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Abstract. Shift radix systems have been introduced by Akiyama et

al. as a common generalization of β-expansions and canonical number
systems. In the present paper we study a variant of them, so-called sym-
metric shift radix systems which were introduced recently by Akiyama
and Scheicher. In particular, for d ∈ N and r ∈ R

d let (a = (a1, . . . , ad))

τr : Z
d → Z

d, a 7→

(

a2, . . . , ad,−

⌊

r1a1 + r2a2 + · · ·+ rdad +
1

2

⌋)

.

The mapping τr is called a symmetric shift radix system, if

∀a ∈ Z
d ∃n ∈ N : τn

r
(a) = 0.

Akiyama and Scheicher found out that the parameters r giving rise to
a symmetric shift radix system in R

2 form an isosceles triangle together
with parts of its boundary. In the present paper we completely charac-
terize all symmetric shift radix systems in the three dimensional space.
The result is that r ∈ R

3 gives rise to a symmetric shift radix system
τr if and only if r is contained in the union of three convex polyhe-
dra (together with some parts of their boundary). We describe this set
explicitly.

1. Introduction

In Akiyama et al. [1] a dynamical system called shift radix system has

been introduced.

Definition 1.1 (cf. [1]). Let d ≥ 1 be an integer, r ∈ R
d, and let

τ̃r : Z
d → Z

d, a = (a1, . . . , ad) 7→ (a2, . . . , ad,−⌊ra⌋),

where ra = r1a1 + r2a2 + · · ·+ rdad, i.e., the inner product of the vectors r

and a. Then τ̃r is called a shift radix system (SRS for short), if

∀a ∈ Z
d ∃n ∈ N : τ̃n

r
(a) = 0.

SRS are related to number systems as β-expansions (cf. for instance

[8, 9, 11]) or canonical number systems (cf. for instance [10]). Indeed they
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form a unification and generalization of these notions of number systems.

More details about SRS and their relation to β-expansions and canonical

number systems can be found in [1, 2, 3, 13]. In this paper we want to deal

with a variant of SRS, the so-called symmetric shift radix systems.

Definition 1.2 (cf. [4]). Let d ≥ 1 be an integer, r ∈ R
d, and let

(1.1) τr : Z
d → Z

d, a = (a1, . . . , ad) 7→

(

a2, . . . , ad,−

⌊

ra +
1

2

⌋)

.

Then τr is called a symmetric shift radix system (SSRS for short), if

∀a ∈ Z
d ∃n ∈ N : τn

r
(a) = 0.

Observe that the only difference between the two definitions is just the

additional summand “+1
2
” inside the floor function in (1.1).

SSRS have been already treated by Akiyama and Scheicher [4]. It was

proved there that, analogously to the classical SRS, we have a strong rela-

tionship to certain notions of number systems. In particular SSRS form a

common generalization of symmetric β-expansions and symmetric canonical

number systems (SCNS). For the sake of completeness we recall the defini-

tion of these number systems and summarize the results on their relation

to SSRS.

Definition 1.3 (cf. [4]). Let β > 1 be a real non-integral number. The

unique representation of a positive γ ∈ R of the form

γ = dmβm + dm−1β
m−1 + dm−2β

m−2 + · · ·

for some m ∈ Z with dk ∈ (−β+1
2

, . . . , β+1
2

) ∩ Z, k ≤ m, such that the

condition

−
βk+1

2
≤
∑

i≤k

diβ
i <

βk+1

2

is satisfied for any k ≤ m, is called the symmetric β-expansion of γ. We

say that β has property (SF) if all γ ∈ Z[β−1] admit a finite symmetric

β-expansion.

In the same way as for property (F) of ordinary β-expansions (see [8])

it can be shown that a number β with property (SF) is necessarily a Pisot

number.

Theorem 1.4 (cf. [4, Theorem 3.6]). A Pisot number β with minimal

polynomial (x − β)(xd−1 + rd−1x
d−2 + · · · + r2x + r1) has Property (SF) if

and only if τ(r1,...,rd−1) is an SSRS.

There is a similar statement for SCNS whose definition we want to recall

now.
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Definition 1.5 (cf. [4]). Let P (x) = xd + ad−1x
d−1 + · · ·+ a1x + a0 ∈ Z[x],

|a0| ≥ 2, R := Z[x]/P (x)Z[x], X ∈ R the image of x under the canonical

epimorphism from Z[x] to R and N :=
[

− |a0|
2

, |a0|
2

)

∩ Z. (P (x),N ) is

called a symmetric canonical number system (SCNS) if each R ∈ R can be

represented as

R =
n
∑

i=0

liX
i, li ∈ N .

Theorem 1.6 (cf. [4, Theorem 2.1]). (P (x),N ) with P (x) = xd+ad−1x
d−1+

· · · + a1x + a0 ∈ Z[x] and N :=
[

− |a0|
2

, |a0|
2

)

∩ Z is an SCNS if and only if

τr is an SSRS, where r =
(

1
a0

, ad−1

a0
, . . . , a1

a0

)

.

Now, in order to show the differences between SSRS and SRS, we de-

fine the following sets related to the behavior of the orbits of τ̃r and τr,

respectively. Let

D̃d :=
{

r ∈ R
d
∣

∣∀a ∈ Z
d ∃n, l ∈ N : τ̃ k

r
(a) = τ̃ k+l

r
(a) ∀k ≥ n

}

and

D̃0
d :=

{

r ∈ R
d |τ̃r is an SRS

}

,

as well as

Dd :=
{

r ∈ R
d
∣

∣∀a ∈ Z
d ∃n, l ∈ N : τ k

r
(a) = τ k+l

r
(a) ∀k ≥ n

}

and

D0
d :=

{

r ∈ R
d |τr is an SSRS

}

.

