6.2) B(i) := {π(l(p)) + h(T (j))| ∃(p, i, s) ∈ P : σ(j) = pis}.

Now consider a vertex [i, γ, j] of the self-replicating boundary graph G
(B)
srs with γ 6= {0}. By [22,

Theorem 5.6], this is equivalent to the fact that T (i)∩ (T (j)+ γ) 6= ∅. Now we may ask for which
B ∈ B(j) we have T (i) ∩ (B + γ) 6= ∅. In other words, we want a characterisation of the set

O([i, γ, j]) := {γ +B|B ∈ B(j), T (i) ∩ (B + γ) 6= ∅}.

Lemma 6.1. Let [i, γ, j] a vertex of the self-replicating boundary graph G
(B)
srs . Then the elements

of O([i, γ, j]) are given by outgoing edges of [i, γ, j]. In particular,

O([i, γ, j]) ={η + h(γ′ + T (j′))| [i, γ, j]
η
→ [i′, γ′, j′] is an edge of Type 1}∪

{η′ + h(T (i′))| [i, γ, j]
η
→ [i′, γ′, j′] is an edge of Type 2}
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Proof. At first we show that each element of O([i, γ, j]) is contained in the set on the right hand
side of this equality. Let C = γ + π(l(p2)) + h(T (j′)) ∈ O([i, γ, j]). Thus T (i) ∩ C 6= ∅. The use
of (6.1) yields

⋃

B∈B(i)

B ∩ (γ + π(l(p2)) + h(T (j′))) 6= ∅.

Now, there must be at least one B = π(l(p1)) + h(T (i′)) ∈ B(i) that satisfies the equation.

π(l(p1)) + h(T (i′)) ∩ γ + π(l(p2)) + h(T (j′)) 6= ∅.

Suppose that γ = π(x). Hence,

(6.3) T (i′) ∩ (h−1(π(x) + π(l(p2))− π(l(p1))) + T (j′)) 6= ∅.

By (2.2) we have

T (i′) ∩ (π(M−1(x+ l(p2)− l(p1))) + T (j′)) 6= ∅.

Now note that 〈x,vβ〉 < vj = 〈l(j),vβ〉 . Since

β 〈l(j′),vβ〉 = 〈Ml(j′),vβ〉 = 〈l(σ(j′)),vβ〉 ≥ 〈l(j) + l(p2),vβ〉

we immediately see that
〈
M−1(x + l(p2)− l(p1)),vβ

〉
< vj′ . Analogously, we can show that

〈
M−1(x+ l(p2)− l(p1)),vβ

〉
> −vi′ .

However, we either have [i′,h−1(γ + π(l(p2)) − π(l(p1))), j
′] ∈ D and [h−1(γ + π(l(p2)) −

π(l(p1))), j
′] ∈ Γsrs or [j′,−h−1(γ + π(l(p2)) − π(l(p1))), i

′] ∈ D and [−h−1(γ + π(l(p2)) −
π(l(p1))), i

′] ∈ Γsrs. Remember that for a vertex [i, γ, j] of the boundary graph, we necessar-
ily have T (i) ∩ (T (j) + γ) 6= ∅. Together with (6.3), this leads to the conclusion that one of the

triples occurs as vertices in G
(B)
srs and we see that it has an incoming edge from [i, γ, j]. In the first

case it is of Type 1 and labelled by π(l(p1)), in the second case it is of Type 2 and labelled by
π(l(p2)) + γ. However, we see that

C ∈{η + h(γ′ + T (j′))| [i, γ, j]
η
→ [i′, γ′, j′] is an edge of Type 1}∪

{η′ + h(T (i)′)| [i, γ, j]
η
→ [i′, γ′, j′] is an edge of Type 2}.

