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ON DISK-LIKE SELF-AFFINE TILES ARISING FROM
POLYOMINOES∗

JOHANNES GMAINER† AND JÖRG M. THUSWALDNER‡

Abstract. In this paper we study a class of plane self-affine lattice tiles that are defined using
polyominoes. In particular, we characterize which of these tiles are homeomorphic to a closed disk.
It turns out that their topological structure depends very sensitively on their defining parameters.

In order to achieve our results we use an algorithm of Scheicher and the second author which
allows to determine neighbors of tiles in a systematic way as well as a criterion of Bandt and Wang,
with that we can check disk-likeness of a self-affine tile by analyzing the set of its neighbors.
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1. Introduction. Let A be an m × m integer matrix that is expanding, i.e.,
each of its eigenvalues is greater than 1 in modulus. Suppose that | det(A)| > 1 and
let D ⊂ Z

m be a complete set of coset representatives of Z
m/AZ

m. By a result of
Hutchinson [10] there exists a unique non-empty compact set T := T (A,D) such that

AT =
⋃

d∈D

(T + d).

The set T is called an integral self-affine tile with standard digit set. (cf. Lagarias
and Wang [14]). In [15] it is shown that for an integral self-affine tile T with standard
digit set there always exists a set L of translations such that T + L forms a tiling of
R

m. The tiles T = T (A,D) discussed in the present paper are integral self-affine tiles
with standard digit set that tile by the lattice Z

m, i.e.,

T + Z
m = R

m

where

µm((T + γ1) ∩ (T + γ2)) = 0 for γ1 6= γ2 (γ1, γ2 ∈ Z
m).

Here µm denotes the m-dimensional Lebesgue measure. Following Bandt and Wang [4]
we refer to such a tile as Z

m-tile for short. There are standard methods for checking
whether T forms a tiling or not. We refer for instance to Vince [24, Theorem 4.2]
where a list of tiling criteria is given.

This paper is devoted to the study of topological properties of a class of Z
2-tiles.

Let us first give a short review of previous results on topological properties of self-
affine tiles and attractors of iterated function systems (IFS) in general. Hata [8, 9]
discusses basic topological properties like connectivity and local connectivity of IFS.
The problem of connectivity of IFS is also treated by Kirat and Lau [12] as well as
Kirat et al. [13]. Especially, plane IFS were studied thoroughly. Luo et al. [16] deal
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with plane IFS that are homeomorphic to a closed disk (disk-like) while Ngai and
Tang [18, 19, 20] study properties of plane IFS having a more difficult topological
structure. Bandt and Wang [4] gave a criterion for the disk-likeness of a Z

2-tile T in
terms of its “neighbors”. Finding the neighbors of a Z

2-tile was discussed in Strichartz
and Wang [23] as well as in Scheicher and Thuswaldner [21]. Classes of Z

2-tiles related
to number systems are studied by Akiyama et al. in [1, 2]. For a survey on results
related to the topology of IFS we refer to Akiyama and Thuswaldner [3].

In the present paper we want to investigate topological properties of a class of
Z

2-tiles which are defined in terms of polyominoes (cf. Golomb [6, Chapter 1] for the
definition of a polyomino). We will call such tiles polyomino typed tiles. Polyomino
typed tiles were first introduced by Song and Kang [22]. They study basic properties
of these tiles. Furthermore, they give — without stating an exact proof — some
examples for polyomino typed tiles that are homeomorphic to a closed disk. This
forms the starting point of the present paper. Our goal will be to give a large class of
polyomino typed tiles that are homeomorphic to a closed disk.

Following Song and Kang [22] we will now describe how polyomino typed tiles
are defined.

Let us assume in the sequel that a polyomino P is embedded into R
2 such that

it can be regarded as a finite union of Voronoi cells

V (x) = {y ∈ R
2 | |y − x| ≤ |y − z| for all z ∈ Z

2} (x ∈ Z
2).

This means that there exists a set D(P ) ⊂ Z
2 such that

P =
⋃

x∈D(P )

V (x).

