ON THE FUNDAMENTAL GROUP OF THE SIERPIŃSKI-GASKET

S. AKIYAMA, G. DORFER, J. M. THUSWALDNER, AND R. WINKLER

Dedicated to Professor Peter Kirschenhofer on the occasion of his 50th birthday

Abstract

We give a description of the fundamental group $\pi(\triangle)$ of the Sierpiński-gasket \triangle. It turns out that this group is isomorphic to a certain subgroup of an inverse $\operatorname{limit} \lim G_{n}$ formed by the fundamental groups G_{n} of natural approximations of \triangle. This subgroup, and with it $\pi(\triangle)$, can be described in terms of sequences of words contained in an inverse limit of semigroups.

1. Introduction

The present paper is devoted to the description of the fundamental group of the Sierpiński-gasket \triangle (see Figure 1). It turns out that this fundamental group can be viewed as a subset of an inverse limit of the fundamental groups of certain natural approximations of \triangle. Before we give more details we would like to state some definitions and earlier results that are related to our topic.

Figure 1. The Sierpiński-gasket

[^0]One of the possibilities to define the Sierpiński-gasket is to use a so-called iterated function system. Let

$$
f_{1}(x):=\frac{x}{2}, \quad f_{2}(x):=\frac{x}{2}+\frac{1}{2}, \quad f_{3}(x):=\frac{x}{2}+\frac{1+\sqrt{-3}}{4} .
$$

Then it is well-known that $\triangle \subset \mathbb{C}$ is the unique non-empty compact subset of \mathbb{C} satisfying the set equation

$$
\triangle=\bigcup_{j=1}^{3} f_{j}(\triangle)
$$

(see for instance Hutchinson [21]). Since f_{1}, f_{2}, and f_{3} are similarities, \triangle is a selfsimilar set. Topological properties of self-similar sets have been studied extensively in the literature. For instance Hata [18, 19] proves that a connected self-similar set is a locally connected continuum. Moreover, he establishes criteria for the connectivity of a self-similar set, deals with their cut points and proves a criterion for a self-similar set to be homeomorphic to an arc. Cut points play a role also in Winkler [27]. Related questions are addressed by Bandt and Keller [2], where the authors get information on the topological properties of self-similar sets by studying their dynamics. More recently, topological properties of self-similar sets with nonempty interior attracted interest. We mention the survey paper by Akiyama and Thuswaldner [1], where many results are stated. Some results on the structure of the fundamental group of self-similar sets are shown in Luo and Thuswaldner [22].

In describing the fundamental group $\pi(\triangle)$, the main difficulty consists in the fact that \triangle is not semilocally simply connected. This makes it impossible to apply the classical methods like van Kampen's theorem and the theory of covering spaces in order to compute the fundamental group of \triangle.

Spaces that are not semilocally simply connected have been studied for a long time. We want to review some of the known results on such spaces. The standard example of a non-semilocally simply connected space is the so-called Hawaiian Earring (see Figure 2) which is defined by

$$
H:=\bigcup_{n \geq 1}\left\{z \in \mathbb{C}:\left|z-\frac{1}{n}\right|=\frac{1}{n}\right\}
$$

It is not semilocally simply connected in the origin. Properties of the fundamental

Figure 2. The Hawaiian Earring
group of H were studied implicitly by Higman [20] introducing the notion of an unrestricted free product of groups. Morgan and Morrisson [24] determine $\pi(H)$ as a subgroup of an inverse limit of finite free products of cyclic groups. Their proof
was simplified by de Smit [11] who also showed that $\pi(H)$ is uncountable and not free. Zastrow [29] gives a description of $\pi(H)$ in terms of a subset of a projective limit of groups that is related to our approach (see in particular [29, Definition 2.3]).

Also in the more general context of one dimensional spaces results on fundamental groups have been proved. We mention [17] where it is shown that a onedimensional locally connected continuum has a trivial fundamental group if and only if it is a dendrite. Moreover, Curtis and Fort [8] showed that higher homotopy groups of one-dimensional separable metric spaces are always trivial. More recently, in a big project consisting of three papers, Cannon and Conner $[3,4,5]$ thoroughly study fundamental groups (and so-called big fundamental groups) of one-dimensional spaces. In particular, [3] is devoted to the fundamental group of the Hawaiian Earring. The authors give a combinatorial description of this group in terms of "big" words. In [5] they prove some important properties of the fundamental groups of one-dimensional spaces. For instance, generalizing a result by Curtis and Fort [9] they show that for a one-dimensional space X the following assertions are equivalent: $\pi(X)$ is free, $\pi(X)$ is countable, X has a universal cover, X is locally simply connected. Conner and Lamoreaux [7] generalize some of the results of [5] to larger classes of subsets of the plane.

In the present paper we embed the fundamental group of \triangle into an inverse limit of groups which is easily seen to be equal to the C Cech homotopy group $\check{\pi}(\Delta)$ of \triangle. The fact that the fundamental group of a one-dimensional space is always isomorphic to a subgroup of its Čech homotopy group is proved by Eda and Kawamura [13] and independently by Cannon and Conner [5]. For the Menger sponge this was already shown by use of a more explicit construction by Curtis and Fort [10, Section 3]. Related results for subsets of closed surfaces can be found in Fischer and Zastrow [16]. In Eda [12] criteria for the isomorphy of the fundamental group of two non-locally semisimply connected spaces are studied. More recently, Conner and Eda [6] proved that certain spaces can be recovered from their fundamental groups, the Sierpiński-gasket is among these spaces. Finally, we mention that homology groups of non-locally semisimply connected spaces are studied by Eda and Kawamura [14, 15].

The starting point of the present paper is a remark contained in [5, Section 2]. In an example the authors describe the implications of their results for the fundamental groups of Sierpiński and Menger curves. Among other things, they showed that these spaces have uncountable fundamental groups which are not free and that they do not have an universal cover. On the other hand, the authors mention that these groups have no known combinatorial (word) structure. In the present paper we want to describe the fundamental group of the Sierpinski-gasket \triangle by some word structure. Our description differs from the combinatorial word description of the Hawaiian Earring group by Cannon and Conner [3] in several respects. The main difference is that in [3] letters correspond to loops in H based in a single base point whereas in our description of $\pi(\triangle)$ each letter is related to a local cut point (later called dyadic point) of \triangle. For the definition of a local cut point we refer to Whyburn and Duda [26, Appendix 2]. As a consequence we have restrictions on the admissible finite words in our representation. Moreover, we do not obtain a representation of $\pi(\triangle)$ as a subgroup of an unrestricted free product of groups in the sense of Higman [20] since certain finiteness conditions on the occurrence of letters are not fulfilled (cf. Remark 1.2).

In what follows we want to give a short overview of the content of the present paper. It is an evident idea to consider for a loop f in Δ the sequence of homotopy classes $[f]_{n}$ of f in the approximating spaces \triangle_{n} that arise when the usual construction process of recursively removing the open middle triangle is stopped
at level n. Applying the result of Eda and Kawamura [13] mentioned above we can show that the sequence $\left([f]_{n}\right)_{n \geq 0}$ characterizes f exactly up to homotopy. The natural ambient space for the sequences $\left([f]_{n}\right)_{n \geq 0}$ is the inverse limit $\lim _{\longleftarrow} G_{n}$ of the fundamental groups G_{n} of \triangle_{n}. We will show that $\lim G_{n}$ is canonically isomorphic to $\check{\pi}(\triangle)$ (see Proposition 2.8). Thus in view of the above mentioned result of Eda and Kawamura there is an injective mapping

$$
\varphi: \pi(\triangle) \hookrightarrow \lim _{\longleftarrow} G_{n}
$$

With an easy example (see Example 2.11) it becomes clear that $\lim G_{n}$ contains elements which do not represent homotopy classes for loops in \triangle. So the objective arises to describe the subgroup of $\lim G_{n}$ that corresponds to the fundamental group of \triangle.

Our approach to this task pursues the following strategy: Instead of investigating the problem directly in $\lim G_{n}$ we consider an intermediate semigroup structure $\lim _{\longleftarrow} S_{n}$ in which the set $S(\triangle)$ of all (based) loops in \triangle is described up to reparametrization (see Figure 3).

$$
\left.\begin{array}{rl}
S(\triangle) & \stackrel{\sigma}{\rightarrow}
\end{array}\right) \underset{\leftarrow}{\lim S_{n}} \begin{array}{ll}
\downarrow[\cdot] & \operatorname{Red} \downarrow \\
\pi(\triangle) & \stackrel{\varphi}{\hookrightarrow} \\
\underset{\sim}{\lim } G_{n} \cong \check{\pi}(\triangle)
\end{array}
$$

Figure 3.
To this end at every approximation level n we represent a loop f by a (finite) word $\sigma_{n}(f) \in S_{n}$ consisting of the sequence of transition points of order n (later called dyadic points) between the subtriangles of \triangle_{n} that the loop passes. We will define the bonding mappings $\gamma_{n}: S_{n} \rightarrow S_{n-1}(n \geq 1)$ in a way that we just omit the transition points of order n (see (2.3)) and $\gamma_{n k}: S_{n} \rightarrow S_{k}(n>k)$ denotes the composition $\gamma_{k+1} \circ \ldots \circ \gamma_{n}$. An appropriate reduction process on $\sigma_{n}(f)$ leads then to a canonical representative $\operatorname{Red}_{n}\left(\sigma_{n}(f)\right)$ of the homotopy class $[f]_{n}$ which as a byproduct gives rise to an adequate representation of the elements in $\check{\pi}(\triangle)$. We mention here that in Zastrow [28] another combinatorial representations of loops based on edges is used.

We finally succeed in characterizing the elements of the fundamental group of \triangle by a, after all, surprisingly simple stabilizing condition in the inverse semigroup $\operatorname{limit} \lim S_{n}$. Our main theorem reads as follows.

Theorem 1.1. An element $\left(\omega_{n}\right)_{n \geq 0}$ of $\lim _{\longleftarrow} G_{n}$ is in $\varphi(\pi(\triangle))$ if and only if for all $k \geq 0$ the sequence $\left(\gamma_{n k}\left(\omega_{n}\right)\right)_{n \geq k}$ is eventually constant.

Remark 1.2. (a) Essentially this condition means that exactly those $\left(\omega_{n}\right)_{n \geq 0} \in$ $\lim G_{n}$ correspond to elements of the fundamental group of \triangle for which, for any order k, the number of alterations between distinct transition points of order k in ω_{n} is bounded in n. Note that this does not imply that the number of occurrences of a single transition point in ω_{n} is bounded in n.
(b) Let $\omega=\left(\omega_{n}\right)_{n \geq 0} \in \lim G_{n}$ be an element of $\varphi(\pi(\triangle))$. In view of Theorem 1.1 there exists a "stabilized sequence" $\bar{\omega}=\left(\bar{\omega}_{n}\right)_{n \geq 0}$ with $\bar{\omega}_{n}=\gamma_{\ell n}\left(\omega_{\ell}\right)$ which is well defined for $\ell>\ell_{n}$ large enough. We will show that
(i) $\left(\bar{\omega}_{n}\right)_{n \geq 0} \in \lim _{\longleftarrow} S_{n}$ and
(ii) $\operatorname{Red}\left(\bar{\omega}_{n}\right)_{n \geq 0}=\left(\omega_{n}\right)_{n \geq 0}$.

Thus the sequence $\left(\bar{\omega}_{n}\right)_{n \geq 0}$ can be regarded as the canonical representation of ω in $\lim S_{n}$. The group operation in $\pi(\triangle)$ in terms of stabilized sequences then reads as follows: for $\omega, \omega^{\prime} \in \varphi(\pi(\triangle))$ we have

$$
\bar{\omega} * \bar{\omega}^{\prime}=\overline{\operatorname{Red}\left(\bar{\omega} \cdot \bar{\omega}^{\prime}\right)}
$$

i.e., the product of two stabilized sequences is formed by concatenation and reduction at every level, followed by stabilization.

The crucial step towards Theorem 1.1 is the fact that though σ is not surjective, restricting the domain of the reduction map Red : $\lim S_{n} \rightarrow \lim G_{n}$ to the range of σ does not affect its image, i.e., $\operatorname{ran}(\operatorname{Red} \circ \sigma)=\operatorname{ran}(\operatorname{Red})$ where $\operatorname{ran}(\mathrm{g})$ denotes the range of a map g (cf. Proposition 3.4).

Moreover, we employ considerable effort to completely describe the kernel and the range of σ to enlighten the relevance of $\lim S_{n}$ independently of its expedience with respect to the description of the fundamental group of \triangle : The elements in the range of σ are characterized by a completeness condition and they precisely describe the set of all loops in \triangle up to re-parametrization.

The organization of the two forthcoming chapters is as follows: In Section 2.1 we introduce a digital representation for the points of the Sierpinski-gasket \triangle by retracing the usual construction process of recursively removing the open middle triangle. Thereby we obtain two sequences of approximating spaces to \triangle, and the points in \triangle naturally split into the two classes of dyadic and generic points. In Section 2.2 it is explicated how a loop in \triangle can be represented by a finite word over the alphabet of dyadic points of order $\leq n$ at every approximation level n. In Section 2.3 we introduce the inverse limit of semigroups $\lim S_{n}$ and show that the groupoid $S(\triangle)$ of all loops in \triangle can be mapped by a homomorphism into $\lim S_{n}$ by means of the sequence of representations of a loop attained in Section 2.2. In Section 2.4 we introduce the set of reduced words G_{n} which turns out to be isomorphic to the fundamental group of \triangle_{n}. The $\left(G_{n}\right)_{n \geq 0}$ give rise to an inverse limit of groups $\lim G_{n}$ and an appropriate reduction map on elements of $\lim S_{n}$ is defined such that the diagram in Figure 3 commutes. Employing a result of Eda and Kawamura [13] we see that φ is injective and thus the fundamental group of \triangle is a subgroup of $\lim G_{n}$. Example 2.11 demonstrates that φ is not surjective. This provided the initial motivation for considering $\underset{\leftarrow}{\lim } S_{n}$.

In Section 3.1 we develop the machinery to study the range and the kernel of σ which is accomplished in Propositions 3.3-3.5 in full detail. In Section 3.2 we finally prove the characterization of the elements in $\underset{\leftarrow}{\lim } G_{n}$ representing a homotopy class in $\pi(\triangle)$ given in Theorem 1.1.