To prove the reverse inclusion, consider an edge [i, γ, j]
η
→ [i′, γ′, j′]. We have T (i′) ∩ (γ′ +

T (j′)) 6= ∅. Suppose the edge is of Type 1. Then

h(T (i′)) ∩ (γ + π(l(p2))− π(l(p1)) + h(T (j′))) 6= ∅

by the definition of the self replicating boundary graph G
(B)
srs . Furthermore, we have η = π(l(p1)),

π(l(p1)) + h(T (i′)) ∈ O(i) and π(l(p2)) + h(T (j′)) ∈ O(j). Thus

T (i) ∩ (γ + π(l(p2)) + h(T (j′))) 6= ∅

and, hence,

γ + π(l(p2)) + h(T (j′)) = η + h(γ′ + T (j′)) ∈ O([i, γ, j]).

For edges of Type 2 the proof runs analogously. �

Now, for each vertex [i, γ, j] we consider the set O([i, γ, j]). This set consists of the γ-translates
of all subsets of T (j) induced by the decomposition (6.2) that intersect with T (i). The union of the

elements of O([i, γ, j]) for all vertices of G
(B)
srs with γ 6= 0 gives the mentioned tube. In Lemma 6.3

we show that in the lattice tiling the neighbours of the Rauzy fractal induces by the elements
of {±π(0, 1,−1),±π(1, 0,−1),±π(1,−1, 0)} cover all of this tube. Lemma 6.2 is a preparation to
Lemma 6.3.

Lemma 6.2. For all a ≥ b ≥ 1 we have

π(0, 1, 0) + T (2) ⊂ T (1).
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Proof. By (6.1) for i = 2 we have T (2) = π(a, 0, 0) + h(T (1)). Hence, by (2.2) and the shape of
M,

(6.4) π(0, 1, 0) + T (2) = π(M(1, 0, 0)) + h(T (1)) = h(π(1, 0, 0) + T (1)).

Set

R :=

a−1⋃

k=0

(π(k, 0, 0) + h(T (1))) ∪
b−1⋃

k=0

(π(k, 0, 0) + h(T (2))).

Now we use again (6.1) to obtain

π(0, 1, 0) + T (2) =h(π(1, 0, 0) + T (1))

=h(π(1, 0, 0) +R) ∪ h(π(1, 0, 0) + h(T (3)))

=h(π(1, 0, 0) +R) ∪
[
h
(
π(1, 0, 0) + h(π(b, 0, 0)) + h2(π(a, 0, 0)) + h3(T (1))

)]
.

Now observe that

(6.5) π(1, 0, 0) + h(π(b, 0, 0)) + h2(π(a, 0, 0)) = π((I3 + bM+ aM2)(1, 0, 0)) = h3(π(1, 0, 0)),

(where I3 denotes the 3 × 3 identity matrix) since x3 − ax2 − bx − 1 is the characteristic (and
minimal) polynomial of M. Hence,

π(0, 1, 0) + T (2) = h(π(1, 0, 0) +R) ∪ h4(π(1, 0, 0) + T (1)).

Iterating this procedure, we obtain

(6.6) π(0, 1, 0) + T (2) =

∞⋃

n=0

h3n+1(π(1, 0, 0) +R)

since h is a contraction. Now we claim that h(π(1, 0, 0) +R) ⊂ T (1). By definition of R we have

(6.7) h(π(1, 0, 0) +R) =

a⋃

k=1

(h(π(k, 0, 0)) + h2(T (1))) ∪
b⋃

k=1

(h(π(k, 0, 0)) + h2(T (2))).

On the other hand, by (6.1), we have

T (1) ⊃h(T (1)) ∪ h(T (2)) ∪ h(T (3))

=
a−1⋃

k=0

(h(π(k, 0, 0)) + h2(T (1))) ∪
b−1⋃

k=0

(h(π(k, 0, 0)) + h2(T (2))) ∪ (h(π(0, 0, 0)) + h2(T (3)))

∪ (h(π(a, 0, 0)) + h2(T (1))) ∪ (h(π(b, 0, 0)) + h2(T (2)))

which contains the set (6.7) and thus yields the claim. Observing that T (1) ⊃ h3i(T (1)) and that
by the claim h3i+1(π(1, 0, 0)+R) ⊂ h3i(T (1)) for all i ∈ N we obtain the assertion from (6.6). �

Lemma 6.3. Let m(a, b) = 1. For each O ⊂ O([i, γ, j]) of each vertex [i, γ, j] of G
(B)
srs with γ 6= 0

there exists a vertex [i′, γ′, j′] of L with [γ′, j′] ∈ Γlat \ {0} × A such that one of the following
conditions hold:

(1) i = i′ and O ⊂ γ′ + T (j′);
(2) i = j′ and O ⊂ −γ′ + T (i′).