We call P exact if it tiles the plane in the sense that there exists a lattice Γ generated
by l1, l2 ∈ Z

2 such that

P + Γ = R
2 and µ2(P ∩ (P + γ)) = 0 for each γ ∈ Γ \ {0}

(cf. [5]). If P is exact, set

Σ := {s ∈ Γ |P ∩ (P + s) 6= ∅}.

Let e1, e2 denote the canonical base vectors of R
2. Then we call A a surrounding

matrix of the polyomino P if A is regular and if there exist s1, s2 ∈ Σ such that

Ae1 = s1 and Ae2 = s2. (1.1)

Of course there exist several surrounding matrices for a given exact polyomino P .
With these definitions it is easy to see that the following lemma holds (cf. also

[22]).

Lemma 1.1. If P is an exact polyomino and A is one of its expanding surrounding
matrices then T (A,D(P )) is an integral self-affine tile with standard digit set.

As mentioned before, a tile T which is defined by an exact polyomino as in
Lemma 1.1 is called a polyomino typed tile. First we note that it seems to be a very
difficult problem to characterize the sets D(P ) for which P is an exact polyomino.
However, in [5] one can find an easy criterion which allows to decide whether a given
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polyomino is exact or not (see Lemma 3.1 below). More generally, there is an algo-
rithm by Keating and Vince [11] which can decide for a given polyomino if it admits
an isohedral tiling or not. Furthermore, exact polyominoes can be characterized by
some easy properties (cf. [5]). We will deal with a subclass of polyominoes for which
the exactness can be shown immediately.

Definition 1.2. Let P be a polyomino. We call P stair-like if the set D(P ) can
be written as

D = D(P ) =
{

d1, . . . , dq

∣

∣ di ∈ Z
2 and {d2 − d1, . . . , dq − dq−1} ⊆ {(1, 0), (0, 1)}

}

.

Fig. 1. Three examples of stair-like polyominoes

We call these polyominoes stair-like because of their shape. Figure 1 contains
three examples of stair-like polyominoes. Accordingly, the Z

2-tile emerging from a
stair-like polyomino will be called stair-like tile. It is worth to note that the stair-like
structure of P does in general not reflect to the corresponding tile T . Figures 11,
12 and 13 contain the tiles (and their neighbors) that arise from the polyominoes of
Figure 1.

The aim of this paper is to characterize stair-like tiles which are disk-like. To this
matter we will combine three results.

• First we will use a criterion of Gröchenig and Haas [7] that permits us to
prove that stair-like tiles are Z

2-tiles. In fact, to this matter it is sufficient to
prove that they tile R

2 by Z
2-translates.

• In a second step we determine the “neighbors” of these tiles. This can be
done in a systematic way by using the neighbor finding algorithm discussed
in Scheicher and Thuswaldner [21].1

• Then we apply the criterion contained in Bandt and Wang [4] which allows
to decide whether a Z

2-tile is disk-like or not by inspecting its neighbors.
The paper is organized as follows. In the next section we discuss the neighbor

finding algorithm and the criterion for disk-likeness. Section 3 is devoted to some
properties of polyominoes. The main result of the present paper is contained in
Section 4 (Theorem 4.2; see also Remark 4.4). Section 5 contains the proof of this
result. The paper ends with some examples.

2. Preliminaries. In what follows let T = T (A,D) be an integral self-affine tile
with standard digit set. This section is devoted to the presentation of the tools needed
in the proof of our main result. First we define a certain graph that will be needed
throughout the proof. Then we describe the criterion of Gröchenig and Haas [7] that
will permit us to conclude that stair-like tiles are Z

2-tiles. After that an algorithm
of Scheicher and Thuswaldner [21] for finding the neighbors of a Z

m-tile is presented.

1Note that the neighbor finding algorithm in Strichartz and Wang [23] can not be applied in our
setting as the occurring matrices can have eigenvalues arbitrarily close to 1.
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This algorithm is needed to apply a criterion of Bandt and Wang [4] which will finally
permit us to decide whether a given Z

2-tile is homeomorphic to a closed disk or not.
Define the graph G(Zm) with set of states V = Z

m in the following way. There

exists an edge r
d|d′

−−→ r′ from r to r′ labelled by d|d′ if Ar + d′ = r′ + d holds for a
pair (d, d′) ∈ D ×D. In what follows, we will write E(G(Zm)) for the set of edges of
G(Zm).