For r = (r1, . . . , rd) ∈ R
d, let

R(r) =















0 1 0 · · · 0
... 0

. . . . . .
...

...
...

. . . 1 0
0 0 · · · 0 1
−r1 −r2 · · · −rd−1 −rd















.

For M ∈ R
d×d, denote by ̺(M) the spectral radius of M , i.e., the maximum

absolute value of the eigenvalues of M . For simplicity, we write ̺(r) :=

̺(R(r)). Let

Ed(ε) = {r ∈ R
d : ̺(r) < ε}.

It is known that the Ed(ε) is a regular set, i.e., the set coincides with the

closure of its interior.

We start with the comparison of the sets Dd and D̃d. Firstly, it can

easily be seen that their interiors are the same since from [1] we know

Ed(1) ⊂ D̃d ⊂ Ed(1) while in [4] it has been shown that

(1.2) Ed(1) ⊂ Dd ⊂ Ed(1).

We will dwell upon the set Dd in Section 2. However, the sets D0
d and D̃0

d

have different behavior. Properties of the set D̃0
d have been developed in

[1, 2, 3]. In [2, 13] special attention was paid to the two dimensional case
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Figure 1. An approximation of D̃0
2

Figure 2. The shape of D0
2

D̃0
2. It turns out that the structure of D̃0

2 is very complicated and although

large parts of the set could be characterized, a full characterization is still

outstanding. An approximation of D̃0
2 is shown in Figure 1.

The sets D̃0
d for d ≥ 3 are not yet investigated in detail, however, computer

experiments indicate that D̃0
3 is hard to describe.

For the case of SSRS the situation becomes more pleasant at least for low

dimensions. Akiyama and Scheicher [4] presented the surprising result that

D0
2 has a really simple characterization (see Figure 2). They found out that

D0
2 =

{

(x, y) ∈ R
2

∣

∣

∣

∣

x ≤
1

2
,−x−

1

2
< y ≤ x +

1

2

}

\

{

(
1

2
, y) ∈ R

2

∣

∣

∣

∣

1

2
< y < 1

}

,

i.e., D0
2 is an isosceles triangle together with some parts of its boundary. In

the present paper we are interested in the shape of the set D0
3. Amazingly,

we will see that D0
3 can be described completely as a simple as well as

interesting body.
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The paper is organized as follows. In Section 2 we concentrate on Dd

and its relation with D0
d in general and specially if d = 3. Furthermore, we

present an algorithm that is useful for the description of D0
d. It was firstly

presented in [6] and later has been adapted for SSRS in [4]. In Section 3 we

will state the exact characterization of the set D0
3. In Section 4 we will prove

this characterization result by using the algorithm presented in Section 2

together with some other algorithms related to bodies defined by polynomial

inequalities such as the cylindrical algebraic decomposition algorithm (cf.

Collins [7]).

2. Construction of D0
3 from D3

Let us consider the set Dd. By (1.2) apart from the boundary, the set Dd

coincides with the set Ed(1) and their closures are equal. As the minimal

polynomial of R(r) is given by

(2.1) xd + rdx
d−1 + · · ·+ r2x + r1

the problem of characterizing Ed(ε) is equivalent to the problem of finding

polynomials of the form (2.1) whose roots lie inside the ε multiple of the unit

ball. This problem was already settled in [12, 15]. From these references we

easily get the following lemma.

Lemma 2.1. A vector r = (r1, ..., rd) is contained in Ed(ε) if and only if

the Hermitian form

Hd(x0, . . . , xd−1) :=
d−1
∑

i=0

∣

∣

∣

∣

∣

d−1
∑

j=i

εd+i−jrd+i−j+1xj

∣

∣

∣

∣

∣

2

−
d−1
∑

i=0

∣

∣

∣

∣

∣

d−1
∑

j=i

εj−irj−i+1xj

∣

∣

∣

∣

∣

2

with rd+1 = 1 is positive definite.

Now we turn to the study of D0
d. To this matter we recall the following

definitions (cf. for instance Barnsley [5, Chapter IV, Definitions 3.1 and

3.2]).

Definition 2.2. Let τr with r ∈ R
d be given.

• Let x ∈ Z
d. Then the set {τn

r
(x) |n ∈ {0, 1, 2, . . .}} is called the

orbit of x.

• A point x ∈ Z
d is called periodic point if there is a positive integer

L such that x = τL
r
(x). The integer L is called a period of x.

• The orbit of a periodic point is called a cycle.

The set D0
d can be constructed from the set Dd by cutting out convex

polyhedra. For r = (r1, . . . , rd) ∈ Dd an element a = (a1, . . . , ad) ∈ Z
d \ {0}

is a non-zero periodic point of τr of period L if a = τL
r
(a). From the

definition of D0
d it follows that the existence of such a periodic point is
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necessary and sufficient for r 6∈ D0
d. Suppose that the orbit of a (which is

in fact a cycle) consists of the points

τ j
r
(a) = (a1+j, . . . , ad+j) (0 ≤ j ≤ L− 1),

where aL+1 = a1, ..., aL+d−1 = ad−1. We denote such a cycle by

(a1, . . . , ad); ad+1, . . . , aL

and say that it is a cycle of τr or just a cycle of Dd.