Proof. We prove the lemma by analysing the vertices of G
(B)
srs one by one. Since for every

O ∈ O([i, γ, j]) we have O ⊂ γ + T (j) the lemma holds for all vertices [i, γ, j] with γ ∈
{π(0, 1,−1), π(1, 0,−1), π(1,−1, 0)}. Indeed, these vertices appear in L too. Thus, we have 6
more vertices to investigate.

[1, π(0, 0, 1), 1]: for convenience, define the 3 sets

C :={π(k, 0, 1) + h(T (1))| b − 1 ≤ k ≤ a− 2},

D :={π(a− 1, 0, 1) + h(T (1))},

E :={π(b− 1, 0, 1) + h(T (2))}.
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Using Lemma 6.1 we easily obtain that

O([1, π(0, 0, 1), 1]) = C ∪D ∪ E.

We claim that the vertices [i′, π(1, 0,−1), 1] for i′ ∈ {1, 2, 3} cover all elements of C, D and
E according to (2). Indeed, the triples are vertices of L, [π(1, 0,−1), 1] ∈ Γlat \ {0} × A
and at the third position we find 1. Furthermore, by (6.1), we have that

−π(1, 0,−1) + B(1) ⊃ {π(k, 0, 1) + h(T (1))| b− 1 ≤ k ≤ a− 1} = C

−π(1, 0,−1) + B(2) = {π(a− 1, 0, 1) + h(T (1))} = D

−π(1, 0,−1) + B(3) = {π(b− 1, 0, 1) + h(T (2))} = E,

which proves the claim.
[i, π(0, 0, 1), 2]: The vertex with i = 1 always occurs while i = 2 only exists for a = b.

However, we have

O([1, π(0, 0, 1), 2]) = O([2, π(0, 0, 1), 2]) = {π(a, 0, 1) + h(T (1))}.

Now (6.1) and Lemma 6.2 yield

π(a, 0, 1) + h(T (1)) = π(0, 0, 1) + T (2) ⊂ π(0,−1, 1) + T (1).

Since [1, π(0, 1,−1), 1] as well as [1, π(0, 1,−1), 2] occur in L the case is accomplished.
[1, π(0, 1, 0), 1]: note that [2, (1,−1, 0), 1] is a vertex of L. Also,

O([1, π(0, 1, 0), 1]) = {π(a− 1, 1, 0) + h(T (1))} = {π(−1, 1, 0) + T (2)},

where we used (6.1). This proves the lemma in this case.
[1, π(1,−1, 1), 1]: we have for b ≥ 2

O([1, π(1,−1, 1), 1]) ={π(k,−1, 1) + h(T (1))| 1 ≤ k ≤ b− 2}

∪ {π(k,−1, 1) + h(T (2))| 1 ≤ k ≤ b− 1}.

(there is nothing to prove for b = 1). Using (6.1) we easily obtain that π(0,−1, 1) + T (1)
covers all elements of O([1, π(1,−1, 1), 1]). This finishes the case since [1, π(0, 1,−1), 1] is
a vertex of L.

[2, π(1,−1, 1), 1]: we have

O([2, π(1,−1, 1), 1]) = {π(b − 1,−1, 1) + h(T (1)), π(b,−1, 1) + h(T (2))}.

Now observe that {π(b − 1, 0, 0) + h(T (1))} ∈ B(1) and B(3) = {(π(b, 0, 0) + h(T (2))}.
Hence, the lemma is proved since [3, π(0, 1,−1), 2] and [1, π(0, 1,−1), 2] are vertices of L.

�

We are finally able to prove Theorem 3.2. However, we will exactly go through the proof to
show which conditions we need.

Proof of Theorem 3.3. We already know from Theorem 3.2 that L is a subgraph of G
(B)
lat .