2. Preliminaries

2.1. Digital representations of the Sierpiński-gasket \triangle. For our purposes we need a digital representation of the points of the Sierpiński-gasket \triangle. To this end we follow the construction process of \triangle that recursively removes the open middle triangle at each stage. We start with a triangle (including its inside) \triangle_{0} in the plane. Just to have a concrete metric at hand we assume that \triangle_{0} is equilateral with side length 1 . The vertices of \triangle_{0} are denoted by 0,1 and 2 . By joining the midpoints of the sides \triangle_{0} is subdivided in four smaller triangles $\langle 0\rangle,\langle 1\rangle,\langle 2\rangle$ and the middle triangle, where $\langle i\rangle$ is the subtriangle that contains the vertex i. Removing the interior of the middle triangle from \triangle_{0} we obtain the first approximation \triangle_{1},
i.e.,

$$
\triangle_{1}=\langle 0\rangle \cup\langle 1\rangle \cup\langle 2\rangle .
$$

With the remaining triangles $\langle i\rangle, i=0,1,2$, we proceed in the same way: $\langle i\rangle$ is divided into the four subtriangles $\langle i 0\rangle,\langle i 1\rangle,\langle i 2\rangle$, and the middle triangle the interior of which is cut out in the next step. Thus we get the second approximation

$$
\triangle_{2}=\bigcup_{i, j \in\{0,1,2\}}\langle i j\rangle,
$$

and so on and so forth. We obtain a decreasing sequence $\triangle_{0} \supset \triangle_{1} \supset \triangle_{2} \ldots$ of compact spaces and hence the intersection $\triangle=\bigcap_{n \in \mathbb{N}} \triangle_{n}$, the Sierpinski-gasket, is a compact space as well. \triangle consists of two types of points which we call dyadic and generic:

Dyadic points: these are points P which lie in two different subtriangles at some stage (and consequently in all the following stages) in the construction process described before. The smallest level at which P appears as a vertex of two different subtriangles is called the order of P. For instance $\{P\}=\langle 01\rangle \cap\langle 02\rangle=\langle 012\rangle \cap$ $\langle 021\rangle=\ldots$ defines a point P of order 2 . We represent P by $(0,1 / 2)$ or $(0,2 / 1)$ (see Figue 4). In general a dyadic point of order n has a finite representation of the form

$$
P=\left(a_{1}, a_{2}, \ldots, a_{n-1}, a / b\right)=\left(a_{1}, a_{2}, \ldots, a_{n-1}, b / a\right)
$$

with $a_{i}, a, b \in\{0,1,2\}$ and $a \neq b$, and this means $\{P\}=\left\langle a_{1} a_{2} \ldots a_{n-1} a\right\rangle \cap$ $\left\langle a_{1} a_{2} \ldots a_{n-1} b\right\rangle$. We consider the vertices $0,1,2$ of \triangle_{0} as dyadic points of order 0 . Let in the following D_{n} denote the set of all dyadic points of order $\leq n$. In D_{n} there is a natural relation \sim_{n} describing the neighborhood of dyadic points at level n : for $P, Q \in D_{n}$ we have $P \sim_{n} Q$ if and only if $P \neq Q$ and there is a subtriangle $\left\langle a_{1} \ldots a_{n}\right\rangle$ of \triangle_{n} to which P and Q belong. At every stage n a dyadic point $P \in D_{n}$, $P \neq 0,1,2$ has exactly four neighbors, and the points 0,1 and 2 have exactly two neighbors each.

Figure 4
Generic points: these are points P of \triangle such that at every stage n there is a unique subtriangle of \triangle_{n} to which the point P belongs. If $P \in\left\langle a_{1} a_{2} \ldots a_{n}\right\rangle, n \in \mathbb{N}$, then P has the infinite representation $P=\left(a_{1}, a_{2}, \ldots\right)$ with $a_{i} \in\{0,1,2\}$, where the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is not ultimately constant.

Formally \triangle can be obtained as the quotient space of the compact space X of onesided infinite sequences over the three letter alphabet $\{0,1,2\}$, i.e., $X=\{0,1,2\}^{\mathbb{N}}$
with the discrete topology on the factors, where a pair of sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ is identified if there is an n_{0} such that $a_{n}=b_{n}$ for $n<n_{0}$ and $a_{n}=$ $b_{n_{0}} \neq a_{n_{0}}=b_{n}$ for $n>n_{0}$. In the approach described before this means that $P=\left(a_{1}, a_{2}, \ldots, a_{n_{0}-1}, a_{n_{0}} / b_{n_{0}}\right)$ is a dyadic point of order n_{0}.

The spaces $\triangle_{n}, n \geq 0$, provide an encasing approximation to the Sierpińskigasket. In the following we will also consider an approximation from inside. Let \triangle^{n} denote the boundary of \triangle_{n} considered as a subspace of the plane. Then $\triangle=$ $\overline{\bigcup_{n \in \mathbb{N}} \triangle^{n}}$ where the bar means the closure operator in the plane: $\bigcup_{n \in \mathbb{N}} \triangle^{n}$ contains exactly those points $P=\left(a_{n}\right)$ such that eventually the digits a_{n} are out of a twoelement subset of $\{0,1,2\}$, in particular this set contains all dyadic points. On the other hand every generic point of \triangle is the limit of a sequence of dyadic points.

Concerning homotopy the spaces \triangle_{n} and $\triangle^{n-1}, n \geq 1$, provide the same level of approximation to the Sierpinski-gasket \triangle. There exists a deformation p_{n} that retracts \triangle_{n} to \triangle^{n-1} : For every subtriangle $T=\left\langle a_{1} a_{2} \ldots a_{n-1}\right\rangle$ of \triangle_{n-1} the map p_{n} projects the points of $\triangle_{n} \cap T$ from the center of T to the boundary of T. Hence the fundamental groups $\pi\left(\triangle_{n}\right)$ and $\pi\left(\triangle^{n-1}\right)$ are isomorphic (cf. [25, Theorem 1.22 and Theorem 3.10]).
2.2. Representation of loops in \triangle. To describe the fundamental group $\pi(\triangle)$ we have to consider continuous loops $f:[0,1] \rightarrow \triangle$. Since \triangle is path connected throughout we may assume $f(0)=f(1)=0$. Our next aim is to represent loops based at 0 in \triangle_{n} and \triangle by a finite word over the alphabet D_{n} for every $n \geq 0$.

Let us fix n and assume that $f:[0,1] \rightarrow \triangle_{n}$ is a continuous loop in \triangle_{n} with $f(0)=f(1)=0$. The pre-images $\left\{f^{-1}(P) \mid P \in D_{n}\right\}$ form a finite family of disjoint compact subsets of the interval $[0,1]$. Therefore this family is separated, i.e., there is $m \in \mathbb{N}$ such that for all $i=1,2, \ldots, m$ the set $f^{-1}(P) \cap\left[\frac{i-1}{m}, \frac{i}{m}\right]$ is non-empty for at most one P. We list these points P as i increases and in the arising sequence we cancel out consecutive repetitions. Thus we obtain a finite word $P_{1} P_{2} \ldots P_{k}=$: $\sigma_{n}(f)$ over D_{n} which is independent of the chosen m. Obviously $\sigma_{n}(f)$ has the following properties:

$$
\begin{align*}
& P_{1}=P_{k}=0 \tag{2.1}\\
& P_{i} \sim_{n} P_{i+1} \text { for all } i=1, \ldots k-1 \tag{2.2}
\end{align*}
$$

In the following we will also consider the loop that emerges from $\sigma_{n}(f)$ by connecting the listed points straight-lined in the order they appear and call it the piecewise linear loop corresponding to $\sigma_{n}(f)$. In order to disburden the notation we will not distinguish between the string $\sigma_{n}(f)$ and the associated loop as long as no confusion can arise.

Now let $f:[0,1] \rightarrow \triangle$ be a loop in \triangle based at 0 . Since $\triangle \subset \triangle_{n}$, the image $\sigma_{n}(f)$ is well defined for each $n \in \mathbb{N}$ and represents f at approximation level n.
Proposition 2.1. In \triangle_{n} the loop f and the piecewise linear loop $\sigma_{n}(f)$ are homotopic.

Proof. Let $\sigma_{n}(f)=P_{1} \ldots P_{k}$. For every $i=1, \ldots, k$ there is a maximal interval $\left[s_{i}, t_{i}\right]$ such that $f\left(s_{i}\right)=f\left(t_{i}\right)=P_{i}, f\left(\left[s_{i}, t_{i}\right]\right) \cap D_{n}=\left\{P_{i}\right\}$ and $0=s_{1} \leq t_{1}<s_{2} \leq$ $t_{2}<\ldots<s_{k} \leq t_{k}=1$. This means that $f\left(\left[s_{i}, t_{i}\right]\right)$ is contained in the interior - as a subset of \triangle_{n} - of the union of the (at most) two subtriangles of \triangle_{n} that intersect in P_{i}. Since this set is simply connected $f \upharpoonleft\left[s_{i}, t_{i}\right]$ is homotopic to the constant loop at P_{i}.

Moreover, the conditions on s_{i} and t_{i} imply that $f\left(\left[t_{i}, s_{i+1}\right]\right)$ is a subset of the subtriangle of \triangle_{n} that contains P_{i} and P_{i+1} and hence $f 1\left[t_{i}, s_{i+1}\right]$ is homotopic to the straight line between P_{i} and P_{i+1}.

Putting the pieces together we obtain the assertion.

In order to describe the fundamental group of \triangle, Proposition 2.1 suggests to represent a loop f, as a first step, by the sequence $\left(\sigma_{n}(f)\right)_{n \geq 0}$. In the next section we will elaborate an appropriate ambient space for the sequences $\left(\sigma_{n}(f)\right)_{n \geq 0}$.
2.3. The inverse system $\left(S_{n}, \gamma_{n}\right)_{n \geq 0}$ of semigroups. The semigroups $S_{n}, n \geq$ 0 , are defined in the following way: The elements of S_{n} are finite words $\omega_{n}=$ $P_{1} \ldots P_{k}$ over the alphabet D_{n} such that (2.1) and (2.2) are satisfied. These words ω_{n} are called admissible and they are supposed to represent paths in \triangle_{n}. (2.1) means that we consider only cyclic paths with base point 0 , and (2.2) reflects that with respect to homotopy constant parts of paths do not matter and that in a continuous path a dyadic point can only be followed by a neighboring dyadic point.

The semigroup operation - on S_{n} is defined by concatenation of words and cancellation of one of the adjacent letters 0 at the interface:

$$
P_{1} \ldots P_{k} \cdot Q_{1} \ldots Q_{l}=P_{1} \ldots P_{k} Q_{2} \ldots Q_{l}
$$

The bonding mapping

$$
\begin{equation*}
\gamma_{n}: S_{n} \rightarrow S_{n-1}, \quad n \geq 1 \tag{2.3}
\end{equation*}
$$

eliminates from an element of S_{n} all points of order n, and then cancels consecutive repetitions of points of order $<n$ arising in this process. Obviously the result is an admissible word in S_{n-1} and γ_{n} is a semigroup epimorphism. Thus we may consider the inverse semigroup-limit

$$
\lim _{\longleftarrow} S_{n}=\left\{\left(\omega_{n}\right)_{n \geq 0} \mid \gamma_{k}\left(\omega_{k}\right)=\omega_{k-1} \text { for all } k \geq 1\right\}
$$

corresponding to the sequence $\left(S_{n}, \gamma_{n}\right)_{n \geq 0}$.
Let $(S(\triangle), \cdot)$ denote the groupoid of continuous loops $f:[0,1] \rightarrow \triangle$ (based at 0), where multiplication • is just the usual concatenation of loops. As a general principle we denote the operations in the groupoid $S(\triangle)$ and in the semigroups S_{n} and $\lim S_{n}$ by • (or omit the operation symbol), whereas for the group operations, for instance in the fundamental group $\pi(\triangle)$, we use the notation $*$.

Next we will provide a digital description of loops at the semigroup level.
Proposition 2.2. The map

$$
\sigma:\left\{\begin{array}{ccc}
S(\triangle) & \rightarrow & \leftarrow \\
f & \mapsto & \left(\sigma_{n}(f)\right)_{n \geq 0}
\end{array}\right.
$$

is a homomorphism from the groupoid $(S(\triangle), \cdot)$ into the semigroup $\left(\underset{\leftarrow}{\lim } S_{n}, \cdot\right)$.
Proof. Firstly we show that σ is well defined: Let f be an element of $S(\triangle)$. Then the word $\sigma_{n}(f)$ contains the dyadic points of D_{n} which are passed by the loop f in the order they appear in f without consecutive repetitions. When we apply γ_{n} to $\sigma_{n}(f)$, obviously we end up with the same word in S_{n-1} we obtain when we list the dyadic points f passes at level $n-1$, i.e., $\gamma_{n}\left(\sigma_{n}(f)\right)=\sigma_{n-1}(f)$, and thus $\sigma(f) \in \lim _{\longleftarrow} S_{n}$.
σ is a homomorphism since concatenation of loops in $S(\triangle)$ correlates exactly to the concatenation of words in the components $S_{n}, n \geq 0$. To put it more formally, for $f, g \in S(\triangle)$ we have:

$$
\begin{gathered}
\sigma(f \cdot g)=\left(\sigma_{n}(f \cdot g)\right)_{n \geq 0}=\left(\sigma_{n}(f) \cdot \sigma_{n}(g)\right)_{n \geq 0}= \\
\left(\sigma_{n}(f)\right)_{n \geq 0} \cdot\left(\sigma_{n}(g)\right)_{n \geq 0}=\sigma(f) \cdot \sigma(g)
\end{gathered}
$$

2.4. The inverse system $\left(G_{n}, \delta_{n}\right)_{n \geq 0}$ of groups. In order to describe the homotopy of loops in \triangle we have to consider an appropriate reduction process for the semigroup words in $\lim S_{n}$. In the following for $f \in S(\triangle)$ let $[f]$ denote the homotopy class of f in \triangle, and let $[f]_{n}$ denote the homotopy class of f in \triangle_{n}, i.e., in the latter case f is considered as a map with range \triangle_{n}.