Let a non-zero cycle π := (a1, . . . , ad); ad+1, . . . , aL be given. We may ask

for the set P (π) of all r ∈ Dd for that π occurs as a cycle of τr. By the

definition of τr, an element r ∈ P (π) has to satisfy the system of L double

inequalities

(2.2) −
1

2
≤ r1a1+i + r2a2+i + · · ·+ rdad+i + ad+1+i <

1

2
.

Here i runs from 0 to L − 1 and aL+1 = a1, . . . , aL+d = ad. Such a system

characterizes a convex polyhedron, which is possibly degenerated or equal to

the empty set. Therefore we will call P (π) a cutout polyhedron. Example 2.5

shows how P (π) could look like for a given cycle in the three dimensional

case. Since each point r ∈ P (π) has π as a cycle of the associated mapping τr

the set P (π) has empty intersection withD0
d. Thus we get the representation

D0
d = Dd \

⋃

π 6=0

P (π),

where the union is extended over all non-zero cycles π. Since the set of cycles

can a priori be infinite, this expression is not suitable for calculations. The

following theorem shows how to reduce the set of possible cycles to a finite

set and gives an efficient algorithm for a closed subset H of intDd = Ed(1) to

determine H ∩D0
d. It was presented for the first time for canonical number

systems in [6] and further improved and adapted to SRS in [1, 2, 13]. In [4]

the algorithm was established for SSRS. Basically we will use this version.

Let ei be the i-th canonical unit vector. For an r = (r1, . . . , rd) ∈ intDd,

denote by V(r) ⊂ Z
d the smallest set with the properties

(1) ±ei ∈ V(r), i = 1, . . . , d,

(2) (a1, . . . , ad) ∈ V(r)⇒ (a2, . . . , ad+1) ∈ V(r) where ad+1 satisfies

−1 < r1a1 + r2a2 + · · ·+ rdad + ad+1 < 1.

V(r) ⊂ Z
d is called a set of witnesses for r. Additionally define G(V(r)) =

V × E to be the graph with set of vertices V = V(r) and set of edges

E ⊂ V × V such that

∀a ∈ V : (a, τr(a)) ∈ E.

The set of vertices is exactly the same as in [1]. The edges are defined in a

different way. There exists only one outgoing edge for each vertex. We are
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interested in the cyclic structure of such graphs. A cycle a1 → a2 → · · · →

aL → a1 in the graph G(V(r)) induces a periodic point of period L (and

therefore a cycle) for τr in an obvious way.

Theorem 2.3 (cf. [4, Theorem 4.2]). Let r1, . . . , rk ∈ Dd and let H :=

�(r1, . . . , rk) be the convex hull of r1, . . . , rk. Assume that H ⊂ intDd and

sufficiently small in diameter. Then there exists an algorithm to construct

a finite directed graph G(H) = V × E with vertices V ⊂ Z
d and edges

E ⊂ V × V which satisfies

(1) ±ei ∈ V for all i = 1, . . . , d,

(2) G(V(x)) is a subgraph of G(H) for all x ∈ H,

(3) H ∩ D0
d = H \

⋃

π P (π), where π runs through all cycles induced by

the nonzero primitive cycles of G(H).

Remark 2.4. Note that there are cycles in the graph G(H) that do not

correspond to a cycle of any τr. In this case we set P (π) = ∅ because the

set of inequalities in (2.2) has no solution.

Observe that the theorem can be extended to any convex set H ⊂ intDd

analogously to [13]. In our context the version presented in Theorem 2.3

suffices. In practice, the graph in Theorem 2.3 is constructed by successively

adding new vertices. Note that the restriction “sufficiently small” is not

superfluous. It turns out that the size of the set of vertices in the graph in

Theorem 2.3 can grow to infinity if H is chosen too big. For more detailed

information on this topic, see [4, 13]. For us it is only important to choose

H in a way that everything stays finite. This can be realized by a suitable

subdivision of a given set. We will turn to this problem in Section 4.

Theorem 2.3 proved to be a powerful tool for characterizing D0
d. If it

is used properly, D0
d ∩ H can be characterized for any closed H ⊂ intDd.

Thus, whenever there exists such an H with D0
d ⊂ H there is a chance to

characterize D0
d completely. That was the case for d = 2 and we will see

that this is valid for d = 3, too. For classical SRS, there does not exist such

a set H for d ≥ 2.

Our aim is to characterize D0
3. We already know that

E3(1) ⊂ D3 ⊂ E3(1).

From Lemma 2.1 we calculate

(2.3)

E3(1) =
{

(x, y, z) ∈ R
3
∣

∣ |x| < 1, |y − xz| < 1− x2, |x + z| < |y + 1|
}

.

The following example shows how a given cycle cuts out a polyhedron from

E3(1).
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Figure 3. The position of P (π) in E3(1)

Example 2.5. Consider the cycle π := (1, 1,−1);−1, 0. It induces a system

of inequalities (2.2) which describes the polyhedron P (π). In our case we

get

P (π) =
{

(x, y, z)
∣

∣

∣
−

1

2
≤ x + y − z − 1 <

1

2
∧ −

1

2
≤ x− y − z <

1

2

∧ −
1

2
≤ −x− y + 1 <

1

2
∧ −

1

2
≤ −x + z + 1 <

1

2

∧ −
1

2
≤ y + z − 1 <

1

2

}

.