For each subset M ⊂ Z
m we define the graph G(M) = GA,D(M) = (V, E) to be

the restriction of G(Zm) to the set of vertices M .
Set R0 := {0,±e1,±e2} and define Rn inductively by

Rn := Rn−1 ∪ {k ∈ Z
m | (Ak + D) ∩ (l + D) 6= ∅ for l ∈ Rn−1}. (2.1)

Define the set

R = R(A,D) =
⋃

n≥0

Rn. (2.2)

R has to be a finite set. In particular we have Rn−1 = Rn for n large enough (cf.
Gröchenig and Haas [7, Section 4]). Indeed, it is easy to see from the fact that A
is expanding that the increasing sequence (Rn)n≥0 has to be bounded. R as well as
G(R) can be constructed easily by the above definition.

Remark 2.1. It is clear that GA,D(M) and R(A,D) depend on the defining pa-
rameters A and D of the associated Z

m-tile T (A,D). However, most of the time it
is clear from the context to which tile these objects refer. In these cases we will just
write G(M) and R in order to avoid tedious notation.

The following criterion due to Gröchenig and Haas [7, Section 4] will be needed
later.

Lemma 2.2. Let T = T (A,D) be an integral self-affine tile with standard digit
set. If the spectral radius of the accompanying matrix of G(R \ {0}) is less than
| det(A)| then T is a Z

m-tile.

Recall that s ∈ Z
m \ {0} is a neighbor of a Z

m-tile T if T ∩ (T + s) 6= ∅ (cf.
Scheicher and Thuswaldner [21])2. A neighbor s is a vertex neighbor if T ∩ (T + s)
contains only one point. If T ∩ (T + s) contains uncountably many points, then s is
called edge neighbor. Our first task will be the determination of the set

S = S(A,D) := {s ∈ Z
m \ {0} | T ∩ (T + s) 6= ∅}

of neighbors of a given Z
m-tile T . The restriction G(S) of G(Zm) to the set of

neighbors S is called the neighbor graph of T .
Certain properties of G(S) have been proved (cf. for instance [17, 21]). We will

use the fact that G(S ∪{0}) is the union of all cycles and paths connecting two cycles
in G(Zm) (cf. [21]). The graph G(S) also contains information on the sets T ∩(T +s)
(s ∈ S). Indeed, we have

T ∩ (T + s) =
{

∑

i≥1 A−idi

∣

∣

∣
d1|d′1, d2|d′2 . . . is the labelling of a walk in G(S) starting at s

}

.

2In what follows we will use the term “neighbor” ambigously for the point s and for the set T +s.
This will cause no confusion.
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Scheicher and Thuswaldner [21] found that G(R) is a subgraph of G(S ∪ {0}).
Moreover, they found a way to construct G(S) starting from G(R) by using a certain
graph product. We will now define this graph product and present the construction
method. To this matter we need the following reduction operation. Let G be a
directed graph. We denote by Red(G) the graph that emerges from G if all states of
G, which are not starting points of a walk of infinite length, are removed.

Definition 2.3. Let T (A,D) be a Z
m-tile and let G1 and G′

1 be subgraphs of
GA,D(Zm). The product G2 := G1 ⊗ G′

1 is defined in the following way. Let r1, s1 be
states of G1 and r′1, s

′
1 be states of G′

1. Furthermore, let ℓ1, ℓ
′
1, ℓ2 ∈ D.

• r2 is a state of G2 if r2 = r1 + r′1.

• There exists an edge r2
ℓ1|ℓ2−−−→ s2 in G2 if there exist

r1
ℓ1|ℓ

′
1−−−→ s1 ∈ E(G1) and r′1

ℓ′1|ℓ2−−−→ s′1 ∈ E(G′
1)

with r1 + r′1 = r2 and s1 + s′1 = s2 or there exist

r1
ℓ′1|ℓ2−−−→ s1 ∈ E(G1) and r′1

ℓ1|ℓ
′
1−−−→ s′1 ∈ E(G′

1)

with r1 + r′1 = r2 and s1 + s′1 = s2.