Thus, we just have to prove that L contains G
(B)
lat . At first we show that each vertex [̃i, γ̃, j̃]

of G
(B)
lat with [γ̃, j̃] ∈ Γlat \ {0} × A is also a vertex of L. Let ξ ∈ γ̃ + T (j̃) ∩ T (̃i). The tiles are

the closure of their interiors, hence, there exists a sequence (ξn)n∈N of interior points of γ̃ + T (j̃)
that converges to ξ. For each n ∈ N we can find an εn > 0 such that the open ball K(ξn, εn) is
completely contained in the interior of γ̃+T (j̃). Since σ has the tiling property, we conclude that

none of the ξn is contained in T (̃i).
Now consider the aperiodic tiling induced by σ. We use the covering property to deduce that

each of the ξn is contained in some translate of the self-replicating tiling. By the local finiteness,
there are only finitely many possibilities. Thus, suppose that γ+T (j) (with [γ, j] ∈ Γsrs) contains
ξn for infinitely many n ∈ N. By the above considerations and, again, by the tiling property we
conclude that γ 6= 0. Since γ + T (j) is compact and contains an infinite subsequence of ξn, it

necessarily includes the limit point ξ, too. Thus, γ+T (j)∩T (̃i) 6= ∅ which makes [̂i, γ, j] a vertex

of G
(B)
srs . Furthermore, as γ+T (j) includes points of the sequence (ξn)n∈N, it necessarily intersects

with the respective neighbourhoods K(ξn, ǫn). This shows that int (γ+T (j))∩ int (γ̃+T (j̃)) 6= ∅.
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Now divide the subtile T (j) with respect to (6.1). Then there must be at least one B ∈ B(j)
such that γ + B includes ξn for infinitely many n ∈ N. Similarly as before we have int (γ + B) ∩
int (γ̃+T (j̃)) 6= ∅ and ξ ∈ γ+B. The latter relation yields γ+B ∈ O([̃i, γ, j]). By Lemma 6.3 there
exists a vertex [i′, γ′, j′] ∈ L with [γ, j′] ∈ Γlat \ {0}×A such that i′ = ĩ and γ+B ⊂ γ′+T (j′) or

j′ = ĩ and γ +B ⊂ −γ′ + T (i′). We claim that, in fact, the first relation holds. Indeed, suppose
the second relation would hold. Then

int (γ̃ + T (j̃)) ∩ int (−γ′ + T (i′)) 6= ∅

and, by the tiling property of σ, γ̃ + T (j̃) = −γ′ + T (i′). Hence, [j̃,−γ̃, ĩ] would be a vertex of L.

But [̃i, γ̃, j̃] is a vertex of that G
(B)
lat with γ̃ 6= {0}. Thus, by definition, 〈x,vβ〉 > 0 where γ̃ = π(x).

The same consideration apply for L which shows that [j̃,−γ̃, ĩ] impossibly can be a vertex of L.
Therefore, the first relation must hold necessarily. Now, the same considerations yield that [̃i, γ̃, j̃]
is a vertex of L.

From the first part of the proof we can deduce that, whenever [i′, γ′, j′] with [γ′, j′] ∈ Γlat \

{0} × A is a vertex of G
(B)
lat , it is also a vertex of L. Note that these 7 vertices (or only 6 vertices

if a = b < 4) are also vertices of G
(B)
srs . By Definition 2.1, G

(B)
srs contains all infinite paths starting

from one of these vertices. Since L also contains all of these paths, we conclude that L contains

G
(B)
lat . �

7. Comments

We want to say a few words on possible proofs of Conjecture 3.4. For a, b that satisfym(a, b) ≤ k

for a given constant k the same strategy seems to work. But it requires additional assertions of the
style of Lemma 6.2. The following considerations may yield another strategy. The sets O([i, γ, j])
induce a neighbourhood of the central tile. By Lemma 6.1 it corresponds to the paths of length 1

of G
(B)
srs . One may obtain a smaller neighbourhood by considering a refinement of O([i, γ, j]). This

would lead us to investigate longer paths of G
(B)
srs . This will involve very lengthy hand calculations.