By removing redundant inequalities, this reduces to

P (π) =
{

(x, y, z)
∣

∣

∣ x + y − z − 1 <
1

2
∧ x− y − z <

1

2
∧ −

1

2
≤ −x− y + 1

∧ −x + z + 1 <
1

2
∧ −

1

2
≤ y + z − 1

}

yielding a polyhedron with five faces. P (π) only contains r ∈ Dd with

τ 5
r
((1, 1,−1)) = (1, 1,−1) and, hence, P (π) has empty intersection with D0

3.

Figure 3 shows the position of P (π) in E3(1). It is easy to see that P (π)

really cuts out some part of D3.

In the sequel we will need E3(1) and there some problems occur. Suppose

the set which is obtained by changing all the strict inequalities (“<”) in

(2.3) to non-strict inequalities (“≤”). One may think that it equals E3(1),

but this is not the case. It can be easily seen that this set contains the

unbounded lines (1, λ, λ), λ ∈ R and (−1, µ,−µ), µ ∈ R which cannot be

true for E3(1). Hence, E3(1) is only a subset of this set. We will solve the

problem by adding some suitable inequalities. Let

E ′3 :=
{

(x, y, z) ∈ R
3
∣

∣ |x| ≤ 1 ∧ |y − xz| ≤ 1− x2

∧ |x + z| ≤ |y + 1| ∧ |y − 1| ≤ 2 ∧ |z| ≤ 3
}
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and consider the intersection of E ′3 with the hyperplane

Ac :=
{

(x, y, z) ∈ R
3 | x− c = 0

}

for constant c.

Lemma 2.6. For any |c| < 1 the intersection of E ′3 with the plane Ac

yields the closed triangle △(A
(1)
c , A

(2)
c , A

(3)
c ) with A

(1)
c = (c,−1,−c), A

(2)
c =

(c, 1− 2c, c− 2), A
(3)
c = (c, 2c + 1, c + 2).

Proof. We have

E ′3 ∩ Ac =
{

(c, y, z) ∈ R
3
∣

∣ |y − cz| ≤ 1− c2 ∧ |c + z| ≤ |y + 1|

∧ |y − 1| ≤ 2 ∧ |z| ≤ 3
}

.

As all inequalities are linear, this is a convex set. It is quickly verified that

A
(1)
c , A

(2)
c , A

(3)
c ∈ E ′3 ∩ Ac. Thus △(A

(1)
c , A

(2)
c , A

(3)
c ) ⊂ E ′3 ∩ Ac. On the other

hand consider the closed convex set

Bc :=
{

(c, y, z)
∣

∣ y − cz ≤ 1− c2 ∧ c + z ≤ y + 1 ∧ −y − 1 ≤ c + z
}

.

Observe that for its definition we used only inequalities that occurred in the

definition of E ′3∩Ac and hence we have E ′3∩Ac ⊂ Bc. Pairwise intersection of

the three boundary lines of Bc yields exactly the three points A
(1)
c , A

(2)
c , A

(3)
c

and therefore △(A
(1)
c , A

(2)
c , A

(3)
c ) = Bc ⊃ E

′
3 ∩ Ac. �

Theorem 2.7. E3(1) = E ′3.

Proof. Obviously E ′3 is a closed set while E3(1) is open. We state that

int E ′3 = E3(1). From Lemma 2.6 we know

E ′3 ∩ Ac = {(c, y, z) | y − cz ≤ 1− c2 ∧ c + z ≤ y + 1 ∧ −y − 1 ≤ c + z}

and as every point of E3(1) is inside E ′3 ∩ Ac for some |c| < 1 we have

E ′3 =
⋃

|c|≤1

(E ′3 ∩ Ac) ⊃ E3(1)

and therefore

int E ′3 ⊃ int E3(1) = E3(1).

On the other hand denote by int Ac
(E ′3 ∩ Ac) the interior of the set E ′3 ∩

Ac(subspace topology) for |c| < 1, i.e., the open triangle defined in Lem-

ma 2.6, and observe that

int E ′3 =
⋃

|c|<1

int Ac
(E ′3 ∩ Ac)

as we can find a neighborhood around each point of int Ac
(E ′3 ∩ Ac), |c| < 1

which is contained in E ′3. Further each point of int Ac
(E ′3 ∩ Ac) satisfies the

conditions of E3(1) whenever |c| < 1. Hence

int E ′3 =
⋃

|c|<1

int (E ′3 ∩ Ac) ⊂ E3(1).
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Thus we have shown that int E ′3 = E3(1).

To prove the theorem we show E ′3 = int E ′3. We already have that

int E ′3 =
⋃

|c|<1 int Ac
(E ′3 ∩ Ac). Hence we look at the convergent sequences

of points contained in
⋃

|c|<1 int (E ′3 ∩ Ac). Such a sequence converges either

to some point within
⋃

|c|<1(E
′
3∩Ac) or to some point within one of the sets

limc→±1(E
′
3 ∩ Ac). From Lemma 2.6 we already have

E ′3 ∩ Ac = △((c,−1,−c)(c, 1− 2c, c− 2), (c, 2c + 1, c + 2))

and we see that

lim
c→1

(E ′3 ∩ Ac) = {(1, λ, λ) | −1 ≤ λ ≤ 3},

lim
c→−1

(E ′3 ∩ Ac) = {(−1, λ,−λ) | −1 ≤ λ ≤ 3}

which exactly correspond to the sets (E ′3 ∩ A±1). Thus

E3(1) = int E ′3 =
⋃

|c|≤1

(E ′3 ∩ Ac) = E ′3

and we are done. �

Finally we have a representation of the closure of E3(1). In the proof of

Lemma 2.6 we already recognized that the number of inequalities to describe

E ′3 can be reduced. Indeed, by using an algorithm (Algorithm 3) which we

will present in Section 4, we gain

E3(1) =
{

(x, y, z)
∣

∣|x + z| ≤ 1 + y ∧ y − xz ≤ 1− x2 ∧ |z| ≤ 3
}

.