It is easily seen that a graph G containing 0 in its set of vertices is isomorphic to
a subgraph of G ⊗ G:

Suppose that r1
ℓ1|ℓ

′
1−−−→ s1 ∈ E(G), then also 0

ℓ′1|ℓ
′
1−−−→ 0 ∈ E(G). The second part of

Definition 2.3 tells us that r1 + 0
ℓ1|ℓ

′
1−−−→ s1 + 0 ∈ E(G ⊗ G).

Let T (A,D) be a Z
m-tile. The graph G(S), and with it the set S of neighbors,

can be determined by the following algorithm starting from the graph G(R) (cf. [21]).

Algorithm 2.4.

p := 1
B[1] := Red(G(R))

repeat

p := p + 1
B[p] := Red(B[p − 1] ⊗ B[1])

until B[p] = B[p − 1]

It is proved that this algorithm always terminates after finitely many, say p0,
steps and G(S) = B[p0] \ {0}.

Often the graph G(R) is of a very simple structure so that it can be determined
for whole classes of tiles at once. Moreover, in the case of stair-like tiles Algorithm 2.4
terminates very soon so that it gives us the graph G(S) very quickly.

The following lemma yields a non-trivial and somewhat unexpected result. De-
spite the tiles T (A,D) and T (−A, D) are of different shape, their neighbor sets coin-
cide.

Lemma 2.5. Given a matrix A ∈ Z
m×m and D ⊂ Z

m with |D| = | detA| a
complete set of coset representatives for Z

m/AZ
m. Then

S(A,D) = S(−A,D),
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i.e., T1 = T1(A,D) and T2 = T2(−A,D) have the same neighbors.

Proof. In the graph GA,D(S ∪ {0}) there exists by definition a labelled edge

s1
d2|d1−−−→ s2, if As1 = s2 + (d2 − d1) holds. So s1

d1|d2−−−→ −s2 exists in the graph
G−A,D(S ∪ {0}). Now we have to think over what happens with cycles and the paths
connecting two cycles if we substitute A by −A:

Given a state s = s1 in a cycle s = s1 → s2 · · · → sM = s1 in GA,D(S ∪ {0}),
we easily see that s is also contained in the graph G−A,D(S ∪ {0}): As there also
exists the cycle −s1 → −s2 · · · → −sM = −s1 in GA,D(S ∪ {0}), the state s either
belongs to the cycle s = s1 → −s2 → s3 · · · → sM = s1 if M is odd, or to the cycle
s = s1 → −s2 → s3 · · · → sM−1 → −s1 → s2 · · · → s1 = s if M is even. This is
why s ∈ G−A,D(S ∪ {0}). In an analogous manner, the states on paths connecting
two cycles are again on paths connecting two cycles when changing from A to −A.
Finally, after changing the roles of A and −A we are done.

Let T = T (A,D) be a Z
m-tile. We also mention the following symmetry property

of G(S ∪ {0}). If s
d|d′

−−→ s′ ∈ E(G(S)) then −s
d′|d−−→ −s′ ∈ E(G(S)). Thus in order

to show that ±s ∈ S it suffices to show that s ∈ S. The same is true for the graphs
G(R) and B[p] (p ≥ 1).

We want to know if T = T (A,D(P )) is disk-like. As the following fundamental
results of Bandt and Wang [4] show, the answer to this question depends on the
number of neighbors of T , i.e., |S|, and the connectivity of D(P ):

Proposition 2.6. Let T be a disk-like Z
2-tile. Then in the tiling T + Z

2 one of
the following must be true.

1. T has no vertex neighbors and 6 edge neighbors ±α, ±β, ±(α + β) for some
α, β ∈ Z

2, and Zα + Zβ = Z
2.

2. T has 4 edge neighbors ±α, ±β and 4 vertex neighbors ±α ± β for some
α, β ∈ Z

2, and Zα + Zβ = Z
2.

Definition 2.7. Let F be a finite subset of Z
m. A subset E ⊂ Z

m is F-connected
if for any u, v ∈ E there exists u0 = u, u1, . . . , un = v ∈ E with ui+1 − ui ∈ F .