In a first step we will describe the elements of the fundamental group of \triangle_{n}. Very briefly we recall here the standard approach to the fundamental group of a simplicial complex (cf. [25, chapter 7$]$): One considers edge paths in \triangle_{n} which start and end in the same vertex, say in 0 . In principle an edge path is the same as an admissible word over D_{n}, i.e., an element of S_{n}, except that also constant edges are allowed. Two edge paths are defined to be equivalent if one can be obtained from the other by a finite number of elementary moves. In our setting an elementary move is a substitution on subwords consisting of consecutive letters of the form

$$
\begin{equation*}
P Q P \quad \longleftrightarrow P \quad \text { or } \quad P Q R \quad \longleftrightarrow P R \tag{2.4}
\end{equation*}
$$

where P, Q, R are the distinct vertices of a simplex in the simplicial complex which in our case means that P, Q, R form a subtriangle of \triangle_{n}. As the arrows indicate these transformations may be performed in both directions. The equivalence classes of edge paths then constitute the elements of the fundamental group with concatenation as the group operation (cf. [25, Theorem 7.36]).

In our attempt we proceed slightly different: We call an element $\omega_{n} \in S_{n}$ reduced if ω_{n} cannot be shortened by an elementary move as described in (2.4). A reduced word in S_{n} can be identified with a sequence of subtriangles of \triangle_{n} such that any three consecutive subtriangles are pairwise different. Let G_{n} denote the set of all reduced words of S_{n} and $\operatorname{Red}_{n}: S_{n} \rightarrow G_{n}$ the mapping that performs elementary moves until the word is reduced.

Proposition 2.3. Red_{n} is well defined and for $\omega_{n} \in S_{n}$ the loop corresponding to $\operatorname{Red}_{n}\left(\omega_{n}\right)$ forms a canonical representative of the homotopy class of the loop corresponding to ω_{n} in \triangle_{n}.

Proof. Obviously, by performing an elementary move on an element of S_{n} we stay in the same homotopy class for the corresponding loops. All we have to show is that two different reduced words correspond to non-homotopic loops. Here we use the fact that \triangle_{n} and \triangle^{n-1} have isomorphic homotopy groups (\triangle^{n-1} is a deformation retract of \triangle_{n}).

Since \triangle^{n-1} is a connected 1-complex its homotopy group is a free group, freely generated by the edges not contained in a fixed spanning tree T (cf. [25, Corollary 7.35]). Starting with two different reduced words $\omega_{n} \neq \bar{\omega}_{n}$ in G_{n} by retracting the loops corresponding to ω_{n} and $\bar{\omega}_{n}$ to \triangle^{n-1}, we end up with two different words $\omega_{n-1} \neq \bar{\omega}_{n-1}$ over the alphabet D_{n-1} such that any three consecutive letters of these words are pairwise different elements of D_{n-1} (a reduced word in G_{n} correlates to a sequence of subtriangles in \triangle_{n}; every subtriangle in \triangle_{n} contains exactly one vertex in D_{n-1}; the sequence of these vertices is exactly what we obtain by the retraction).

Suppose the two emerging loops corresponding to ω_{n-1} and $\bar{\omega}_{n-1}$ are homotopic in \triangle^{n-1}, then due to the fact that the homotopy group of \triangle^{n-1} is a free group the two words must contain the same edges not contained in the tree T in the corresponding order. Moreover, there is a unique path in T connecting these edges. Since ω_{n-1} and $\bar{\omega}_{n-1}$ do not contain subwords of the form $P Q P, \omega_{n-1}$ and $\bar{\omega}_{n-1}$ must be identical in the parts connecting the edges not in T, and hence they must coincide on the whole, which is a contradiction.

Now it is obvious how to define the group operation for $\omega_{n}, \bar{\omega}_{n} \in G_{n}$:

$$
\omega_{n} * \bar{\omega}_{n}=\operatorname{Red}_{n}\left(\omega_{n} \cdot \bar{\omega}_{n}\right)
$$

where $\omega_{n} \cdot \bar{\omega}_{n}$ is the product in S_{n}. Together with the results in [25, chapter 7] we obtain:

Proposition 2.4. The fundamental group $\left(\pi\left(\triangle_{n}\right), *\right)$ is isomorphic to $\left(G_{n}, *\right)$ by means of the isomorphism $\varphi_{n}:[f]_{n} \mapsto \operatorname{Red}_{n}\left(\sigma_{n}(f)\right)$ where f is a continuous loop in \triangle_{n}. Furthermore, the reduction map $\operatorname{Red}_{n}: S_{n} \rightarrow G_{n}$, associating to every admissible word its reduced form, is a semigroup epimorphism, i.e., $\left(G_{n}, *\right)$ is isomorphic to $\left(S_{n} / \operatorname{ker}\left(\operatorname{Red}_{n}\right), \cdot\right)$.

Now we elaborate a bonding between the groups G_{n}.
Lemma 2.5. For $n \geq 1$ the map

$$
\delta_{n}:\left\{\begin{array}{rll}
G_{n} & \rightarrow & G_{n-1} \\
\omega_{n} & \mapsto & \operatorname{Red}_{n-1}\left(\gamma_{n}\left(\omega_{n}\right)\right)
\end{array}\right.
$$

is a group epimorphism.
Proof. Let $\omega_{n}, \bar{\omega}_{n} \in G_{n}$. We have

$$
\delta_{n}\left(\omega_{n} * \bar{\omega}_{n}\right)=\operatorname{Red}_{n-1}\left(\gamma_{n}\left(\operatorname{Red}_{n}\left(\omega_{n} \cdot \bar{\omega}_{n}\right)\right)\right)
$$

On the other hand we get

$$
\begin{gathered}
\delta_{n}\left(\omega_{n}\right) * \delta_{n}\left(\bar{\omega}_{n}\right)=\operatorname{Red}_{n-1}\left(\operatorname{Red}_{n-1}\left(\gamma_{n}\left(\omega_{n}\right)\right) \cdot \operatorname{Red}_{n-1}\left(\gamma_{n}\left(\bar{\omega}_{n}\right)\right)\right)= \\
\operatorname{Red}_{n-1}\left(\gamma_{n}\left(\omega_{n}\right) \cdot \gamma_{n}\left(\bar{\omega}_{n}\right)\right)=\operatorname{Red}_{n-1}\left(\gamma_{n}\left(\omega_{n} \cdot \bar{\omega}_{n}\right)\right)
\end{gathered}
$$

Due to Proposition 2.3 it is thus sufficient to show that the loops $\gamma_{n}\left(\operatorname{Red}_{n}\left(\omega_{n} \cdot \bar{\omega}_{n}\right)\right)$ and $\gamma_{n}\left(\omega_{n} \cdot \bar{\omega}_{n}\right)$ are homotopic in \triangle_{n-1}. It is obvious by the definition of γ_{n} that $\left[\alpha_{n}\right]_{n-1}=\left[\gamma_{n}\left(\alpha_{n}\right)\right]_{n-1}$ for every $\alpha_{n} \in S_{n}$. Further we have $\left[\alpha_{n}\right]_{n}=\left[\operatorname{Red}_{n}\left(\alpha_{n}\right)\right]_{n}$ and hence also $\left[\alpha_{n}\right]_{n-1}=\left[\operatorname{Red}_{n}\left(\alpha_{n}\right)\right]_{n-1}$. Altogether we obtain

$$
\left[\gamma_{n}\left(\omega_{n} \bar{\omega}_{n}\right)\right]_{n-1}=\left[\omega_{n} \bar{\omega}_{n}\right]_{n-1}=\left[\operatorname{Red}_{n}\left(\omega_{n} \bar{\omega}_{n}\right)\right]_{n-1}=\left[\gamma_{n}\left(\operatorname{Red}_{n}\left(\omega_{n} \bar{\omega}_{n}\right)\right)\right]_{n-1}
$$

and we are done.
δ_{n} is surjective: Suppose $\omega_{n-1}=P_{1} P_{2} \ldots P_{k}$ in G_{n-1} is given. Put $\omega_{n}=$ $P_{1} Q_{1} P_{2} Q_{2} \ldots Q_{k-1} P_{k}$, where Q_{i} is the (unique) element of D_{n} with $P_{i} \sim_{n} Q_{i} \sim_{n}$ P_{i+1}. One can check easily that ω_{n} is reduced and $\delta_{n}\left(\omega_{n}\right)=\omega_{n-1}$.

As a consequence of the last lemma we can consider the inverse group-limit

$$
\underset{\leftrightarrows}{\lim } G_{n}=\left\{\left(\omega_{n}\right)_{n \geq 0} \mid \delta_{k}\left(\omega_{k}\right)=\omega_{k-1} \text { for all } k \geq 1\right\}
$$

Next we show that the reduction maps $\operatorname{Red}_{n}: S_{n} \rightarrow G_{n}$ can be lifted to a map on the inverse limits.

Lemma 2.6. For every $n \geq 1$ the following diagram commutes:

Proof. Let ω_{n} be in S_{n}. We have to show that $\delta_{n}\left(\operatorname{Red}_{n}\left(\omega_{n}\right)\right)=\operatorname{Red}_{n-1}\left(\gamma_{n}\left(\omega_{n}\right)\right)$. Since $\delta_{n}\left(\operatorname{Red}_{n}\left(\omega_{n}\right)\right)=\operatorname{Red}_{n-1}\left(\gamma_{n}\left(\operatorname{Red}_{n}\left(\omega_{n}\right)\right)\right)$ it suffices to prove that $\gamma_{n}\left(\omega_{n}\right)$ and $\gamma_{n}\left(\operatorname{Red}_{n}\left(\omega_{n}\right)\right)$ are homotopic in \triangle_{n-1}. However, this was already accomplished in the proof of Lemma 2.5.

Proposition 2.7. The map

$$
\text { Red }:\left\{\begin{array}{rll}
\lim _{\leftarrow} S_{n} & \rightarrow & \underset{\lim G_{n}}{\leftarrow} \\
\left(\omega_{n}\right)_{n \geq 0} & \mapsto & \left(\operatorname{Red}_{n}\left(\omega_{n}\right)\right)_{n \geq 0}
\end{array}\right.
$$

is a well defined semigroup homomorphism.
Proof. If $\left(\omega_{n}\right)_{n \geq 0} \in \lim S_{n}$ then $\gamma_{n}\left(\omega_{n}\right)=\omega_{n-1}$ for every $n \geq 1$. Thus Lemma 2.6 yields $\delta_{n}\left(\operatorname{Red}_{n}\left(\omega_{n}\right)\right)=\operatorname{Red}_{n-1}\left(\omega_{n-1}\right)$. This shows that Red is well defined. The fact that Red is a homomorphism follows because Red_{n} is a homomorphism by Proposition 2.4.

Now we figure out that the fundamental group $(\pi(\triangle), *)$ can be embedded into the group-limit $\left(\lim G_{n}, *\right)$. To this matter we need a lemma on the Čech homoptopy group $\check{\pi}(\triangle)$ of \triangle (see e.g. [23, p. 130] ${ }^{1}$ or [13, Appendix A] for a definition of $\check{\pi}$).

Proposition 2.8. The Čech homoptopy group $\check{\pi}(\triangle)$ is isomorphic to $\underset{\leftarrow}{\lim } G_{n}$.
Proof. Since $\triangle=\bigcap_{n \geq 0} \triangle_{n}$ and $\triangle_{0} \supset \triangle_{1} \supset \triangle_{2} \ldots$ is a nested sequence of compact polyhedra we have that

$$
\begin{equation*}
\check{\pi}(\triangle)=\lim _{\longleftarrow} \pi\left(\triangle_{n}\right) \tag{2.5}
\end{equation*}
$$

where for each $n \in \mathbb{N}$ the bonding mapping $j_{n}: \pi\left(\triangle_{n}\right) \rightarrow \pi\left(\triangle_{n-1}\right)$ is induced by the inclusion $\triangle_{n} \hookrightarrow \triangle_{n-1}$ (see [23, Chapter II, $\left.\S 3\right]$).

According to Proposition 2.4 we have that $\pi\left(\triangle_{n}\right) \cong G_{n}$. Let $\varphi_{n}: \pi\left(\triangle_{n}\right) \rightarrow G_{n}$ be the canonical isomorphism between these groups. It is now easy to see that the diagram

$$
\begin{array}{cll}
\pi\left(\triangle_{n}\right) & \xrightarrow{j_{n}} & \pi\left(\triangle_{n-1}\right) \\
\cong \downarrow \varphi_{n} & & \cong \downarrow \varphi_{n-1} \\
G_{n} & \xrightarrow{\delta_{n}} & G_{n-1}
\end{array}
$$

is commutative. Indeed, for each $n \geq 1$ and each continuous loop f in $\triangle_{n} \subset \triangle_{n-1}$ we have $\left[\sigma_{n}(f)\right]_{n}=[f]_{n}$ by Proposition 2.1. In particular, $\left[\sigma_{n}(f)\right]_{n-1}=[f]_{n-1}$ and $\left[\sigma_{n-1}(f)\right]_{n-1}=[f]_{n-1}$ hold. Also we observed in the proof of Lemma 2.5 that $\left[\gamma_{n}\left(\omega_{n}\right)\right]_{n-1}=\left[\omega_{n}\right]_{n-1}$ holds for $\omega_{n} \in S_{n}$. Hence,

$$
\left[\gamma_{n}\left(\sigma_{n}(f)\right)\right]_{n-1}=\left[\sigma_{n}(f)\right]_{n-1}=[f]_{n-1}=\left[\sigma_{n-1}(f)\right]_{n-1}
$$

Combining this with Lemma 2.6 we get

$$
\begin{aligned}
\delta_{n}\left(\varphi_{n}\left([f]_{n}\right)\right) & =\delta_{n}\left(\operatorname{Red}_{n}\left(\sigma_{n}(f)\right)\right)=\operatorname{Red}_{n-1}\left(\gamma_{n}\left(\sigma_{n}(f)\right)\right. \\
& =\operatorname{Red}_{n-1}\left(\sigma_{n-1}(f)\right)=\varphi_{n-1}\left([f]_{n-1}\right) \\
& =\varphi_{n-1}\left(j_{n}\left([f]_{n}\right)\right)
\end{aligned}
$$

which proves the commutativity of the above diagram. Together with 2.5 the diagram implies the assertion of the lemma.

We are now in a position to prove the following result.
Proposition 2.9. The map

$$
\varphi:\left\{\right.
$$

is a well defined group monomorphism.

[^1]Proof. Because \triangle is a one-dimensional continuum, [13, Corollary 1.2] implies that the canonical homomorphism from $\pi(\triangle)$ to $\check{\pi}(\triangle)$ is a monomorphism. Since φ is the composition of this monomorphism with the isomorphism between $\check{\pi}(\triangle)$ and $\lim _{\longleftarrow} G_{n}$ established in Proposition 2.8 we get the result.