We should rather use a computational implementation.

ANNEX - Details to the technical proofs

Details for the proof of Lemma 5.2. The following procedure describes explicitly how to reduce
the number of cells in Table 10. At first we consider the outgoing edges for points of the type
[i, π(0, 1, 0), j] (left pairs in Block 1). The only possibility is (i, j) = (1, 1) since (1, 1) is the
only pair that appears on the left side. Thus, an edge whose destination is of the same shape,
[i′, π(0, 1, 0), j′], cannot belong to the strongly connected components if (i′, j′) 6= (1, 1). Hence, in
Block 4 we can delete all cells that do not have (1, 1) at their second position (the last 6 cells).
Now we consider the vertices of the shape [i, π(1,−1, 0), j]. In Block 6 we find the outgoing edges.
Only (2, 1) and (3, 1) occur on the left side. Therefore, in Block 2 and Block 7 we can cross out
all cells whose right entry does not match with one of these two pairs (14 cells in Block 2, 8 cells
in Block 7). Next we study the vertices of the shape [i, π(0, 1,−1), j]. The incoming edges are
given in Block 5. The possible outgoing edges are listed in Block 2 and Block 3. Note that for
(i, j) = (1, 3) there is no incoming edge. Hence, we can delete the three cells with (1, 3) on the left
in Block 3. Now, there are only three different pairs, (1, 1), (1, 2) and (3, 2), on the left in Block 2
and Block 3. So, in Block 5 we remove all cells with right entry different from one of these pairs (7
cells). The outgoing edges of vertices of the type [i, π(1, 0,−1), j] are given in Block 4 and Block
5. We find the pairs (1, 1), (2, 1), and (3, 1) there. Hence, we can delete 6 cells in Block 1 and 3
cells in Block 6. Now, for the edges that start in vertices of the shape [i′, π(1,−1, 0), j′] (Block 6)
we see that only (i, j) = (2, 1) remained. Hence, we can cross out one more cell in Block 2 and
2 more cells in Block 7, respectively. Finally, for points of the shape [i, π(1,−1, 1), j] we find the
possible outgoing edges in Block 7 and Block 8. We deduce that (i, j) ∈ {(1, 1), (2, 1), (3, 1)}. Now
we can delete the cells that do not have matching pairs on the right in Block 3 (3 cells) and Block
8 (6 cells). Observing that we just erased all edges that start in [3, π(1,−1, 1), 1], we can remove
two more cells from each of these two Blocks. �
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Details for the proof of Theorem 3.1. We go through all remaining types of vertices of S in order

to show that G
(B)
srs cannot contain edges different from those that are given in S.

Vertices of the form [i′, π(0, 0, 1), j′]: similar as above, [i, π(0, 0, 0), j] with i < j is the
only type of predecessor. The significant difference equals 1 and, thus, we are looking for
the entry 1 in Table 7. In particular,
(i′, j′) = (1, 1): since i < j we see by Table 7 that (i, j) = (1, 2) is the only possibility

and gives only one edge (which is already included in S).
(i′, j′) = (1, 2): in column (1, 2) of Table 7 the only row that contains 1 is the row (1, 3).

The corresponding edge starts in [1, π(0, 0, 0), 3] and is contained in S.
(i′, j′) = (2, 2): similarly as before, row (1, 3) is the only row that contains 1 in col-

umn (2, 2) of Table 7. The corresponding edge is contained in S provided that
[2, π(0, 0, 1), 2] is contained in S, i.e., b = 1.

The vertex [1, π(0, 1, 0), 1]: by Lemma 4.2 the incoming edges of Type 1 start in vertices of
the form [i, π(0, 0, 1), j] with the significant difference b > 0. In the corresponding column
of Table 7 we find that row (1, 2) includes b. The associated edge is already included
in S. Row (1, 1) includes b provided that a 6= b, and in Γσ there are a − b possibilities
to choose edges (p1, 1, s1) and (p2, 1, s2) from 1 to 1 such that l(p2) − l(p1) = (b, 0, 0).
All the edges appear in S. All incoming edges of Type 2 start from vertices of the type
[i, π(1, 0,−1), j]. Now observe that we already collected all possibilities in Block 4 in the
Table in Lemma 5.2. There are two cells whose right entry equals (1, 1). Their left entries
give the possible pairs (i, j). The first one is (1, 1) and yields a− b− 1 edges (hence, edges
only if a ≥ b + 1), the other one is (2, 1) and yields one edge provided that a 6= b. The
edges are included in S.