Lemma 2.8. Let T (A,D) be a self-affine Z
2–tile. Suppose that T has not more

than 6 neighbors, i.e., |S| ≤ 6. Then T is disk-like if and only if D is S–connected.

Lemma 2.9. Let T (A,D) be a self-affine Z
2–tile. Suppose that T has 8 neighbors

and S = {±α,±β,±(α + β),±(α − β)}. Then T is disk-like if and only if D is
{±α,±β}–connected.

3. The surroundings of stair-like polyominoes. For the sake of complete-
ness, in the present section we want to state some more or less obvious results on the
surroundings of stair-like polyominoes.

Let the boundary b(P ) of a polyomino P (which is a simple closed curve) be
clockwise oriented and X the alphabet {l, r, u, d} (left, right, up, down). Denote by
X∗ the set of finite words over X . For every pair (A, B) of points of b(P ) with integer
coordinates, there is a word w ∈ X∗, which describes the (clockwise) walk w = (AB)
from A to B. In Figure 2 we have (AB) = urdrdr and (AA) = urdrdrdllluu.

The involution T of a word w ∈ X∗ is recursively defined as follows:

T (u) = d, T (d) = u, T (r) = l, T (l) = r,



ON DISK-LIKE SELF-AFFINE TILES ARISING FROM POLYOMINOES 357

A B

Fig. 2. A clockwise walk from A to B

and

T (wx) = T (x)T (w) ∀w ∈ X∗, ∀x ∈ X.

A shorthand for T (w) is w∼. Now we are able to state the following result of Beauquier
and Nivat [5] which describes all possible surroundings of an exact polyomino in a
simple way.

Lemma 3.1. (cf. [5]) A polyomino P is exact if and only if there exists a point
A of b(P ) such that (AA) can be written in the form w1w2w3w

∼
1 w∼

2 w∼
3 .

After these preparations we can show that every stair-like polyomino is exact.

Proposition 3.2. For a stair-like polyomino P there always exists a tiling of R
2

by Z
2-translates. Indeed, we can find a surrounding w1w2w3w

∼
1 w∼

2 w∼
3 of P with

w1 = u,

w2 = w ∈ X∗,

w3 = r,

w∼
1 = d,

w∼
2 = w∼,

w∼
3 = l.

The proof of this assertion is obvious.
The six paths w1, w2, w3, w

∼
1 , w∼

2 , w∼
3 are exactly the segments, where the poly-

omino P meets its six neighbors (cf. [5]).
In Figure 3 we show a tile together with a surrounding as defined in Propo-

sition 3.2. Here w1 = (AB), w2 = (BC), w3 = (CA
′

), w∼
1 = (A

′

B
′

), w∼
2 =

(B
′

C
′

), w∼
3 = (C

′

A).

A

B

C A
′

B
′

C
′

Fig. 3. This surrounding always exists

We call a stair-like polyomino irreducible if the surrounding indicated in Propo-
sition 3.2 is the only possible surrounding for P . It seems to be a difficult problem to
characterize all stair-like polyominoes which are irreducible.

4. Main result. Given a stair-like polyomino P with D = D(P ) =
{

(

0
0

)

, . . . ,
(

a−1
b−1

)

}

, we can tile the plane by lattice translates of P according to Propo-

sition 3.2 and the remark after it. We have

R
2 =

⋃

m,n∈Z

(P + ml1 + nl2), (4.1)
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where {l1, l2} is any ordered pair of linearly independent vectors

l1, l2 ∈
{

±
(

1

−1

)

,±
(

a

b − 1

)

,±
(

a − 1

b

)}

.

Thus, we have 24 possibilities to put such an ordered pair into a surrounding matrix
Ai of P :

A1 =

(

1 a

−1 b − 1

)

, A2 =

(

1 −a

−1 −b + 1

)

, A3 =

(

1 a − 1

−1 b

)

,

A4 =

(

1 −a + 1

−1 −b

)

, A5 =

(

a − 1 −1

b 1

)

, A6 =

(

−a + 1 −1

−b 1

)

,

A7 =

(

a −1

b − 1 1

)

, A8 =

(

−a −1

−b + 1 1

)

, A9 =

(

a − 1 −a

b −b + 1

)

,

A10 =

(

a −a + 1

b − 1 −b

)

, A11 =

(

a − 1 a

b b − 1

)

, A12 =

(

a a − 1

b − 1 b

)

,

A12+k := −Ak , k = 1, . . . , 12.