The next theorem gives an interim survey of what we have established up to this point.

Theorem 2.10. The fundamental group $(\pi(\triangle), *)$ of the Sierpinski-gasket is isomorphic to a subgroup of $\left(\underset{\longleftarrow}{\lim } G_{n}, *\right)$. Moreover, the following diagram commutes:

$$
\begin{array}{lll}
S(\triangle) & \stackrel{\sigma}{\rightarrow} & \underset{\longleftarrow}{\lim } S_{n} \\
\downarrow[\cdot] & & \operatorname{Red} \downarrow \\
\pi(\triangle) & \stackrel{\varphi}{\hookrightarrow} & \underset{\longleftarrow}{\lim } G_{n}
\end{array}
$$

However, the next example shows that φ is not surjective:
Example 2.11. Let C_{0} be the (piecewise linear) loop that starting at 0 passes around the boundary of \triangle_{0} in positive direction (i.e. passing from 0 to 1 , then 2 and back to 0). By C_{0}^{-1} we mean the same cycle passed in the opposite direction. C_{1} denotes the loop around the subtriangle $\langle 0\rangle$ in \triangle_{1} (i.e. passing through $0,(0 / 1)$, $(0 / 2)$ and 0$), C_{2}$ the loop around $\langle 00\rangle$ in \triangle_{2}, and so on. Now we consider the following sequence of words:

$$
\begin{aligned}
& \omega_{0}=\omega_{1}=0 \\
& \omega_{2}=\operatorname{Red}_{2}\left(\sigma_{2}\left(C_{0} C_{1} C_{0}^{-1}\right)\right) \\
& \omega_{3}=\operatorname{Red}_{3}\left(\sigma_{3}\left(C_{0} C_{1} C_{0}^{-1} C_{2}\right)\right) \\
& \omega_{4}=\operatorname{Red}_{4}\left(\sigma_{4}\left(C_{0} C_{1} C_{0}^{-1} C_{2} C_{0} C_{3} C_{0}^{-1}\right)\right) \\
& \omega_{5}=\operatorname{Red}_{5}\left(\sigma_{5}\left(C_{0} C_{1} C_{0}^{-1} C_{2} C_{0} C_{3} C_{0}^{-1} C_{4}\right)\right)
\end{aligned}
$$

It can be checked easily that $\left(\omega_{n}\right)_{n \geq 0}$ is an element of $\lim G_{n}$. For instance, if we apply δ_{4} to ω_{4}, the loop C_{3} disappears since it is null-homotopic in \triangle_{3}, and consequently also the C_{0} and C_{0}^{-1} neighboring C_{3} cancel out and we arrive at ω_{3}.

Suppose there exists f in $S(\triangle)$ such that $\varphi([f])=\left(\omega_{n}\right)_{n \geq 0}$. Then due to the construction of $\omega_{n}=[f]_{n}$ the loop f has to traverse the circle C_{0} infinitely many times, which is not possible.

Maybe it is instructive to see here that $\left(\omega_{n}\right)_{n \geq 0}$ is even not in $\operatorname{Red}\left(\lim S_{n}\right)$. Suppose there is $\left(\alpha_{n}\right)_{n \geq 0}$ in $\lim S_{n}$ with $\operatorname{Red}\left(\left(\alpha_{n}\right)_{n \geq 0}\right)=\left(\omega_{n}\right)_{n \geq 0}$. If we consider only the dyadic points of order 1 that appear in $\omega_{2 n}$, we see that the sequence $(0 / 1)(1 / 2)(0 / 2)(1 / 2)(0 / 1)$ repeats n times. This means that at least this sequence of $5 n$ points of order 1 also appears in $\alpha_{2 n}$ (maybe some more which cancel out by performing $\operatorname{Red}_{2 n}$). However, when projecting down from $S_{2 n}$ to S_{1} in $\lim S_{n}$ no cancelation in between these $5 n$ points can occur. As a consequence α_{1} would contain infinitely many points which is a contradiction.

We aim at describing the fundamental group of the Sierpiński-gasket. Retrospectively, Theorem 2.10 provides the motivation for investigating the semigroup limit $\lim _{\longleftarrow} S_{n}: \pi(\triangle) \cong \varphi(\pi(\triangle))=\operatorname{Red}(\sigma(S(\triangle)))$. Therefore we have to study the range of σ in $\lim S_{n}$ and the range of Red in $\underset{\longleftarrow}{\lim } G_{n}$. This will be accomplished in the next section.

3. A CHARACTERIZATION OF THE ELEMENTS IN $\varphi(\pi(\triangle))$

3.1. The range and the kernel of $\boldsymbol{\sigma}$. We associate to a fixed element $\left(\omega_{n}\right)_{n \geq 0}=$ $\left(P_{n 1} P_{n 2} \ldots P_{n k_{n}}\right)_{n \geq 0}$ in $\lim _{\curvearrowleft} S_{n}$ a graph $G=(V, E)$ with vertices V and directed edges E. We think of the graph G as organized in rows: in the nth row, $n \geq 0$, we have for every letter appearing in the word ω_{n} a corresponding vertex, i.e. $V=\left\{(n, j) \mid n \geq 0,1 \leq j \leq k_{n}\right\}$. Edges connect certain vertices from row n to vertices in row $n+1$, namely, $((n, i),(n+1, j)) \in E$ if and only if $P_{n i}=P_{n+1, j}$ and in the course of γ_{n+1} that maps ω_{n+1} to ω_{n} the point $P_{n+1, j}$ is projected to $P_{n i}$. Consequently any vertex (n, i) in row n has at least one successor up to a finite number of successors (not bounded from above for growing n) in row $n+1$, and (n, i) has exactly one predecessor in row $n-1$ if and only if the order of $P_{n i}$ is $<n$.
Example 3.1. We consider the following element in $\lim _{\longleftarrow} S_{n}$ one can think of as a "pseudo-path" that passes from 0 on the baseline of \triangle^{0} arbitrarily near to 1 without touching 1 and then goes the same way back to 0 . A phenomenon arising in this example will turn out to be important in the further investigation:

$$
\omega_{0}=0, \omega_{1}=0(0 / 1) 0, \omega_{2}=0(0,0 / 1)(0 / 1)(1,0 / 1)(0 / 1)(0,0 / 1) 0, \ldots
$$

Figure 5 shows the graph associated to $\left(\omega_{n}\right)_{n \geq 0}$ where we denote the vertices by the corresponding dyadic points $P_{n i}$ instead of the index (n, i) we usually use.

Figure 5

By a branch B we mean a directed path in G which cannot be extended. As description for B we use the sequence of vertices contained in B, i.e. $B=\left(n, i_{n}\right)_{n \geq n_{0}}$ where $P=P_{n, i_{n}}$ for all $n \geq n_{0}$, is a point of order n_{0}. We say that the branch B corresponds to the dyadic point P.

The set \mathcal{B} of all branches in G carries a natural total order \leq : Let $B_{1}=$ $\left(n, i_{n}\right)_{n \geq n_{1}}, B_{2}=\left(n, j_{n}\right)_{n \geq n_{2}}$ be two branches then we define $B_{1}<B_{2}$ if and only if there exists $n \geq \max \left\{n_{1}, n_{2}\right\}$ such that $i_{n}<j_{n}$. Consequently we then have $i_{m}<j_{m}$ for all $m \geq n$, and $i_{m} \leq j_{m}$ for all m with $\max \left\{n_{1}, n_{2}\right\} \leq m<n$ which reflects the property that branches do not cross in G if we display the vertices in every row n in the order they appear in ω_{n}. It is straightforward to check that \leq is a total order on \mathcal{B}. For instance, $B_{1} \leq B_{2}$ and $B_{2} \leq B_{1}$ implies $B_{1}=B_{2}$ since branches are maximal with respect to extension.

The order \leq on \mathcal{B} is dense: Let $B_{1}<B_{2}$ be defined as before with $i_{n}<j_{n}$. Then $j_{n+1}-i_{n+1} \geq 2$ since the points corresponding to B_{1} and B_{2} are of order $\leq n$ and thus $P_{n+1, i_{n+1}} \not \chi_{n+1} P_{n+1, j_{n+1}}$. Hence any branch B starting at vertex $\left(n+1, i_{n+1}+1\right)$ satisfies $B_{1}<B<B_{2}$.

In the following we will consider Dedekind cuts in (\mathcal{B}, \leq) : A cut $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ is a partition of \mathcal{B} into two (nonempty) subsets \mathcal{B}_{1} and \mathcal{B}_{2} such that $B \in \mathcal{B}_{1}, \bar{B}<B$ implies $\bar{B} \in \mathcal{B}_{1}$, and $B \in \mathcal{B}_{2}, \bar{B}>B$ implies $\bar{B} \in \mathcal{B}_{2}$.

Rational and irrational cuts: The cut $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ is called rational if either \mathcal{B}_{1} has a largest element or \mathcal{B}_{2} has a least element. In the remaining case $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ is called irrational.

Every cut $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ converges to a uniquely defined element of \triangle in the following sense: For all $n \geq 0$ put

$$
\begin{aligned}
& l_{n}=\max \left\{i \mid \exists B \in \mathcal{B}_{1}: B \text { contains }(n, i)\right\} \\
& r_{n}=\min \left\{j \mid \exists B \in \mathcal{B}_{2}: B \text { contains }(n, j)\right\}
\end{aligned}
$$

Obviously we have $1 \leq l_{n} \leq r_{n} \leq k_{n}$ for all $n \geq 0$.
Lemma 3.2. For the cut $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ we have $\lim _{n \rightarrow \infty} P_{n, l_{n}}=\lim _{n \rightarrow \infty} P_{n, r_{n}}$.
Proof. By construction of l_{n} and r_{n} we have either $l_{n}=r_{n}$ and thus $P_{n, l_{n}}=P_{n, r_{n}}$ or $r_{n}=l_{n}+1$ and thus $P_{n, l_{n}} \sim_{n} P_{n, r_{n}}$. Hence it is sufficient to prove the existence of $\lim _{n \rightarrow \infty} P_{n, l_{n}}$.

We prove now for all $n \geq 0$ that $P_{n+1, l_{n+1}}$ lies in the same subtriangle T_{n} of \triangle_{n} as $P_{n, l_{n}}$: We suppose $P_{n, l_{n}} \sim_{n} P_{n, r_{n}}$, the other case $P_{n, l_{n}}=P_{n, r_{n}}$ is proved similarly. Let $B_{1}=\left(\ldots,\left(n, l_{n}\right),(n+1, i), \ldots\right)$ be a branch in \mathcal{B}_{1} such that i is a large as possible. Further, let $B_{2}=\left(\ldots,\left(n, r_{n}\right),(n+1, j), \ldots\right)$ be a branch in \mathcal{B}_{2} such that j is a small as possible. Note that $P_{n+1, i}=P_{n, l_{n}}, P_{n+1, j}=P_{n, r_{n}}$ and $l_{n+1} \geq i$. Evidently, all points $P_{n+1, k}$ with $i<k<j$ are of order $n+1$ and lie in the same subtriangle T_{n} of \triangle_{n} as $P_{n, l_{n}}$ and $P_{n, r_{n}}$, and it is clear by construction that $P_{n+1, l_{n+1}}$ is one of the points $P_{n+1, k}$ or coincides with $P_{n, l_{n}}$.

Thus we obtain a sequence of subtriangles $\left(T_{n}\right)_{n \geq 0}$ with $T_{n} \supset T_{n+1}, \operatorname{diam}\left(T_{n}\right)=$ $2^{-n}, P_{n, l_{n}} \in T_{n}$, and hence $\lim _{n \rightarrow \infty} P_{n, l_{n}}$ exists.

The limit of the cut $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ is defined to be the point $\lim _{n \rightarrow \infty} P_{n, l_{n}}=\lim _{n \rightarrow \infty} P_{n, r_{n}}$ in \triangle. As the proof of Lemma 3.2 shows, a rational cut has a dyadic limit point, namely the point corresponding to the largest branch in \mathcal{B}_{1} or the smallest branch in \mathcal{B}_{2}, respectively. An irrational cut may converge to a dyadic or to a generic point.

Complete elements: We call $\left(\omega_{n}\right)_{n \geq 0} \in \lim _{\longleftarrow} S_{n}$ complete if every irrational cut in the set of branches \mathcal{B} associated to $\left(\omega_{n}\right)_{n \geq 0}$ converges to a generic point.

Coming back to Example 3.1 we see that $\left(\omega_{n}\right)_{n \geq 0}$ defined there is not complete: Let \mathcal{B}_{1} consist of all branches which turn left when following them downwards, \mathcal{B}_{2} all that turn right. Then obviously this cut is irrational and converges to the dyadic point 1.

Next we prove that completeness is a necessary condition for $\left(\omega_{n}\right)_{n \geq 0}$ to be an element of $\sigma(S(\triangle))$.

Proposition 3.3. For all $f \in S(\triangle)$ the representation $\sigma(f)$ in $\lim _{\longleftarrow} S_{n}$ is complete.
Proof. Put $\left(\omega_{n}\right)_{n \geq 0}=\left(P_{n 1} P_{n 2} \ldots P_{n, k_{n}}\right)_{n \geq 0}=\left(\sigma_{n}(f)\right)_{n \geq 0}$ and let $B=\left(n, i_{n}\right)_{n \geq n_{0}}$ be a branch in the graph G which is associated to $\left(\omega_{n}\right)_{n \geq 0}$.

We will assign to B an interval $\left[s_{B}, t_{B}\right] \subseteq[0,1]$: Firstly, as we already explicated in the beginning of the proof of Proposition 2.1, for every $n \geq n_{0}$ we can associate to $P_{n, i_{n}}$ the interval $\left[s_{n}, t_{n}\right]$ such that $f\left(\left[s_{n}, t_{n}\right]\right) \cap D_{n}=\left\{P_{n, i_{n}}\right\}$. The definition of the edges in the graph G yields $\left[s_{n+1}, t_{n+1}\right] \subseteq\left[s_{n}, t_{n}\right]$, and so we obtain a nonempty interval $\left[s_{B}, t_{B}\right]=\bigcap_{n \geq 0}\left[s_{n}, t_{n}\right]$ such that f is constant on $\left[s_{B}, t_{B}\right]$ with the dyadic point corresponding to B as the constant value.