Vertices of the form [i′, π(0, 1,−1), j′]: the incoming edges of Type 1 have initial vertices
of the shape [i, π(0, 0, 1), j] with significant difference b − 1 ≥ 0. As [π(0, 0, 1), 3] 6∈ Γsrs

we conclude that j 6= 3.
(i′, j′) = (1, 1): S includes a − b − 1 edges that start in [1, π(0, 0, 1), 1]. There is also

another edge that starts in [1, π(0, 0, 1), 2] if b > 1, and in [2, π(0, 0, 1), 2] if b = 1. By
Table 7 and Γσ there is no other possibility.

(i′, j′) = (1, 2) or (3, 2): by Table 7 the only possibility is (i, j) = (1, 1) since j = 3 is
not allowed.

We already investigated the incoming edges of Type 2 in the proof of Lemma 5.2. They
are of Shape 5, start in vertices of the form [i, (1, 0,−1), j] and Block 5 gives the possible
pairs. All 4 cells that we find there correspond to edges that are included in S.

The vertex [2, π(1,−1, 0), 1] and vertices of the form [i′, π(1, 0,−1), j′]: In the blocks 1,
2, 6 and 7 of the table in Lemma 5.2 we can check that actually all possible incoming edges
are already included in S.

Vertices of the form [i′, π(t,−t, t), j′]: The incoming edges of Type 1 have initial vertices
of the shape [i, π(1− t, t,−t), j] with significant difference t(a− b+2)− 1 = δt− 1 > a− b,
those of Type 2 start in vertices of the form [i, π(t,−t, t), j] with significant difference
t(a−b+2) = δt > a−b+1 > 0. We already studied the latter ones detailed in Lemma 5.2.
We see that there cannot be other incoming edges than those that are included in S. For
examining the possible edges of Type 1 we investigate the three vertices of the present
form.
(i′, j′) = (1, 1) (for t = 1, . . . ,m(a, b)): Note that column (1, 1) of Table 7 shows two

lists that include strictly positive entries: the rows (1, 1) and (1, 2). The first one
gives a− δt + 1 edges starting from [1, π(1− t, t,−t), 1]. The other one gives an edge
starting from [1, π(1− t, t,−t), 2].

(i′, j′) = (2, 1) (for t = 1, . . . ,m(a, b)): Again, we consult Table 7 and find two lists
with suitable entries, (1, 1) and (1, 2). They give the edges that are included in S.

(i′, j′) = (3, 1) (for t = 1, . . . ,m(a, b)− 1): Note that t ≤ m(a, b)− 1 induces that δt <
a. Thus, in Table 7 the only row of interest is (1, 1). It gives the edge starting from
[1, π(1− t, t,−t), 1].
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Vertices of the form [i′, π(2− t, t− 1,−t), j′] (for t = 2, . . . ,m(a, b)): Incoming edges of
Type 1 can only start at vertices of the form [i, π(t − 2, 2 − t, t − 1), j] with significant
difference a− (t−1)(a− b+2) = a− δt−1 > 0, those of Type 2 start at vertices of the form
[i, π(3−t, t−2, 1−t), j] with significant difference a−(t−1)(a−b+2)+1 = a−δt−1+1 > 0.

(i′, j′) = (1, 1): The two rows which have positive entries in column (1, 1) of Table 7 are (1, 1)
and (1, 2). They induce the a−δt−1+1 edges of Type 1 starting at [1, π(t−2, 2−t, t−1), 1]
and the single edge of Type 1 starting at [1, π(t − 2, 2 − t, t − 1), 2] that are included
in S. On the other hand, the edges of Type 2 start in [1, π(3 − t, t − 2, 1 − t), 1] and
[2, π(3− t, t− 2, 1− t), 1] and are included in S, too.