We are now able to state the main results of this paper:

Proposition 4.1. Each stair-like tile corresponding to a surrounding matrix
A = Ai (1 ≤ i ≤ 24) is a Z

2-tile, i.e., each of these tiles induces a tiling of R
2 by

Z
2-translates.

Proof. In the proof of Theorem 4.2 the graphs G(R) are constructed explicitly
for all these stair-like tiles. So, the criterion in Lemma 2.2 can be checked by direct
calculation.

Theorem 4.2. Let T = T (A,D) be a stair-like tile and set D − D := {d −
d′ | d, d′ ∈ D}. If a, b ≥ 2 then T is disk-like if and only if one of the following
conditions holds:
A ∈ {A1, A2, A3, A13, A14, A15} ∧

(

0
2

)

/∈ D −D,

A ∈ {A5, A6, A7, A17, A18, A19} ∧
(

2
0

)

/∈ D −D,

A ∈ {A9, A21} ∧



















(

4
0

)

,
(

0
4

)

/∈ D −D
{
(

a−1
b−3

)

,
(

a−3
b−1

)

} 6⊂ D −D
{
(

a−1
b−4

)

,
(

3
0

)

} 6⊂ D −D
{
(

a−4
b−1

)

,
(

0
3

)

} 6⊂ D −D

,

A ∈ {A10, A22} ∧











(

4
0

)

,
(

0
4

)

/∈ D −D
(

a−1
b−3

)

∈ D −D ⇒
(

0
2

)

/∈ D −D
(

a−3
b−1

)

∈ D −D ⇒
(

2
0

)

/∈ D −D
.

Remark 4.3. If A ∈ {A4, A8, A16, A20} then the associated stair-like tile is never
disk-like. If A ∈ {A11, A12, A23, A24} then one of the eigenvalues of A has modulus 1.
Thus for these matrices no Z

2-tile can be defined.
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Remark 4.4. We formulated the theorem for a, b ≥ 2 in order to avoid cumber-
some notation in the formulation of our main result. Also the proof is given only for
stair-like tiles satisfying a, b ≥ 2 for the same reason. However, with slight adaptions
our methods also yield a characterization result for the cases a = 1 or b = 1. The char-
acterization of disk-like tiles for these special cases is the same as the characterization
contained in Theorem 4.2 apart from the following exceptions:

• If A ∈ {A2, A14} and b = 1 then T (A,D) is disk-like if and only if a ≥ 4.
• If A ∈ {A3, A15} and a = 1 then T (A,D) is never disk-like.
• If A ∈ {A4, A16} and b = 1 then T (A,D) is always disk-like.
• If A ∈ {A10, A22} and a = 1 or b = 1 then one of the eigenvalues of A has

modulus 1.

5. Proof of the theorem. Due to Lemma 2.5 we know that S(A,D) =
S(−A,D) holds. So we may confine ourselves to investigate the tiles T (Ai,D(P ))
for i = 1, . . . , 12. In addition, consider the reflection ⋆ : R

2 → R
2 :

(

x1

x2

)

7→
(

x2

x1

)

.

With B :=

(

b11 b12

b21 b22

)

and B⋆ :=

(

b22 b21

b12 b11

)

we get (Bx)⋆ = B⋆
x

⋆ which leads

to T (B,D(P ))⋆ = T (B⋆,D(P )⋆). Now, P is stair-like and so is the polyomino P ⋆

determined by D(P )⋆ =
{

(

0
0

)

, . . . ,
(

b−1
a−1

)

}

.

As the parameters a, b ≥ 2 may be chosen arbitrarily, we may carry over the
results from the matrices A1, . . . , A4 to A5, . . . , A8 via ⋆ and work is cut in half.