We list some properties of this relationship between branches and intervals. The order on the branches is preserved by this construction, i.e., if $B_{1}=$ $\left(n, i_{n}^{(1)}\right)_{n \geq n_{1}}, B_{2}=\left(n, i_{n}^{(2)}\right)_{n \geq n_{2}}$ are two branches then $B_{1}<B_{2}$ implies $t_{B_{1}}<s_{B_{2}}$: $B_{1}<B_{2}$ means that there is an n such that $i_{n}^{(1)}<i_{n}^{(2)}$ and thus for the intervals $\left[s_{n k}, t_{n k}\right]$ associated to $P_{n, i_{n}^{(k)}}, k=1,2$, we have $t_{n 1}<s_{n 2}$. Hence $t_{B_{1}}=\inf _{n \geq n_{1}} t_{n 1}<\sup _{n \geq n_{2}} s_{n 2}=s_{B_{2}}$.

As a consequence different branches lead to disjoint intervals. Further, it is evident that for every $u \in[0,1]$ such that $f(u)$ is a dyadic point there exists a unique branch B with $u \in\left[s_{B}, t_{B}\right]$.

To sum up, the family $\left\{\left[s_{B}, t_{B}\right] \mid B \in \mathcal{B}\right\}$ forms a partition of $f^{-1}\left(\bigcup_{n \geq 0} D_{n}\right)$ which inherits the order on the set of all branches \mathcal{B} in the sense explained above.

Now we are in position to prove that every irrational cut $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ in \mathcal{B} converges to a generic point in \triangle : The irrational cut $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ corresponds to an irrational cut in $\left\{\left[s_{B}, t_{B}\right] \mid B \in \mathcal{B}\right\}$. Put $s=\sup _{B \in \mathcal{B}_{1}} s_{B}$ and $t=\inf _{B \in \mathcal{B}_{2}} s_{B}$. Since the cut is irrational it is irrelevant whether we take s_{B} or t_{B} when forming the inf and the sup, and moreover we have $s>s_{B_{1}}$ and $t<t_{B_{2}}$ for all $B_{1} \in \mathcal{B}_{1}, B_{2} \in \mathcal{B}_{2}$.

Obviously $s \leq t$ and we claim that f is constant in the interval $[s, t]$ with a generic point as constant value: Suppose there exists $u \in[s, t]$ such that $f(u)$ is a dyadic point. Then there is a branch \bar{B} with $u \in\left[s_{\bar{B}}, t_{\bar{B}}\right]$. However, due to the definition of $s=\sup _{B \in \mathcal{B}_{1}} s_{B}$ all intervals corresponding to branches of \mathcal{B}_{1} are strictly below s and thus cannot contain u. The same applies to all branches of \mathcal{B}_{2} since their intervals lie above t. Hence \bar{B} is not in $\mathcal{B}_{1} \cup \mathcal{B}_{2}=\mathcal{B}$ which is a contradiction. So f does not attain a dyadic point as value on the interval $[s, t]$. Suppose f is not constant on $[s, t]$. Then $f([s, t])$ is a connected subset of \triangle containing at least two points and therefore also contains a dyadic point.

Finally we show that the cut $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ converges to the generic point $f(s)$. Put $l_{n}=\max \left\{i \mid \exists B \in \mathcal{B}_{1}: B\right.$ contains $\left.(n, i)\right\}$. Thus for every $n \geq 0$ there exists a branch $B_{n}=\left(m, i_{m}^{(n)}\right)_{m \geq m_{n}} \in \mathcal{B}_{1}$ such that $\left(n, l_{n}\right)=\left(n, i_{n}^{(n)}\right)$ and thus $P_{n, l_{n}}=$ $P_{n, i_{n}^{(n)}}$. As a consequence $f\left(s_{B_{n}}\right)=P_{n, l_{n}}$ where as usual $\left[s_{B_{n}}, t_{B_{n}}\right]$ is the interval corresponding to B_{n}.

Since \mathcal{B}_{1} has no largest element for every $B=\left(n, i_{n}\right)_{n \geq n_{0}} \in \mathcal{B}_{1}$ there exists $\bar{B}=$ $\left(n, j_{n}\right)_{n \geq \bar{n}_{0}} \in \mathcal{B}_{1}$ with $\bar{B}>B$, i.e. there is an $n \in \mathbb{N}$ such that $i_{n}<j_{n} \leq l_{n}=i_{n}^{(n)}$. This means that for all $B \in \mathcal{B}_{1}$ there is an $n \in \mathbb{N}$ such that $s_{B}<s_{B_{n}}$. So we infer $\lim _{n \rightarrow \infty} s_{B_{n}}=s$, and using the continuity of f we obtain

$$
\lim _{n \rightarrow \infty} P_{n, l_{n}}=\lim _{n \rightarrow \infty} f\left(s_{B_{n}}\right)=f(s)
$$

and we are done.
We have already seen that non-complete elements in $\underset{\leftarrow}{\lim } S_{n}$ exist (see Example 3.1). Proposition 3.3 thus shows that $\sigma: S(\triangle) \rightarrow \lim S_{n}$ is not surjective.

The next proposition aims at finding f in $S(\triangle)$ such that $\sigma(f)$ approximates a given $\left(\omega_{n}\right)_{n \geq 0} \in \lim _{\longleftarrow} S_{n}$ best possible.

Proposition 3.4. For every $\left(\omega_{n}\right)_{n \geq 0} \in \lim _{\longleftarrow} S_{n}$ there exists $f \in S(\triangle)$ such that $\operatorname{Red}(\sigma(f))=\operatorname{Red}\left(\left(\omega_{n}\right)_{n \geq 0}\right)$, i.e., $\operatorname{ran}(\operatorname{Red} \circ \sigma)=\operatorname{ran}(\operatorname{Red})$. Moreover, if $\left(\omega_{n}\right)_{n \geq 0}$ is complete then even $\sigma(f)=\left(\omega_{n}\right)_{n \geq 0}$ holds for some $f \in S(\triangle)$.

Proof. Let $\left(\omega_{n}\right)_{n \geq 0}=\left(P_{n 1} P_{n 2} \ldots P_{n, k_{n}}\right)_{n \geq 0}$ be a fixed element of $\lim S_{n}$. We will define a sequence of functions $\left(f_{n}\right)_{n \geq 0}$ by induction on n such that $\overleftarrow{f_{n}}$ is piecewise linear with range in Δ^{n} and $\sigma_{k}\left(f_{n}\right)=\omega_{k}$ for all $k \leq n$.

We start with $n=0, \omega_{0}=P_{01} P_{02} \ldots P_{0, k_{0}}$, and divide $[0,1]$ into $2 k_{0}-1$ subintervals of equal length by the points

$$
0=u_{01}<v_{01}<u_{02}<v_{02}<\ldots<u_{0, k_{0}}<v_{0, k_{0}}=1
$$

Define $f_{0}(t)=P_{0 i}$ for $t \in\left[u_{0 i}, v_{0 i}\right], 1 \leq i \leq k_{0}$, and f_{0} to be the linear connection of $P_{0 i}$ and $P_{0, i+1}$ in the interval [$\left.v_{0 i}, u_{0, i+1}\right], 1 \leq i<k_{0}$. Obviously $\sigma_{0}\left(f_{0}\right)=\omega_{0}$.

Suppose f_{n} is already defined: $f_{n}(t)=P_{n i}$ for $t \in\left[u_{n i}, v_{n i}\right], 1 \leq i \leq k_{n}, f_{n}$ is the linear connection of $P_{n i}$ and $P_{n, i+1}$ in the interval $\left[v_{n i}, u_{n, i+1}\right], 1 \leq i<k_{n}$, and thus $\sigma_{k}\left(f_{n}\right)=\omega_{k}$ for all $k \leq n$. We explain in detail how to define $f_{n+1}(t)$ for $t \in\left[u_{n 1}, v_{n 1}\right]$ and $t \in\left[v_{n 1}, u_{n 2}\right]$. In the equality $\gamma_{n+1}\left(\omega_{n+1}\right)=\omega_{n}$ we analyze the action of γ_{n+1} on the individual letters of ω_{n+1} : Figure 6 is part of the graph G

$$
\begin{array}{cccccccccc}
& P_{n 1} & & & & & & P_{n 2} & & \ldots \\
\swarrow & \ldots & \searrow & & & & & \searrow & \ldots \\
P_{n+1,1} & \ldots & P_{n+1, i_{1}} & P_{n+1, i_{1}+1} & \ldots & P_{n+1, i_{2}} & P_{n+1, i_{2}+1} & \ldots & P_{n+1, i_{3}} & \ldots
\end{array}
$$

Figure 6

we associated to $\left(\omega_{n}\right)_{n \geq 0}$ in the beginning of this section and should be interpreted as follows: $P_{n+1,1}$ respectively $P_{n+1, i_{1}}$ is the first respectively last letter in ω_{n+1} that is projected to $P_{n 1}$ by $\gamma_{n+1} ; P_{n+1, i_{1}+1}$ up to $P_{n+1, i_{2}}$ are all of order $n+1$ and disappear by applying γ_{n+1}, and so on.

Now we define $f_{n+1}(t)$ for $t \in\left[u_{n 1}, v_{n 1}\right]$ analogously to f_{0} in $[0,1]$: divide [$u_{n 1}, v_{n 1}$] into $2 i_{1}-1$ subintervals of equal length and define f_{n+1} in these subintervals alternately to be constant with value $P_{n+1, i}, 1 \leq i \leq i_{1}$, and to connect $P_{n+1, i}$ with $P_{n+1, i+1}$ linearly, $1 \leq i \leq i_{1}-1$.

Next, the interval $\left[v_{n 1}, u_{n 2}\right]$ is divided into $2\left(i_{2}-i_{1}\right)+1$ subintervals. Here f_{n+1} alternately connects $P_{n+1, i}$ with $P_{n+1, i+1}$ linearly, $i_{1} \leq i \leq i_{2}$, and is constant with value $P_{n+1, i}, i_{1}+1 \leq i \leq i_{2}$.

In the same manner we proceed with the rest of the intervals and obtain f_{n+1} satisfying our requirements.

We compare f_{n} with f_{n+1} (see Figure 7). For $1 \leq i \leq k_{n}$:

$$
t \in\left[u_{n i}, v_{n i}\right]:\left\{\begin{array}{lll}
f_{n}(t) & \ldots & \text { constant } P_{n i} \\
f_{n+1}(t) & \ldots & \text { stays in the two subtriangles } T_{1} \text { and } \\
& & T_{2} \text { of } \triangle_{n} \text { that intersect in } P_{n i}
\end{array}\right.
$$

and for $1 \leq i \leq k_{n}-1$:

$$
t \in\left[v_{n i}, u_{n, i+1}\right]:\left\{\begin{array}{lll}
f_{n}(t) & \ldots & \text { connects } P_{n i} \text { and } P_{n, i+1} \text { linearly } \\
f_{n+1}(t) & \ldots & \text { stays in the subtriangle } T_{2} \text { of } \triangle_{n} \text { to } \\
& & \text { which } P_{n i} \text { and } P_{n, i+1} \text { belong. }
\end{array}\right.
$$

Summing up we obtain $\left\|f_{n}-f_{n+1}\right\|_{\infty} \leq 2^{-n}$ where $\|\cdot\|_{\infty}$ denotes the maximum norm for $t \in[0,1]$. Consequently f_{n} converges for $n \rightarrow \infty$ uniformly to a continuous $f:[0,1] \rightarrow \triangle$.

By construction we have $f_{m}\left(u_{n i}\right)=P_{n i}, 1 \leq i \leq k_{n}$, for all $m \geq n$ and thus also $f\left(u_{n i}\right)=P_{n i}, 1 \leq i \leq k_{n}$. This means that $\sigma_{n}(f)$ contains at least all letters appearing in the word ω_{n} in the proper order, but it may happen that $\sigma_{n}(f)$ in between the $P_{n i}$ contains further dyadic points of order $\leq n$ and some of the $P_{n i}$ appear in multiplied form. To illustrate this we consider the interval [$u_{n i}, u_{n, i+1}$]:
f_{n+1} and all f_{m} with $m \geq n+1$ stay for $t \in\left(u_{n i}, u_{n, i+1}\right)$ in the interior of the union of the two subtriangles $\operatorname{int}\left(T_{1} \cup T_{2}\right)$ of \triangle_{n} (interior as a subset of $\left.\triangle_{n}\right)$. This implies that $f=\lim _{m \rightarrow \infty} f_{m}$ stays in the union of the (closed) subtriangles

Figure 7
$T_{1} \cup T_{2}$. Hence $\sigma_{n}\left(f \upharpoonleft\left[u_{n i}, u_{n, i+1}\right]\right)=P_{n i} Q_{1} Q_{2} \ldots Q_{l} P_{n, i+1}, l \geq 0$, where $Q_{i} \in$ $\left\{R_{1}, R_{2}, R_{3}, P_{n i}, P_{n, i+1}\right\}$. However, since $f\left(\left[u_{n i}, u_{n, i+1}\right]\right) \cap\left(T_{3} \backslash\left\{R_{3}, P_{n, i+1}\right\}\right)=$ \emptyset, the two letters R_{3} and $P_{n, i+1}$ can never occur in immediate succession in $P_{n i} Q_{1} Q_{2} \ldots Q_{l} P_{n, i+1}$. This implies that $\operatorname{Red}_{n}\left(\sigma_{n}\left(f \upharpoonleft\left[u_{n i}, u_{n, i+1}\right]\right)\right)=P_{n i} P_{n, i+1}$ and hence on the whole $\operatorname{Red}_{n}\left(\sigma_{n}(f)\right)=\operatorname{Red}_{n}\left(\omega_{n}\right)$.

Of course, configurations for $P_{n i}$ and $P_{n, i+1}$ different to the one displayed in Figure 7 are possible. However, as can be checked easily the consequences concerning the respective subtriangles T_{1}, T_{2} and T_{3} are always the same.

The first part of the proposition is proved. Now we show that $\sigma_{n}(f)=\omega_{n}$ for all $n \geq 0$ if $\left(\omega_{n}\right)_{n \geq 0}$ is complete.