3. Statement of the main result

In this section we give a complete description of D0
3. For this reason we

define the sets

S1 := {(x, y, z) | 2x− 2z ≥ 1 ∧ 2x + 2y + 2z > −1 ∧ 2x + 2y ≤ 1

∧ 2x ≤ 1 ∧ 2x− 2y + 2z ≤ 1},

S2 := {(x, y, z) | x− z ≤ −1 ∧ 2x− 2y + 2z ≤ 1 ∧ −2x + 2y ≤ 1

∧ 2x > −1},

S3 := {(x, y, z) | x− z > −1 ∧ 2x− 2y + 2z ≤ 1 ∧ −2x + 2y < 1, 2x > −1

∧ 2x− 2z < −1 ∧ 2x + 2y + 2z > −1},

S4 := {(x, y, z) | 2x− 2y + 2z ≤ 1 ∧ −2x + 2y ≤ 1 ∧ 2x− 2z = −1

∧ 2x + 2y + 2z > −1},

S5 := {(x, y, z) | − 1 < 2x ≤ 1 ∧ −1 < 2x− 2z ≤ 1 ∧ 2x + 2y + 2z > −1

∧ 2x− 2y + 2z ≤ 1 ∧ 2x + 4y − 2z < 3 ∧ 2y ≤ 1}
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Figure 4. A view of D0
3

and denote their union by

S :=
⋃

i∈{1,...,5}

Si.

Note that S1, S2, S3, S5 are polyhedra while S4 is a polygon. The following

theorem states the main result of the present paper.

Theorem 3.1. D0
3 = S.

Two views of the set D0
3 are depicted in Figure 4 and Figure 5. For rotat-

ing 3D-pictures of D0
3 we refer the reader to the authors’ home pages [14].

In Section 4 we will prove this theorem. Here we want to give an outline

of the proof. In a first step we will use Theorem 2.3 in order to show that

(3.1) S ⊆ D0
3.

For showing the opposite inclusion we need a set of nonzero cycles Π such

that for P :=
⋃

π∈Π P (π) we have

S ∪ P ⊇ D3.

From (3.1) we can deduce S ∩ P = ∅. Thus,

S ⊇ D3 \ P ⊇ D
0
3.
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Figure 5. A view of D0
3

Since D3 ⊂ E3(1) we are done if we can cover E3(1) with P ∪ S, i.e., if we

can show that

P ∪ S ⊇ E3(1).

4. Proof of the main result

We will prove our result in two parts according to the outline given in

the previous section. First of all, we set up some notations.

Notation 4.1. For a logical system J of inequalities, which are combined

by ∧ and ∨, denote by X(J ) the set of all points that satisfy J . Let P

a set of inequalities. Then
∧

P and
∨

P denote the systems
∧

I∈P I and
∨

I∈P I, respectively.

For the rest of the section denote by Ti the set of inequalities that de-

fine the set Si for i ∈ {1, . . . , 5}. These sets are assembled only of single
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inequalities. We have

T1 := {2x− 2z ≥ 1, 2x + 2y + 2z > −1, 2x + 2y ≤ 1, 2x ≤ 1,

2x− 2y + 2z ≤ 1},

T2 := {x− z ≤ −1, 2x− 2y + 2z ≤ 1,−2x + 2y ≤ 1, 2x > −1},

T3 := {x− z > −1, 2x− 2y + 2z ≤ 1,−2x + 2y < 1, 2x > −1,

2x− 2z < −1, 2x + 2y + 2z > −1},

T4 := {2x− 2y + 2z ≤ 1,−2x + 2y ≤ 1, 2x− 2z ≤ −1, 2x− 2z ≥ −1,

2x + 2y + 2z > −1},

T5 := { − 1 < 2x, 2x ≤ 1,−1 < 2x− 2z, 2x− 2z ≤ 1, 2x + 2y + 2z > −1,

2x− 2y + 2z ≤ 1, 2x + 4y − 2z < 3, 2y ≤ 1},

hence the equality of S4 and the two double inequalities of S5 are split into

single inequalities. Thus, Si = X(
∧

Ti) for i = 1, . . . , 5. Denote by T̄i the

set Ti with all the strict inequalities changed to not strict ones. Since all

occurring inequalities are linear it can easily be checked that Si = X(
∧

T̄i).

Table 1 shows 43 different cycles with corresponding period L, we denote

the corresponding polyhedron by P (πj), where j ∈ {1, . . . , 43}.

Now for each i ∈ {1, . . . , 43} define Qi as the set of single inequalities

such that P (πi) = X(
∧

Qi). For instance, the set Q19 can be defined by

Q19 :=
{

−
1

2
≤ x + y − z − 1, x + y − z − 1 <

1

2
,−

1

2
≤ x− y − z,

x− y − z <
1

2
,−

1

2
≤ −x− y + 1,−x− y + 1 <

1

2
,

−
1

2
≤ −x + z + 1,−x + z + 1 <

1

2
,−

1

2
≤ y + z − 1,

y + z − 1 <
1

2

}

(see also Example 2.5). Finally we set

P :=
43
⋃

j=1

P (πj).