(i′, j′) = (2, 1): In Table 7 we find in column (2, 1) that the rows (1, 1) and (1, 2) yield the
edges of Type 1 that are included in S. Note that by the definition of m(a, b) we have
a− (t− 1)(a− b+2)> a− b+2 > a− b and, hence, neither (i, j) = (3, 1) nor (i, j) = (3, 2)
come into question. For edges of Type 2 we only have the possibilities (i, j) = (1, 1) and
(i, j) = (2, 1) and obtain edges that already are contained in S. For the same reason as
before, (i, j) cannot be (1, 3) or (2, 3).

(i′, j′) = (3, 1): Similar as before, we see that there is always one incoming edge of Type 1
starting at [1, π(t− 2, 2− t, t− 1), 1] and of Type 2 starting at [1, π(3− t, t− 2, 1− t), 1].
Since a − δt−1 < a − (t − 1)(a − b + 2) + 1 ≤ a − 1 < a we cannot have (i, j) = (1, 2)
(Type 1) or (i, j) = (2, 1) (Type 2), respectively.

Vertices of the form [i′, π(t− 1, 1− t, t), j′] (for t = 2, . . . ,m(a, b)): The incoming edges
originate in [i, π(2− t, t−1, 1− t), j] (Type 1 with significant difference (t−1)(a− b+2) =
δt−1) and [i, π(t−1, 1−t, t−1), j] (Type 2 with significant difference (t−1)(a−b+2)+1 =
δt−1 + 1 > 1). Note that δt−1 ≤ b− 2.

(i′, j′) = (1, 1): Analogously as before we easily find that the only possible incoming edges
of Type 1 are a− δt−1 edges starting at [1, π(2− t, t− 1, 1− t), 1] and one edge starting at
[1, π(2− t, t− 1, 1− t), 2]. The incoming edges of Type 2 start at [1, π(t− 1, 1− t, t− 1), 1]
(a− δt−1 − 1 edges) and [2, π(t− 1, 1− t, t− 1), 1] (one edge).

(i′, j′) = (1, 2): In Table 7 we find that the lists in row (1, 1) and (1, 3) include suitable values.
Indeed, [1, π(2− t, t− 1, 1− t), 1] is the origin of b− δt−1 edges of Type 1. By (5.1) we see
that [π(2− t, t− 1, 1− t), 3] 6∈ Γsrs and, hence, j = 3 is no option. On the other hand, for
the the edges of Type 2 we have one edge starting at [3, π(t− 1, 1− t, t− 1), 1] besides the
b− δt−1 − 1 incoming edges that have their origin in [1, π(t− 1, 1− t, t− 1), 1].

Vertices of the form [i′, π(1− t, t,−t), j′] (for t = 2, . . . ,m(a, b)): The incoming edges of
Type 1 have initial vertices of the form [i, π(t − 1, 1 − t, t), j] with significant difference
a − t(a − b + 2) + 1 = a − δt + 1 > 0, those of Type 2 originate in vertices of the shape
[i, π(2− t, t− 1,−t), j] with significant difference a− t(a− b+2)+ 2 = a− δt +1 > 2 > 0.

(i′, j′) = (1, 1): We see that for an edge of Type 1 we must have (i, j) ∈ {(1, 1), (1, 2)} and,
respectively, (i, j) ∈ {(1, 1), (2, 1)} for an edge of Type 2. All possible edges are included
in S.

(i′, j′) = (1, 2): (i, j) = (1, 1) and (i, j) = (1, 2) are the only options for edges of Type 1 and
(i, j) = (1, 1) and (i, j) = (2, 1) give the only possibilities for edges of Type 2. Since all
these edges are contained in S we finally showed the claim.

�
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15.054-000 São José do Rio Preto - SP, BRAZIL

E-mail address: me@palovsky.com

Lehrstuhl für Mathematik und Statistik, 8700 Leoben, Franz-Josef-Strasse 18