We have two sets of branches: The set \mathcal{B}_{f} corresponding to $\sigma(f)$ and \mathcal{B}_{ω} corresponding to $\left(\omega_{n}\right)_{n \geq 0}$. As pointed out above the vertices of the graph G_{ω} associated to $\left(\omega_{n}\right)_{n \geq 0}$ form a subset of the vertices of the graph G_{f} associated to $\sigma(f)$. In order to distinguish between these two graphs we use the following notation: Put $\sigma_{n}(f)=\left(Q_{n 1} \ldots Q_{n, \bar{k}_{n}}\right), n \geq 0$, and let $V_{f}=\left\{(n, j)^{(f)} \mid n \geq 0,1 \leq j \leq \bar{k}_{n}\right\}$ be the vertices in G_{f}.

Next it will be outlined that in a canonical way to every branch $B=\left(n, i_{n}\right)_{n \geq n_{0}}$ in \mathcal{B}_{ω} a branch in \mathcal{B}_{f} is associated. Two cases may occur:
(1) The interval $[u, v]=\bigcap_{n \geq n_{0}}\left[u_{n, i_{n}}, v_{n, i_{n}}\right]$ corresponding to B is a singleton.

Recall that when constructing f_{n} we assigned to every $P_{n i}$ the interval [$u_{n i}, v_{n i}$] on which f_{n} has constant value $P_{n i}$. Thus the property $u=v$ is equivalent to the feature that in G_{ω} for an infinite number of n the vertex $\left(n, i_{n}\right)$ has more than one successor: if there is more than one successor of $\left(n, i_{n}\right)$ then $\left[u_{n+1, i_{n+1}}, v_{\left.n+1, i_{n+1}\right]}\right]$ has length less than $1 / 3$ of $\left[u_{n, i_{n}}, v_{n, i_{n}}\right]$. Let P be the point corresponding to the branch B then in this case $f(u)=P$ and in every neighborhood of u, f has infinitely many different dyadic values. Anyway, turning to the graph G_{f} we see that there is a unique branch $\bar{B}=\left(n, j_{n}\right)_{n \geq n_{0}}^{(f)}$ in \mathcal{B}_{f} such that $Q_{n, j_{n}}=P$ corresponds to the interval $\left[s_{n, j_{n}}, t_{n, j_{n}}\right]$ in the sense utilized in the proof of Proposition 2.1 with $u \in\left[s_{n, j_{n}}, t_{n, j_{n}}\right]$ for all $n \geq n_{0}$.
(2) The interval $[u, v]$ corresponding to B satisfies $u<v$. This means that there exists an index n_{1} such that for all $n \geq n_{1}$ the interval $\left[u_{n, i_{n}}, v_{n, i_{n}}\right]=[u, v]$. In this case f_{n} has constant value P on $[u, v]$ for all $n \geq n_{1}$ and hence f satisfies this, as well. Again, there exists a unique branch $\bar{B}=\left(n, j_{n}\right)_{n \geq n_{0}}^{(f)}$ in \mathcal{B}_{f} such that $Q_{n, j_{n}}=P$ corresponds to the interval $\left[s_{n, j_{n}}, t_{n, j_{n}}\right]$ with $[u, v] \subseteq\left[s_{n, j_{n}}, t_{n, j_{n}}\right]$.
In the following we will identify $B \in \mathcal{B}_{\omega}$ with the respective $\bar{B} \in \mathcal{B}_{f}$ from (1) or (2) and thus we may consider \mathcal{B}_{ω} as a subset of \mathcal{B}_{f}.

We have already proved in Proposition 3.3 that \mathcal{B}_{f} is complete. Now we show that \mathcal{B}_{ω} is dense in \mathcal{B}_{f}, i.e. for all $B_{1}, B_{2} \in \mathcal{B}_{f}$ with $B_{1}<B_{2}$ there exists $B \in \mathcal{B}_{\omega}$ such that $B_{1}<B<B_{2}$: First of all, it is sufficient to prove this for $B_{1}, B_{2} \in \mathcal{B}_{f} \backslash \mathcal{B}_{\omega}$:

- if $B_{1}, B_{2} \in \mathcal{B}_{\omega}$ then there exists an according B since \leq is a dense order on \mathcal{B}_{ω},
- if $B_{1} \in \mathcal{B}_{\omega}, B_{2} \in \mathcal{B}_{f} \backslash \mathcal{B}_{\omega}$, then, since \mathcal{B}_{f} is dense, there exists $B_{3} \in \mathcal{B}_{f}$ with $B_{1}<B_{3}<B_{2}$; if $B_{3} \in \mathcal{B}_{\omega}$ we are done and if $B_{3} \in \mathcal{B}_{f} \backslash \mathcal{B}_{\omega}$ then the problem is reduced to $B_{3}<B_{2}$, the case we will deal with.

Let B_{i} correspond to the interval $\left[s_{i}, t_{i}\right], f\left(s_{i}\right)=Q_{i}, i=1,2$. As $B_{1}<B_{2}$ we have $t_{1}<s_{2}$. Since \mathcal{B}_{f} is dense there exist $B_{3} \in \mathcal{B}_{f}$ with $B_{1}<B_{3}<B_{2}$ and since f cannot be constant on $\left[t_{1}, s_{2}\right]$ we can choose B_{3} such that the point Q_{3} corresponding to B_{3} satisfies $Q_{1} \neq Q_{3} \neq Q_{2}$. Consequently there is $s_{3} \in\left(t_{1}, s_{2}\right)$ with $f\left(s_{3}\right)=Q_{3}$. We fix some $k \geq 0$ such that the distance $d\left(Q_{3}, Q_{i}\right)$ is larger than $2^{-k+2}, i=1,2$. Since $\left(f_{m}\right)_{m \geq 0}$ converges uniformly to f we have $\left\|f-f_{m}\right\|_{\infty}<2^{-k}$ for all $m \geq m_{k}$ with appropriate m_{k}. So for $m \geq m_{k}$ we have

$$
d\left(Q_{1}, f_{m}\left(t_{1}\right)\right)<2^{-k}, \quad d\left(Q_{3}, f_{m}\left(s_{3}\right)\right)<2^{-k}
$$

Hence $f_{m}(t)$ must pass from the 2^{-k}-neighborhood of Q_{1} for $t=t_{1}$ to the $2^{-k_{-}}$ neighborhood of Q_{3} for $t=s_{3}$ and since f_{m} is alternately constant/linear f_{m} assumes a dyadic point P (of order $\leq m$) as constant value for some interval in $\left(t_{1}, s_{3}\right)$. Since $\sigma_{m}\left(f_{m}\right)=\omega_{m}$ there is a branch $B \in \mathcal{B}_{\omega}$ containing this P which by construction satisfies $B_{1}<B<B_{3}<B_{2}$.

Finally we show $\sigma(f) \neq\left(\omega_{n}\right)_{n \geq 0}$ (which is equivalent to $\mathcal{B}_{f} \backslash \mathcal{B}_{\omega} \neq \emptyset$) implies that $\left(\omega_{n}\right)_{n \geq 0}$ is not complete: Let $\bar{B}=\left(n, i_{n}\right)_{n \geq n_{0}}^{(f)} \in \mathcal{B}_{f} \backslash \mathcal{B}_{\omega}$ such that for all $n \geq n_{1}$ the vertices $\left(n, i_{n}\right)^{(f)}$ in \bar{B} have smallest possible i_{n}. For instance this is possible if $\left(n_{1}-1, i_{n_{1}-1}\right)^{(f)}$ is a vertex in $G_{f} \backslash G_{\omega}$. We consider the following cut in \mathcal{B}_{ω} :

$$
\mathcal{B}_{1}=\left\{B \in \mathcal{B}_{\omega} \mid B<\bar{B}\right\}, \quad \mathcal{B}_{2}=\left\{B \in \mathcal{B}_{\omega} \mid B>\bar{B}\right\} .
$$

First we show that $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ is irrational: for $B_{1} \in \mathcal{B}_{1}$ we have $B_{1}<\bar{B}$ and since \mathcal{B}_{ω} is dense in \mathcal{B}_{f} there is $B \in \mathcal{B}_{\omega}$ such that $B_{1}<B<\bar{B}$ showing that \mathcal{B}_{1} has no largest element. Analogously one learns that \mathcal{B}_{2} has no least element.

Now we prove that $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ converges to the point \bar{Q} corresponding to \bar{B}. Let $\left(\mathcal{B}_{1}^{f}, \mathcal{B}_{2}^{f}\right)$ be the cut in \mathcal{B}_{f} with smallest element \bar{B} in \mathcal{B}_{2}^{f} and

$$
\begin{aligned}
& l_{n}^{f}=\max \left\{j \mid \exists B_{1} \in \mathcal{B}_{1}^{f}: B_{1} \text { contains }(n, j)^{f}\right\}, \\
& l_{n}=\max \left\{j \mid \exists B_{1} \in \mathcal{B}_{1}: B_{1} \text { contains }(n, j)^{f}\right\} .
\end{aligned}
$$

Due to our choice of \bar{B} we have for all $n \geq n_{1}$ that $l_{n}^{f}=i_{n}-1$ and $Q_{n, l_{n}^{f}} \sim_{n} \bar{Q}$. Further let $B_{n}^{f} \in \mathcal{B}_{f}$ be the largest branch containing $\left(n, l_{n}^{f}\right)^{(f)}$ (starting from $Q_{n, l_{n}^{f}}$ taking always the rightmost vertex as successor). As a consequence all branches B with $B_{n}^{f}<B<\bar{B}$ correspond to a dyadic point in the subtriangle T_{n} of \triangle_{n} that contains \bar{Q} and $Q_{n, l_{n}^{f}}$. Since \mathcal{B}_{ω} is dense in \mathcal{B}_{f} there exists $B_{n} \in \mathcal{B}_{\omega}$ such that $B_{n}^{f}<B_{n}<\bar{B}$. Hence the points P_{n} corresponding to B_{n} must lie in the subtriangle T_{n} and if P_{n} is of order r_{n} then also $Q_{k, l_{k}}$ lies in T_{n} for all $k \geq r_{n}$. So we have proved

$$
\lim _{n \rightarrow \infty} Q_{n, l_{n}^{f}}=\lim _{k \rightarrow \infty} Q_{k, l_{k}}=\bar{Q}
$$

Summing up this means that the irrational cut $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ in \mathcal{B}_{ω} converges to the dyadic point \bar{Q} and hence $\left(\omega_{n}\right)_{n \geq 0}$ is not complete, in contrast to our assumption. Thus $\mathcal{B}_{\omega}=\mathcal{B}_{f}$, i.e., $\sigma(f)=\left(\omega_{n}\right)_{n \geq 0}$, and we are done.

We now have precise information on the range of σ. In order to get an idea what the sub-semigroup $\sigma(S(\triangle)) \cong S(\triangle) / \operatorname{ker}(\sigma)$ of $\lim S_{n}$ describes we have to investigate the kernel of σ.

A first observation in this direction is that $\operatorname{ker}(\sigma)$ is a sub-relation of the homotopy relation of elements $f, g \in S(\triangle): \sigma(f)=\sigma(g)$ implies

$$
\varphi([f])=\operatorname{Red}(\sigma(f))=\operatorname{Red}(\sigma(g))=\varphi([g])
$$

and since φ is injective we obtain $[f]=[g]$.
It is palpable that $\operatorname{ker}(\sigma)$ will be related with the re-parameterization of loops. Therefore, following Curtis and Fort [9] we say that two loops $f, g \in S(\triangle)$ are Fréchet equivalent, $f \approx g$ for short, if and only if there exist functions $\alpha, \beta:[0,1] \rightarrow$ $[0,1]$ which are monotonously increasing and surjective (and hence continuous) such that $f \circ \alpha=g \circ \beta$. In Curtis and Fort [9, Appendix] it is shown that this is an equivalence relation.

Proposition 3.5. If $f \approx g$ then $\sigma(f)=\sigma(g)$.
Proof. First we show that $\sigma_{n}(f)=\sigma_{n}(f \circ \alpha)$ for all $n \geq 0$ where $f \circ \alpha=g \circ \beta$ with properties as defined above. We recall that $\sigma_{n}(f)$ is the sequence of points in D_{n} that arises when we raster the separated set $f^{-1}\left(D_{n}\right)$ with appropriate small intervals and list the corresponding points. For a letter P appearing in $\sigma_{n}(f)$ let again $[s, t]$ be the maximal interval such that $f(s)=f(t)=P$ and $f([s, t]) \cap D_{n}=$ $\{P\}$. Since α is surjective P appears also in $\sigma_{n}(f \circ \alpha)$ and the monotonicity of α preserves the order of points in $\sigma_{n}(f)$, in particular $\left[\min \alpha^{-1}(\{s\}), \max \alpha^{-1}(\{t\})\right]$ is the interval corresponding to letter P with respect to the loop $f \circ \alpha$.

The rest is obvious: $\sigma_{n}(f)=\sigma_{n}(f \circ \alpha)=\sigma_{n}(g \circ \beta)=\sigma_{n}(g)$.
The converse of Proposition 3.5 is established in the following.
Proposition 3.6. If $\sigma(f)=\sigma(g)$ then $f \approx g$.
Proof. For $n \geq 0$ let $\omega_{n}=\sigma_{n}(f)=\sigma_{n}(g)=P_{n 1} P_{n 2} \ldots P_{n, k_{n}}$. As usual we assign to $\left(\omega_{n}\right)_{n \geq 0}$ the graph G with vertices $(n, i), n \geq 0,1 \leq i \leq k_{n}$, and an edge connecting (n, i) to $(n+1, j)$ if the letter $P_{n+1, j}$ in ω_{n+1} is projected to $P_{n i}$ when performing $\gamma_{n+1}\left(\omega_{n+1}\right)=\omega_{n}$.

In the first step we will show that the parametrization $f_{n}:[0,1] \rightarrow \triangle$ of the piecewise linear loop corresponding to $\sigma_{n}(f)$ from Proposition 2.1, yields a sequence $\left(f_{n}(t)\right)_{n \geq 0}$ which converges uniformly to $f(t)$ for $t \in[0,1]$.