Remark 4.2. We note that the construction of the set S as well as the

exhibition of the 43 cycles corresponding to relevant cutout polyhedra has

been achieved by extensive computer experiments. Up to now we do not

know an easy way that would lead to a list of all the cutouts needed to

get the set D0
3. To find an algorithmic way to construct all these cutouts

is desirable since it could lead to characterizations of D0
d even for higher

dimensions d.

Observe that no element of the 43 cycles given above contains elements

having modulus greater than 2. Up to now, we do not know the reason for
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L Cycles
π1=(−1,−1,−1) π2=(−1,−1, 0) π3=(−1, 0, 1)

3
π4=(0,−1, 0) π5=(0,−1, 1)

4 π6=(0,−1, 0);−1 π7=(0,−1, 0); 1 π8=(1,−1, 1);−1
π9=(−2, 1,−1);−1, 1 π10=(−2, 1, 0);−1, 2
π11=(−1,−1, 1); 1, 0 π12=(0,−2,−1); 1, 2
π13=(0,−1, 1);−1, 0 π14=(0, 1,−1); 1, 0

5
π15=(0, 1, 0);−1,−1 π16=(0, 1, 0);−1, 0
π17=(0, 2, 1);−1,−2 π18=(1,−1, 1);−1, 0
π19=(1, 1,−1);−1, 0 π20=(2,−1, 0); 1,−2

6 π21=(0,−1, 0); 0, 1, 0 π22=(1, 1, 0);−1,−1, 0
7 π23=(0, 1,−1);−1, 1, 0,−1 π24=(1, 1, 0);−1,−1,−1, 0

π25=(−1,−1, 1); 1, 2, 0, 0,−2 π26=(−1, 0, 0); 1, 0, 0,−1,−1
8 π27=(−1, 1, 0);−1, 1,−1, 0, 1 π28=(0, 0, 2); 1, 1,−1,−1,−2

π29=(1, 1, 1); 0,−1,−1,−1, 0 π30=(2, 1,−1);−2,−2,−1, 1, 2
π31=(−1, 0, 0); 1, 1, 1, 0,−1,−1

9
π32=(0, 1, 1); 1, 0,−1,−2,−2,−1
π33=(−1,−1, 1); 0,−1, 1, 1,−1, 0, 1
π34=(0,−2, 1); 1,−2, 0, 2,−1,−1, 2

10 π35=(0,−1,−1);−1, 0, 0, 1, 1, 1, 0
π36=(1, 2, 1); 1,−1,−1,−2,−1,−1, 1
π37=(1, 2, 2); 1, 0,−1,−2,−2,−1, 0
π38=(−2, 0, 1);−2, 1, 0,−2, 2,−1,−1, 2

11
π39=(0, 1, 2); 2, 1, 0,−1,−2,−2,−2,−1
π40=(−2, 2,−1); 0, 1,−2, 2,−2, 1, 0,−1, 2

12
π41=(0, 1, 2); 2, 2, 1, 0,−1,−2,−2,−2,−1

13 π42=(0, 1,−2); 2,−1,−1, 2,−2, 1, 0,−1, 1,−1
π43=(0, 2, 2); 1,−1,−2,−2, 0, 1, 2, 1, 0,

22
−2,−2,−1, 1, 2, 2, 0,−1,−2,−1

Table 1. The 43 cycles needed to cut out D0
3

this fact. In order to characterize D̃0
2 we need cycles with elements that are

arbitrarily large (cf. [1, Sections 6 and 7]).

4.1. Using the algorithm of Section 2. Theorem 2.3 shows the existence

of an algorithm for the construction of a graph G(H) = V × E which

can be used for finding all cycles of the mappings τr with parameters r

contained in the convex body H. Following [4], the graph is constructed

recursively. Define H = �(r1, ..., rk) ⊂ intD3 to be the convex hull of

some points r1, . . . , rk. For a z ∈ Z
d, let m(z) = mini∈{1,...,k}(−⌊riz⌋) and

M(z) = maxi∈{1,...,k}(−⌊riz⌋). Set

V0 := {±ei | i = 1, . . . , d}
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and then successively calculate V1, V2, . . . by the rule

Vi+1 := Vi ∪ {(z2, . . . , zd, j) | z = (z1, . . . , zd) ∈ Vi,−M(−z) ≤ j ≤M(z)} .

For sets H having a sufficiently small diameter the iteration stabilizes yield-

ing V := Vn = Vn+1 for some n ∈ N. The set of edges is constructed by

E := {(x, (z2, . . . , zd, j)) | x = (z1, . . . , zd) ∈ V,m(z) ≤ j ≤M(z)} .

Let Q be a system of linear, non-strict inequalities linked with ∧. Then

X(Q) forms a convex polyhedron that can be regarded as the convex hull

of finitely many points r1, ..., rk. Suppose that X(Q) ⊂ E3(1). We want to

set up an algorithm that calculates the set of all cycles π whose associated

polyhedron P (π) has non-empty intersection with X(Q). Theorem 2.3 en-

sures the existence of such an algorithm only if X(Q) has sufficiently small

diameter. If the set X(Q) is too big, the graph G(X(Q)) is infinite. We

solve this problem in the following way. Suppose that, during the calcula-

tion of |V |, we obtain a set Vi whose number of elements |Vi| exceeds an

appropriate bound p. In this case we stop the calculation of V and divide

the set X(Q) into two parts for which we calculate the set V again. By

recursively doing this splitting procedure we eventually end up with sets

whose diameter is small enough (provided that p is chosen reasonably).