The matrices A11 and A12 have eigenvalues of modulus 1 and therefore do not
deserve interest. This means that we are going to check the disk-likeness of the tiles
T (Ai,D(P )) with i ∈ {1, 2, 3, 4, 9, 10}. From these results we can deduce the outcomes
for all other cases T (Ai,D(P )) with i /∈ {1, 2, 3, 4, 9, 10}.

Given a tile T = T (Ai,D(P )) we primarily compute the set S of its neighbors.
The starting point for the construction of S is the graph G(R) where R = R(A,D) is
defined as in (2.2).

Lemma 5.1. For every pair (Ai,D) where D defines a stair-like polyomino and
Ai is one of its surrounding matrices we get |GAi

(R)| = 7.

This can be seen as follows:

We know that A is a surrounding matrix of the polyomino P defined by D. This
is why we get {Ax |x ∈ {±e1,±e2,±e}} = {±(1,−1),±(a, b − 1),±(a − 1, b)}. The
vector e depends on the special choice of the matrix A and is defined as e := e1 + e2

in case of A(e1 + e2) ∈ {±(1,−1),±(a, b− 1),±(a − 1, b)}, or e := e1 − e2 otherwise.
The central polyomino P has a hexagonal surrounding and its six neighbors are the
polyominoes Ax + P where x ∈ {±e1,±e2,±e}.

We start with the construction of the set R according to formula (2.1). With
R0 = {0,±e1,±e2} the set R1 := R0 ∪ {k ∈ Z

2 | (Ak + D) ∩ (l + D) 6= ∅ for l ∈ R0}
has to be computed. We have a closer look at the intersection (Ak + D) ∩ (l + D).
The set l +D determines the polyomino l + P which is a translated copy of P . More
precisely, P is translated at most by one Voronoi cell in horizontal or vertical direction,
because l ∈ R0. So (Ak+D)∩(l+D) 6= ∅ if and only if Ak+P equals P or is a neighbor
of P . We already know that this means Ak ∈ {(0, 0),±(1,−1),±(a, b−1),±(a−1, b)}
or k ∈ {0,±e1,±e2,±e} respectively. Summing up, this gives R1 = {0,±e1,±e2,±e}.

In the next iteration step we have to characterize the set R2 = R1 ∪ {k ∈
Z

2 | (Ak+D)∩(l+D) 6= ∅ for l ∈ R1}. As before the translated copies of P are decisive.
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As l ∈ R1, the polyomino P is translated at most by one Voronoi cell in diagonal,
horizontal or vertical direction. So l + P where l ∈ R1 just meets the neighbors of P .
This means that (Ak + D) ∩ (l + D) 6= ∅ if and only if k ∈ {0,±e1,±e2,±e}.

We directly read off that R2 = R1 holds. So the iteration process for the construc-
tion of R terminates and we get R = R1 = {0,±e1,±e2,±e}. Figure 4 illustrates the

situation in case of A = A1 =

(

1 a

−1 b − 1

)

with a = 6 and b = 3. For this example

we have A(±e1) = ±(1,−1), A(±e2) = ±(a, b − 1) and A(±e) = ∓(a − 1, b) with
e := e1 − e2.

Ae1 + P

−Ae1 + P
Ae2 + P

−Ae2 + P

Ae + P

−Ae + P

P

Fig. 4. Neighborhood of a stair-like polyomino

Remark 5.2. We are now in the situation to construct the graph GAi,D(R) for
given Ai and D very easily. The set of vertices of GAi,D(R) is R = {0,±e1,±e2,±e}
where e ∈ {e1+e2, e1−e2} is defined such that Aie ∈ {±(1,−1),±(a, b−1),±(a−1, b)}.
Moreover, there exists an edge from v1 ∈ R to v2 ∈ R labelled by d|d′ if and only if
Aiv1 + d′ = v2 + d.

The proof of the theorem now runs as follows. Given a matrix Ai we first con-
struct the graph GAi,D(R) according to the above remark. In a second step we apply
Algorithm 2.4 to generate GAi,D(S) and compute the set S of neighbors of the tile
T = T (Ai,D). With the help of Proposition 2.6, Lemma 2.8 and Lemma 2.9 it is
then straightforward to decide whether T is disk-like or not.