Let n be fixed. As in Proposition 2.1 we associate to every (n, i) the maximal interval $\left[s_{n i}, t_{n i}\right]$ such that $f\left(s_{n i}\right)=f\left(t_{n i}\right)=P_{n i}, D_{n} \cap f\left(\left[s_{n i}, t_{n i}\right]\right)=\left\{P_{n i}\right\}$ and $0=s_{n 1} \leq t_{n 1}<s_{n 2} \leq t_{n 2}<\ldots<s_{n, k_{n}} \leq t_{n, k_{n}}=1$. We parameterize the piecewise linear loop corresponding to $\sigma_{n}(f)$ by f_{n} such that f_{n} is constant with value $P_{n i}$ in the interval $\left[s_{n i}, t_{n i}\right], 1 \leq i \leq k_{n}$, and connects $P_{n i}$ and $P_{n, i+1}$ linearly in the interval $\left[t_{n i}, s_{n, i+1}\right], 1 \leq i \leq k_{n}-1$. For $t \in\left[s_{n i}, t_{n i}\right]$ the loop $f(t)$ is contained in one of the (at most) two subtriangles of \triangle_{n} to which $P_{n i}$ belongs, and for $t \in$ [$t_{n i}, s_{n, i+1}$] the loop $f(t)$ is contained in the subtriangle T of \triangle_{n} to which $P_{n i}$ and $P_{n, i+1}$ belong. Thus we infer that the maximum norm $\left\|f_{n}-f\right\|_{\infty} \leq \operatorname{diam}(T)=2^{-n}$ and $\left(f_{n}\right)$ converges uniformly to f.

What was done for f can be realized mutatis mutandis with g where the piecewise linear approximations will be denoted by g_{n}, and $\left[u_{n i}, v_{n i}\right]$ is the generic notation for the interval corresponding to the vertex (n, i) with respect to g.

In the following we will need another correlation, namely we associate to the vertex (n, i) also the interval

$$
\left[a_{n i}, b_{n i}\right]=\left[\left(s_{n i}+u_{n i}\right) / 2,\left(t_{n i}+v_{n i}\right) / 2\right] .
$$

With this concept we now consider $\alpha_{n}, \beta_{n}:[0,1] \rightarrow[0,1]$ such that

$$
\begin{aligned}
& \alpha_{n}\left(a_{n i}\right)=s_{n i}, \quad \alpha_{n}\left(b_{n i}\right)=t_{n i} \\
& \beta_{n}\left(a_{n i}\right)=u_{n i}, \quad \beta_{n}\left(b_{n i}\right)=v_{n i}
\end{aligned}
$$

and α_{n}, β_{n} are piecewise linear between these points. Evidently, we then have

$$
f_{n} \circ \alpha_{n}=g_{n} \circ \beta_{n}
$$

We recall what was accomplished in Proposition 3.4: Starting from an arbitrary $\left(\omega_{n}\right)_{n \geq 0} \in \lim S_{n}$ a sequence f_{n} of loops was constructed converging uniformly to some $f \in S(\triangle)$. Moreover, it was shown that $\sigma(f)=\left(\omega_{n}\right)_{n \geq 0}$ provided $\left(\omega_{n}\right)_{n \geq 0}$ is complete. Now we perform the same starting with $\left(\omega_{n}\right)_{n \geq 0}=\sigma(f)=\sigma(g)$ which is complete by Proposition 3.3. Instead of using subintervals of equal length as in the proof of Proposition 3.4, we here employ the given family $\left[a_{n i}, b_{n i}\right], n \geq 0$, $1 \leq i \leq k_{n}$ which creates appropriate subdivisions. However, this difference does not influence the validity of the rest of the proof at all. What we obtain is the sequence $h_{n}=f_{n} \circ \alpha_{n}=g_{n} \circ \beta_{n}$ converging uniformly to some $h \in S(\triangle)$ with $\sigma(h)=$ $\sigma(f)=\sigma(g)$. Moreover, we will show that the interval $\left[x_{n i}, y_{n i}\right]$ associated to the vertex (n, i) with respect to h in the usual way, i.e., $\left[x_{n i}, y_{n i}\right]$ is the maximal interval with the properties $h\left(x_{n i}\right)=h\left(y_{n i}\right)=P_{n i}, h\left(\left[x_{n i}, y_{n i}\right]\right) \cap D_{n}=\left\{P_{n i}\right\}$, must coincide with $\left[a_{n i}, b_{n i}\right]$. Indeed, since $\alpha_{m}\left(\left[a_{n i}, b_{n i}\right]\right)=\left[s_{n i}, t_{n i}\right]$ and thus $h_{m}\left(\left[a_{n i}, b_{n i}\right]\right)=$ $f_{m}\left(\left[s_{n i}, t_{n i}\right]\right)$ for all $m \geq n$, and since the sequence $\left(f_{m}\right)$ converges uniformly to f and $f\left(\left[s_{n i}, t_{n i}\right]\right) \cap D_{n}=\left\{P_{n i}\right\}$, we conclude that $h\left(\left[a_{n i}, b_{n i}\right]\right) \cap D_{n}=\left\{P_{n i}\right\}$. This shows $\left[a_{n i}, b_{n i}\right] \subseteq\left[x_{n i}, y_{n i}\right]$. Now suppose $x_{n i}<a_{n i}$. We have

$$
\begin{equation*}
P_{n i}=h\left(x_{n i}\right)=\lim _{m \rightarrow \infty} f_{m}\left(\alpha_{m}\left(x_{n i}\right)\right) \tag{3.1}
\end{equation*}
$$

and $\alpha_{m}\left(x_{n i}\right) \in\left(t_{n, i-1}, s_{n i}\right)$ for $m \geq n$ since $x_{n i}>b_{n, i-1}$. From $f\left(\left(t_{n, i-1}, s_{n i}\right)\right) \cap$ $D_{n}=\emptyset$ and (3.1) we infer that there exists a subsequence $\left(m_{k}\right)$ with $\lim _{k \rightarrow \infty} \alpha_{m_{k}}\left(x_{n i}\right)=s_{n i}$. Next, in any proper interval $\left[t, s_{n i}\right]$ the path f assumes dyadic points of arbitrary high order near to $P_{n i}$. Therefore in the graph G corresponding to $\sigma(f)=\sigma(g)$ there exists a sequence (m_{k}, i_{k}) with $s_{m_{k} i_{k}}<s_{n i}$ and $\lim _{k \rightarrow \infty} s_{m_{k} i_{k}}=s_{n i}$, and with the same argument for g we obtain $u_{m_{k} i_{k}}<u_{n i}$ and $\lim _{k \rightarrow \infty} u_{m_{k} i_{k}}=u_{n i}$. This implies $a_{m_{k} i_{k}}<a_{n i}$ and $\lim _{k \rightarrow \infty} a_{m_{k} i_{k}}=a_{n i}$ and hence there exists \tilde{k} such that $x_{n i}<a_{m_{\tilde{k}} i_{\tilde{k}}}$. Now, for all $k \geq \tilde{k}$ we have $\alpha_{m_{k}}\left(x_{n i}\right) \leq \alpha_{m_{k}}\left(a_{m_{\tilde{k}} i_{\tilde{k}}}\right)=s_{m_{\tilde{k}} i_{\tilde{k}}}<s_{n i}$. We conclude that

$$
s_{n i}=\lim _{k \rightarrow \infty} \alpha_{m_{k}}\left(x_{n i}\right) \leq s_{m_{\tilde{k}} i_{\tilde{k}}}<s_{n i}
$$

a contradiction, and hence $x_{n i}=a_{n i}$. Similarly it is shown that $y_{n i}>b_{n i}$ is impossible and hence $\left[x_{n i}, y_{n i}\right]=\left[a_{n i}, b_{n i}\right]$.

Let again \mathcal{B} denote the set of branches in G. To every branch $B=\left(n, i_{n}\right)_{n \geq n_{0}}$ we assign the interval $\left[s_{B}, t_{B}\right]=\bigcap_{n \geq n_{0}}\left[s_{n, i_{n}}, t_{n, i_{n}}\right]$ and the intervals $\left[u_{B}, v_{B}\right],\left[a_{B}, b_{B}\right]$ accordingly.

In the next step we will elaborate that the sequences $\left(\alpha_{n}(x)\right)_{n \geq 0}$ and $\left(\beta_{n}(x)\right)_{n \geq 0}$ converge pointwise for a good deal of x. First we consider $x \in[0,1]$ such that there exists $B=\left(n, i_{n}\right)_{n \geq n_{0}} \in \mathcal{B}$ with $x \in\left[a_{B}, b_{B}\right]=\bigcap_{n \geq n_{0}}\left[a_{n, i_{n}}, b_{n, i_{n}}\right]$. (In the following we will refer to this case by (I).) This implies $x \in\left[a_{n, i_{n}}, b_{n, i_{n}}\right]=\left[\left(s_{n, i_{n}}+\right.\right.$ $\left.\left.u_{n, i_{n}}\right) / 2,\left(t_{n, i_{n}}+v_{n, i_{n}}\right) / 2\right]$ for all $n \geq n_{0}$. Recall that

$$
\lim _{n \rightarrow \infty} s_{n, i_{n}}=s_{B}, \lim _{n \rightarrow \infty} t_{n, i_{n}}=t_{B}, \lim _{n \rightarrow \infty} u_{n, i_{n}}=u_{B}, \lim _{n \rightarrow \infty} v_{n, i_{n}}=v_{B}
$$

and that

$$
\alpha_{n}(x)=s_{n, i_{n}}+\frac{t_{n, i_{n}}-s_{n, i_{n}}}{b_{n, i_{n}}-a_{n, i_{n}}}\left(x-a_{n, i_{n}}\right)
$$

if $b_{n, i_{n}}>a_{n, i_{n}}$, and $\alpha_{n}(x)=s_{n, i_{n}}=t_{n, i_{n}}$ otherwise. In general we have $\alpha_{n}(x) \in$ $\left[s_{n, i_{n}}, t_{n, i_{n}}\right]$. Therefore, if $t_{B}=s_{B}$ we infer $\lim _{n \rightarrow \infty} \alpha_{n}(x)=s_{B}$, and if $t_{B}>s_{B}$ we obtain $\lim _{n \rightarrow \infty} \alpha_{n}(x)=s_{B}+\frac{t_{B}-s_{B}}{b_{B}-a_{B}}\left(x-a_{B}\right)$. In any case the limit exists and we define $\alpha(x)=\lim _{n \rightarrow \infty} \alpha_{n}(x)$. Analogously we can proceed with $\beta_{n}(x)$ and define $\beta(x)=\lim _{n \rightarrow \infty} \beta_{n}(x)$.

Now we deal with the case that $x \notin\left[a_{B}, b_{B}\right]$ for all $B \in \mathcal{B}$ (case (II)). Then x defines a cut $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ in \mathcal{B} by putting $\mathcal{B}_{1}=\left\{B \in \mathcal{B} \mid x>b_{B}\right\}$ and $\mathcal{B}_{2}=\{B \in$ $\left.\mathcal{B} \mid x<a_{B}\right\}$. We recapitulate what was shown in the proof of Proposition 3.3: The cut $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ is irrational and if we define $a=\sup _{B \in \mathcal{B}_{1}} a_{B}=\sup _{B \in \mathcal{B}_{1}} b_{B}$ and $b=\inf _{B \in \mathcal{B}_{2}} a_{B}=\inf _{B \in \mathcal{B}_{2}} b_{B}$ then $x \in[a, b]$ and h is constant in the interval $[a, b]$ with a generic point Q which is the limit of the cut $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ as constant value. With s, t and u, v defined accordingly, $a=(s+u) / 2, b=(t+v) / 2$, we further obtain $f([s, t])=g([u, v])=\{Q\}$. For $\tilde{x} \in[a, b]$ we define

$$
\begin{aligned}
& \alpha(\tilde{x})= \begin{cases}s=t & \text { if } a=b \\
s+\frac{t-s}{b-a}(\tilde{x}-a) & \text { otherwise }\end{cases} \\
& \beta(\tilde{x})= \begin{cases}u=v & \text { if } a=b \\
u+\frac{v-u}{b-a}(\tilde{x}-a) & \text { otherwise }\end{cases}
\end{aligned}
$$

In order to justify this definition some warning is indicated here. One can easily construct an example of a loop f such that $\lim _{n \rightarrow \infty} \alpha_{n}(x)$ does not exist for some x. However, one always has $s \leq \liminf \alpha_{n}(x) \leq \limsup \alpha_{n}(x) \leq t$ and since f is constant in $[s, t]$ this causes no problem.

Now we have to show that α and β comply with the intention they were constructed with.
$(f \circ \alpha)(x)=(g \circ \beta)(x)$ for all $x \in[0,1]$: In case (I) $x \in\left[a_{B}, b_{B}\right]$ for some branch $B \in \mathcal{B}$ and we have

$$
\left\|f(\alpha(x))-f_{n}\left(\alpha_{n}(x)\right)\right\| \leq\left\|f(\alpha(x))-f\left(\alpha_{n}(x)\right)\right\|+\left\|f\left(\alpha_{n}(x)\right)-f_{n}\left(\alpha_{n}(x)\right)\right\| .
$$

The first part on the right hand side can be made arbitrarily small since f is continuous and $\alpha_{n}(x)$ converges to $\alpha(x)$ and the second part does so since f_{n} converges to f uniformly. The same applies to g and β. So we arrive at

$$
f(\alpha(x))=\lim _{n \rightarrow \infty} f_{n}\left(\alpha_{n}(x)\right)=\lim _{n \rightarrow \infty} g_{n}\left(\beta_{n}(x)\right)=g(\beta(x))
$$

In case (II) $x \notin\left[a_{B}, b_{B}\right]$ for any branch B we have with notations as before $\alpha(x) \in$ $[s, t]$ and $\beta(x) \in[u, v]$ and hence $f(\alpha(x))=Q=g(\beta(x))$. Just as a further remark we mention here that $h=f \circ \alpha$.
α and β are monotonously increasing functions: Let $x_{1}<x_{2}$. Depending on whether case (I) or (II) apply to x_{1} and x_{2} four cases occur. We only work out one of the mixed cases in detail, the others can be treated similarly. So let $x_{1} \in\left[a_{B}, b_{B}\right]$ for some branch B and let $x_{2} \in[a, b]$ where $[a, b]$ is the interval corresponding to an irrational cut $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ with respect to h. The relation $x_{1}<x_{2}$ just means that $B \in \mathcal{B}_{1}$ and so we deduce

$$
\alpha\left(x_{1}\right) \leq t_{B}<\sup _{B_{1} \in \mathcal{B}_{1}} t_{B_{1}}=s=\alpha(a) \leq \alpha\left(x_{2}\right)
$$

The proof for the monotonicity of β works analogously.
α and β are surjective and thus continuous: From case (I) we see that

$$
\operatorname{ran}(\alpha) \supseteq \bigcup_{B \in \mathcal{B}}\left[s_{B}, t_{B}\right]=f^{-1}\left(\bigcup_{n \geq 0} D_{n}\right)=D_{f}
$$

and for all components $[s, t]$ of the complement of D_{f} which correspond to an irrational cut $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ in \mathcal{B}, in (II) we tailored α such that the interval $[a, b]$ corresponding to $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ with respect to h satisfies $\alpha([a, b])=[s, t]$. Hence α is surjective, and with the respective proof for g, β is surjective, as well.