Suppose that the set X(Q) is the convex hull of its k vertices r1, . . . , rk.

We do not know these vertices explicitly. What we need is just m(z) and

M(z) for certain fixed values of z ∈ Z
d. However, as Q is given as a system

of linear inequalities, we easily see that

m(z) = min
r∈X(Q)

(−⌊rz⌋),

M(z) = max
r∈X(Q)

(−⌊rz⌋).

The extremal values on the left hand side can now easily be calculated by

standard linear optimization.

The algorithm consists of two parts. The first part is Algorithm 1, which

constructs the set of vertices V of the graph G(X(Q)) for a given convex

body X(Q). Whenever during the calculation the size of this set exceeds

a given bound p, Algorithm 1 stops returning an overflow. Otherwise it

terminates by returning V . Denote the application of Algorithm 1 with

parameter Q and bound p by VG(Q, p) (VG = vertices of the graph).

Algorithm 2 is recursive. As input we have Q and we write FC(Q) for its

application on Q (FC= find all cycles). Algorithm 2 evokes Algorithm 1

to calculate the set of vertices of G(X(Q)). If an overflow occurs, the set

X(Q) is split with respect to some hyperplane G(X1, . . . , Xd) = 0. Then

Algorithm 2 is applied on Q1 := (Q ∧G(X1, . . . , Xd) ≤ 0) and Q2 := (Q ∧

G(X1, . . . , Xd) ≥ 0) separately. If there is no overflow and V is returned,
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Algorithm 1 Calculation of the set of vertices of G(X(Q)): VG

Input: Q, p
Output: set of vertices V
1: V ← {±ej|j = 1, . . . , d}
2: M ← ∅
3: while V 6= M do

4: if #V > p then

5: return(Overflow)
6: stop calculation
7: end if

8: N ← V \M
9: M ← V

10: for all (x1, . . . , xd) ∈ N do

11: i← min(r1,...,rd)∈X(Q)(⌊−
∑d

k=1 xkrk⌋)

12: j ← max(r1,...,rd)∈X(Q)(−⌊
∑d

k=1 xkrk⌋)
13: V ← V ∪ {(x2, . . . , xd, k)|k ∈ {i, . . . , j}}
14: end for

15: end while

16: return(V )

the set of edges E is calculated and all the cycles of the graph are extracted.

The cycles of the graph induce the cycles of τr we are searching for. Note

that the subsets Q1 and Q2 are again defined by finitely many non-strict

inequalities so that they can be treated by Algorithm 1 in the same way as

Q.

Algorithm 2 Search for all cycles within an area X(Q) (recursively): FC

Input: Q
Output: Π list of cycles
1: p← suitable bound
2: V ← VG(Q, p)
3: if ¬(overflow) then

4: E ← set of edges of G(X(Q))
5: Π← cycles induced by the cycles of G(X(Q))
6: else

7: construct Q1, Q2

8: Π← FC(Q1)
9: Π← Π ∪ FC(Q2)

10: end if

11: return(Π)

In our setting we need to apply Algorithm 2 to the sets defined by the

inequalities T̄i (i ∈ {1, . . . , 5}). All we need to specify is the subdivid-

ing strategy and the bound p for |V |. As for the subdividing strategy we
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subdivide a given set in two parts as follows. Let

mi := min
(x1,x2,x3)∈X(Q)

xi, i = 1, 2, 3,

Mi := max
(x1,x2,x3)∈X(Q)

xi, i = 1, 2, 3,

and j ∈ {1, 2, 3} be the smallest index for which Mj − mj = max(M1 −

m1,M2 −m2,M3 −m3). The dividing hyperplane is now defined by

G(X1, X2, X3) = 0 with G(X1, X2, X3) := Xj −
Mj + mj

2
.

For the upper bound of the number of vertices it turns out that a choice

depending on the quantities Mj−mj is convenient. In particular, we choose

p = 20
Mj−mj

. Then we get the following result

Lemma 4.3. FC(
∧

Ti) terminates for each i ∈ {1, . . . , 5}.

Proof. We implemented the algorithms for Ti with the above mentioned

subdivision strategy and bounds in MathematicaR©. The program is available

on the authors’ homepages [14]. �

Theorem 4.4. Si ⊂ D
0
3 holds for all i ∈ {1, . . . , 5}.

Proof. For each i ∈ {1, . . . , 5} we have that X(
∧

T̄i) is a convex hull of

finitely many points. Moreover, X(
∧

T̄i) = Si. Denote by Πi the set of

cycles computed by the application of Algorithm 2 on
∧

T̄i. Hence Πi

includes all cycles associated to polyhedra having non-empty intersection

with X(
∧

T̄i). Now, according to (2.2), each of these cycles π ∈ Πi induces

a system of inequalities P(π). It turns out that for each π ∈ Πi we have

X(P(π) ∧
∧

Ti) = ∅ holds for each i ∈ {1, . . . , 5}

(an easy way for checking this is to apply the cylindrical algebraic decom-

position algorithm). Thus there is no cycle that yields a nonempty cutout

intersecting with Si and therefore Si ⊂ D
0
3. �

4.2. Covering the set D3 \ D
0
3 by cutout polyhedra. Fix Q1, . . . , Q43

to be the sets of inequalities of the 43 polyhedra induced by the cycles

given in Table 1, where Qj denotes just the reduced set of inequalities such

that X(
∧

Qj) yields the corresponding polyhedron for any j ∈ {1, . . . , 43}.

“Reduced” means that all the redundant inequalities are removed.

Remark 4.5. It is not really necessary to work with the reduced systems but

the main algorithm works much faster and the reduction is not too difficult

to realize.

The algorithm simply uses the fact that an inequality I is redundant for

a system S ∧ I if X(S ∧ I) = X(S) or, equivalently, X(S ∧¬I) = ∅. Denote
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Algorithm 3 Reducing a list of inequalities: RL

Input: P set of inequalities
Output: P reduced set of inequalities
1: for all inequalities I ∈ P do

2: P ← P \ I
3: if X(

∧

P ∧ ¬I) 6= ∅ then

4: P ← P ∪ I
5: end if

6: end for

7: return(P )

the application of Algorithm 3 with parameter P by RL(P ) (RL=reduce

list of inequalities).

At the end of Section 2 we found a parametrization of E3(1). We saw that

E3(1) = X(
∧

D) for

D := {x + z ≤ 1 + y,−1− y ≤ x + z, y − xz ≤ 1− x2, z ≤ 3, z ≥ −3}.

Let P be a list of sets of inequalities and G to be a set of inequalities.

We want to verify if
⋃

P∈P X(
∧

P ) covers X(
∧

G). This is equivalent to

(4.1) X

(

∧

G ∧ ¬
∨

P∈P

∧

P

)

= ∅.

In principle we could do this verification directly. For computational rea-

sons we are a little more restricted. (In fact the direct verification of (4.1)

overcharges MathematicaR©). A verification of a claim of the shape (4.1) can

be done in a reasonable amount of time if #P ≤ 3. We give an algorithm

that solves this problem for general P and G by a subdivision process. The

idea is to split the set X(
∧

G) into suitable subsets and hope that each of

these subsets is covered by a smaller number of sets. First we state Algo-

rithm 4 which removes those sets from P that do not affect G, hence a set

P is removed when X(
∧

G) ∩X(
∧

P ) = ∅. Denote the application of this

algorithm by RS(G,P) (RS=remove inequalities with respect to a set).

Algorithm 4 Removing those lists of inequalities that do not affect a given
set G: RS
Input: G, P
Output: P reduced list of inequalities
1: for all sets P ∈ P do

2: if X(
∧

G ∧
∧

P ) = ∅ then

3: P ← P \ P
4: end if

5: end for

6: return(P)
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The main algorithm (Algorithm 5) is recursive. As an input we have again

P and G of the usual shape, where P is reduced by Algorithm 4. Whenever

the algorithm recognizes that a subset of X(
∧

G) is not fully covered by

the sets described in P , it returns this subset. Denote the application

by VC(G,P) (VC=verify covering). At first Algorithm 5 checks whether

#P ≤ 3. If this is the case we can verify whether (4.1) holds, otherwise we

choose an arbitrary inequality I ∈
⋃

P∈P P such that X(
∧

G∧I) 6= X(
∧

G).

There are two possibilities:

• There is such an inequality I. Then X(
∧

G) is split by adding I and

¬I, respectively, to G and Algorithm 5 is applied (recursively) on

both of these subsets. Algorithm 4 is used to possibly reduce P for

each of the subsets. These reduced sets form the second parameter.

• There is no such I. But this would mean that all the points of

X(
∧

G) suffice all inequalities of
⋃

P∈P P . This is equivalent to

X(
∧

G) ⊂ X(P ) for any P ∈ P and this implies that G and P

suffice the condition (4.1).

Now, whenever (4.1) is not fulfilled, the set X(
∧

G) is not covered by

X(
∨

P∈P

∧

P ) and the algorithm returns the set X(
∧

G). The application of

Algorithm 5 terminates without any output if X(
∨

P∈P

∧

P ) covers X(
∧

G).

Algorithm 5 Checks if a set is covered by the union of others (recursively):
VC
Input: G, P
Output: subsets of X(

∧

G) that are not fully covered by X(
∨

P∈P

∧

P )
1: if #P ≤ 3 then

2: if X(G ∧ ¬
∨

P∈P

∧

P ) 6= ∅ then

3: return(X(
∧

G) is not fully covered)
4: end if

5: else

6: if ∃I ∈
⋃

P∈P P : X(
∧

G ∧ I) 6= ∅ then

7: VC(RL(G ∩ {I}), RS(G ∩ {I},P)
8: VC(RL(G ∩ {¬I}), RS(G ∩ {¬I},P)
9: end if

10: end if

We can now state the main theorem of this subsection.

Theorem 4.6. The algorithm VC(D,P) terminates without yielding any

output for

P = {Q1, . . . , Q43, T1, . . . , T5}.

Proof. We implemented the algorithms in MathematicaR©. The program is

available on the authors’ homepages [14]. �
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Theorem 4.6 shows all the cutout polyhedre together with our set to

really cover all of E3(1) and thus cover D3. More precisely, the cutout

polyhedra P (π1), . . . , P (π43) cover the whole set E3(1) \ S. Hence, in view

of Theorem 4.4 we get that

E3(1) \ S ⊂
⋃

1≤i≤43

P (πi).

Together with Theorem 4.4 this yields Theorem 3.1 and we are done.
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