We summarize the last results in a separate statement.
Theorem 3.7. (i) For f and g in $S(\triangle)$ we have $\sigma(f)=\sigma(g)$ if and only if f and g have a common re-parametrization, i.e. there exist $\alpha, \beta:[0,1] \rightarrow[0,1]$ monotonously increasing and surjective such that $f \circ \alpha=g \circ \beta$.
(ii) An element $\left(\omega_{n}\right)_{n \geq 0}$ in $\lim _{\longleftarrow} S_{n}$ is a representation for a loop f in $S(\triangle)$, i.e. $\left(\omega_{n}\right)_{n \geq 0}=\sigma(f)$, if and only if $\left(\omega_{n}\right)_{n \geq 0}$ is complete.
In other words, the complete elements of $\lim S_{n}$ represent the elements of $S(\triangle)$ modulo re-parametrization.
3.2. A description of the elements in the fundamental group $\boldsymbol{\pi}(\triangle)$. We have proved in Theorem 2.10 that $\varphi([f])=\operatorname{Red}(\sigma(f))$ for all continuous loops f in \triangle. Since φ is an injection the fundamental group $\pi(\triangle)$ can be considered as a subgroup of $\lim G_{n}$ and in this subsection we will characterize the elements of this subgroup.

In the following denote by $\gamma_{n k}$ the projection $\gamma_{k+1} \circ \gamma_{k+2} \circ \ldots \circ \gamma_{n}: S_{n} \rightarrow S_{k}$, and analogously $\delta_{n k}$ denotes the composition of the corresponding δ_{i} 's.

Before we prove the main result we need some preliminaries. Let $P_{1} P_{2} \ldots P_{m}$, $Q_{1} Q_{2} \ldots Q_{k}$ be two words over some alphabet. We define $P_{1} P_{2} \ldots P_{m} \preceq$ $Q_{1} Q_{2} \ldots Q_{k}$ if and only if there exists $\alpha:\{1, \ldots, m\} \rightarrow\{1, \ldots, k\}, \alpha$ injective and order preserving, such that $P_{i}=Q_{\alpha(i)}$ for all $i \in\{1, \ldots, m\}$. This means that the first word is a subsequence of the second which differs from the notion subword we have used before (cf. elementary moves (2.4)).
Lemma 3.8. Let $\omega_{n}, \bar{\omega}_{n} \in S_{n}$. Then
(i) $\operatorname{Red}_{n}\left(\omega_{n}\right) \preceq \omega_{n}$,
(ii) $\omega_{n} \preceq \bar{\omega}_{n}$ implies $\gamma_{n k}\left(\omega_{n}\right) \preceq \gamma_{n k}\left(\bar{\omega}_{n}\right)$ for all $k \leq n$,
(iii) if $\left(\omega_{k}\right)_{k \geq 0} \in \lim G_{n}$ then $\gamma_{n k}\left(\omega_{n}\right) \preceq \gamma_{n+1, k}\left(\omega_{n+1}\right)$ for all $k \leq n$.

Proof. (i) is evident since Red_{n} eliminates just some letters from the word.
(ii) It is enough to prove that $\gamma_{n}\left(\omega_{n}\right) \preceq \gamma_{n}\left(\bar{\omega}_{n}\right)$. The bonding map γ_{n} first eliminates all points of order n from ω_{n} and $\bar{\omega}_{n}$, resulting in words ω_{n}^{\prime} and $\bar{\omega}_{n}^{\prime}$, respectively, and then cancels in each of these words all arising consecutive repetitions of letters of order $<n$, before arriving at $\gamma_{n}\left(\omega_{n}\right)$ and $\gamma_{n}\left(\bar{\omega}_{n}\right)$. Clearly, $\omega_{n}^{\prime} \preceq \bar{\omega}_{n}^{\prime}$, as testified by some order preserving injection α. Choose α in a way that $\alpha(i)$ is minimal for each i. Then α, restricted to the indices of the remaining letters, testifies $\gamma_{n}\left(\omega_{n}\right) \preceq \gamma_{n}\left(\bar{\omega}_{n}\right)$.
(iii) We have $\gamma_{n k}\left(\omega_{n}\right)=\gamma_{n k}\left(\delta_{n+1}\left(\omega_{n+1}\right)\right)=\gamma_{n k}\left(\operatorname{Red}_{n}\left(\gamma_{n+1}\left(\omega_{n+1}\right)\right)\right) \preceq$ $\gamma_{n k}\left(\gamma_{n+1}\left(\omega_{n+1}\right)\right)=\gamma_{n+1, k}\left(\omega_{n+1}\right)$, where we used (i) and (ii) as \preceq came in.

We are now in the position to give a proof of our main result.
Proof of Theorem 1.1. We fix the element $\left(\omega_{n}\right)_{n \geq 0}$ in $\lim G_{n}$. First we prove the necessity of the condition. Let $\left(\bar{\omega}_{n}\right)_{n \geq 0}$ be in $\lim S_{n}$ such that $\operatorname{Red}\left(\left(\bar{\omega}_{n}\right)_{n \geq 0}\right)=$ $\left(\omega_{n}\right)_{n \geq 0}$. Then for all $k \geq 0$ and all $n \geq k$ we have $\bar{\omega}_{k}=\gamma_{n k}\left(\bar{\omega}_{n}\right) \succeq$ $\gamma_{n k}\left(\operatorname{Red}_{n}\left(\bar{\omega}_{n}\right)\right)=\gamma_{n k}\left(\omega_{n}\right)$ where we used (i) and (ii) of Lemma 3.8. By (iii) of Lemma 3.8 we get

$$
\gamma_{n k}\left(\omega_{n}\right) \preceq \gamma_{n+1, k}\left(\omega_{n+1}\right) \preceq \ldots \preceq \bar{\omega}_{k}
$$

hence $\left(\gamma_{n k}\left(\omega_{n}\right)\right)_{n \geq k}$ is eventually constant.

Now we prove the sufficiency of the condition. Put $\bar{\omega}_{k}=\gamma_{n k}\left(\omega_{n}\right)$ which is well defined for $n \geq n_{k}, k \geq 0$. We show that
(i) $\left(\bar{\omega}_{k}\right)_{k \geq 0} \in \lim _{\longleftarrow} S_{n}$ and
(ii) $\operatorname{Red}\left(\bar{\omega}_{k}\right)_{k \geq 0}=\left(\omega_{n}\right)_{n \geq 0}$.

For $k \geq 1$ and $n \geq \max \left\{n_{k}, n_{k-1}\right\}$ we obtain $\gamma_{k}\left(\bar{\omega}_{k}\right)=\gamma_{k}\left(\gamma_{n k}\left(\omega_{n}\right)\right)=$ $\gamma_{n, k-1}\left(\omega_{n}\right)=\bar{\omega}_{k-1}$. This shows (i).

Before we come to (ii) we prove $\delta_{n k}=\operatorname{Red}_{k} \circ \gamma_{n k}$: In Lemma 2.6 we showed $\operatorname{Red}_{i-1} \circ \gamma_{i} \circ \operatorname{Red}_{i}=\operatorname{Red}_{i-1} \circ \gamma_{i}$ for all $i \geq 1$. Obeying $\delta_{i}=\operatorname{Red}_{i-1} \circ \gamma_{i}$, iterated application of this identity leads immediately to the claimed relation.

Finally, for $k \geq 0$ and $n \geq n_{k}$ we infer $\operatorname{Red}_{k}\left(\bar{\omega}_{k}\right)=\operatorname{Red}_{k}\left(\gamma_{n k}\left(\omega_{n}\right)\right)=\delta_{n k}\left(\omega_{n}\right)=$ ω_{k}, which proves (ii). Due to Proposition 3.4 we can find $f \in S(\triangle)$ such that $\operatorname{Red}(\sigma(f))=\operatorname{Red}\left(\bar{\omega}_{k}\right)_{k \geq 0}=\left(\omega_{n}\right)_{n \geq 0}$ and thus

$$
\left(\omega_{n}\right)_{n \geq 0}=\operatorname{Red}(\sigma(f))=\varphi([f])
$$

This completes the proof.
Acknowledgement. The authors would like to thank the referee for the eminently careful report containing several valuable comments.

References

[1] Akiyama, Shigeki and Thuswaldner, Jörg. A survey on topological properties of tiles related to number systems. Geom. Dedicata 109 (2004), 89-105.
[2] Bandt, Christoph and Keller, Karsten. Self-similar sets. II. A simple approach to the topological structure of fractals. Math. Nachr. 154 (1991), 27-39.
[3] Cannon, James W. and Conner, Gregory R. The combinatorial structure of the Hawaiian earring group. Topology Appl. 106 (2000) 225-271.
[4] Cannon, James W. and Conner, Gregory R. The big fundamental group, big Hawaiian earrings, and the big free groups. Topology Appl. 106 (2000), no. 3, 273-291.
[5] Cannon, James W. and Conner, Gregory R. On the fundamental groups of onedimensional spaces. Preprint.
[6] Conner, Gregory R. and Eda, Katsuya. Fundamental groups having the whole information of spaces. Topology Appl. 146/147 (2005), 317-328.
[7] Conner, Gregory R. and Lamoreaux, Jack W. On the existence of universal covering spaces for metric spaces and subsets of the euclidean plane. Preprint.
[8] Curtis, M. L. and Fort, M. K. Homotopy groups of one-dimensional spaces. Proc. Amer. Math. Soc. 8 (1957), 577-579.
[9] Curtis, M. L. and Fort, M. K. The fundamental group of one-dimensional spaces. Proc. Amer. Math. Soc. 10 (1959), 140-148.
[10] Curtis, M. L. and Fort, M. K. Singular homology of one-dimensional spaces. Ann. Math. (2) 69 (1959), 309-313.
[11] de Smit, Bart. The fundamental group of the Hawaiian earring is not free. Internat. J. Algebra Comput. 2 (1992), no. 1, 33-37.
[12] Eda, Katsuya. The fundamental groups of one-dimensional spaces and spatial homomorphisms. Topology Appl. 123 (2002), 479-505.
[13] Eda, Katsuya and Kawamura, Kazuhiro. The fundamental groups of one-dimensional spaces. Topology Appl. 87 (1998), 163-172.
[14] Eda, Katsuya and Kawamura, Kazuhiro. The singular homology of the Hawaiian earring. J. London Math. Soc. (2) 62 (2000), no. 1, 305-310.
[15] Eda, Katsuya and Kawamura, Kazuhiro. Homotopy and homology groups of the n dimensional Hawaiian earring. Fund. Math. 165 (2000), no. 1, 17-28.
[16] Fischer, Hanspeter and Zastrow, Andreas. The fundamental groups of subsets of closed surfaces inject into their first shape groups. Algebr. Geom. Topol. 5 (2005), 1655-1676.
[17] Fort, M. K. Mappings on S^{1} into one-dimensional spaces. Illinois J. Math. 1 (1957), 505-508.
[18] Hata, Masayoshi. On the structure of self-similar sets. Japan J. Appl. Math. 2 (1985), no. 2, 381-414.
[19] Hata, Masayoshi. Topological aspects of self-similar sets and singular functions. Fractal geometry and analysis (Montreal, PQ, 1989), 255-276, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 346, Kluwer Acad. Publ., Dordrecht, 1991.
[20] Higman, Graham. Unrestricted free products, and varieties of topological groups. J. London Math. Soc. 27, (1952). 73-81.
[21] Hutchinson, John E. Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981), no. 5, 713-747.
[22] Luo, Jun and Thuswaldner, Jörg. On the Fundamental Group of self-affine plane Tiles, Ann. Inst. Fourier (Grenoble), to appear.
[23] Mardešić, Sibe and Segal, Jack. Shape theory. The inverse system approach. NorthHolland Mathematical Library, 26. North-Holland Publishing Co., Amsterdam-New York, 1982.
[24] Morgan, John W. and Morrison, Ian. A van Kampen theorem for weak joins. Proc. London Math. Soc. (3) 53 (1986), no. 3, 562-576.
[25] Rotman, Joseph J. An introduction to algebraic topology. Graduate Texts in Mathematics, Springer-Verlag, New York, 1988.
[26] Whyburn, Gordon and Duda, Edwin. Dynamic topology. Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1979.
[27] Winkler, Reinhard. Topological automorphisms of modified Sierpiński gaskets realize arbitrary finite permutation groups. Topology Appl. 101 (2000) 137-142.
[28] Zastrow, Andreas. Planar sets are aspherical. Habilitation Thesis, Ruhr-University Bochum, 1997/98.
[29] Zastrow, Andreas. Construction of an infintely generated group that is not a free product of surface groups and abelian groups, but which acts freely on an \mathbb{R}-tree. Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 433-445.
(S. A.) Department of Mathematics, Faculty of Science, Nifgata University, Ikarashi 2-8050, Nilgata 950-2181, JAPAN

E-mail address: akiyama@math.sc.niigata-u.ac.jp
(G. D. \& R. W.) Institute for Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstr. 8-10/104, 1040 Vienna, AUSTRIA

E-mail address: g.dorfer@tuwien.ac.at
E-mail address: reinhard.winkler@tuwien.ac.at
(J. M. T.) Chair of Mathematics and Statistics, Department Mathematics and Information Technology, University of Leoben, Franz-Josef-Strasse 18, A-8700 Leoben, AUSTRIA

E-mail address: joerg.thuswaldner@unileoben.ac.at

[^0]: Date: December 9, 2008.
 2000 Mathematics Subject Classification. 14F35, 28A80.
 Key words and phrases. Sierpiński-gasket, fundamental group.
 The authors thank the Austrian Science Foundation FWF for its support through Projects no. S9610-N13 and S9612-N13.

 The second author gratefully acknowledges hospitality and support of the National University of Singapore offered during a research visit in August-September 2005.

[^1]: ${ }^{1}$ Note that the Čech homotopy group is called shape group in this text.