Remark 5.3. In view of Proposition 2.6 we may interrupt Algorithm 2.4, as soon
as we know that |GAi,D(S)| ≥ 10 holds. Then the tile T is not disk-like.

Remark 5.4. In the case of a hexagonal surrounding, i.e., R \ {0} = S, we always
get a disk-like tile T . This follows from the shape of a polyomino P , as the associated
set D = D(P ) is always {±e1,±e2,±e}–connected.

In what follows, we are not interested in the exact shape or number of edges

leading from one state to another. Thus, if there exist (one or more) edges v
d1|d2−−−→ v′

with d1 − d2 = d in a graph, we collect these edges to a single edge and label it with

v
d−→ v′. With this notation the edges v1

ℓ1−→ v′1 in G1 and v2
ℓ2−→ v′2 in G2 lead to an

edge v1 + v2
ℓ1+ℓ2−−−−→ v′1 + v′2 in G1 ⊗ G2 provided that ℓ1 + ℓ2 ∈ D −D.

5.1. First type of matrix. Figure 5 shows the graph G(R) stemming from a

stair-like tile T (A1,D) with surrounding matrix A1 =

(

1 a

−1 b − 1

)

. We apply

Algorithm 2.4 to determine G(S). In the fifth line of the algorithm we construct the
product–graph B[1] ⊗ B[1] that equals G(R) ⊗ G(R) as B[1] = Red (G(R)) = G(R).
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Fig. 5. First graph

According to Definition 2.3 the states of G(R) ⊗ G(R) are of the form r2 = r1 + r′1
with r1, r

′
1 ∈ G(R).

We are mainly interested in the states of G(R) ⊗ G(R) that are not contained in
G(R), in this case these are the states ±(2,−2), ±(1,−2), ±(0,−2), ±(2,−1), ±(2, 0),
±(1, 1). In view of the remark after Lemma 2.5 we only have to examine the vertices
with “+”-sign in front of the brackets.

Suppose that
(

0
2

)

∈ D−D holds. Then there are elements d1, d2 ∈ D with d2−d1 =
(

0
2

)

. As we exclusively deal with polyominoes, we also have d′1 := d1 +
(

0
1

)

∈ D. By

the definition of G(R) the edge (1, 0)
−(0

1)−−−→ (1, 0) in Figure 5 is a shortcut containing
the edges labelled by d1|d′1 and d′1|d2. Following Definition 2.3 the product–graph

G(R) ⊗ G(R) contains the edge (1, 0) + (1, 0)
d1|d2−−−→ (1, 0) + (1, 0), which obviously

is a cycle, namely (2, 0)
−(0

2)−−−→ (2, 0). Of course, from now on the vertex (2, 0) is not
removed during the algorithm, as it is a starting point of a walk of infinite length.

Until now we know {±(1, 0),±(0, 1),±(1,−1),±(2, 0)} ⊂ G(S). In view of Propo-
sition 2.6 and Lemma 2.9 there should exist α, β ∈ Z

2 such that

{±(1, 0),±(0, 1),±(1,−1),±(2, 0)} = {±α,±β,±(α + β),±(α − β)}

in case of a disk-like tile T (A1,D). A short calculation shows that this is not possible.

Keep in mind that this argumentation (
(

0
2

)

∈ D − D ⇒ T not disk-like) is
applicable for all tiles stemming from the matrices A1, . . . , A4. Thus, from now on we
may assume that

(

0
2

)

/∈ D −D holds.

According to Algorithm 2.4 we compute Red (B[1] ⊗ B[1]), i.e., we successively
delete those states that are not starting points of a walk of infinite length.

The only edge leaving (1,−1) in G(R) is (1,−1)
−(a−1

b−1)−−−−−→ (0,−1). As (2,−2) =
(1,−1) + (1,−1) is the only way of writing (2,−2) as sum of two elements of R the

only possible edge leaving (2,−2) in B[1] ⊗ B[1] is (2,−2)
−(2a−2

2b−2)−−−−−→ (0,−2). But this
is not feasible as −

(

2a−2
2b−2

)

/∈ D − D (note that a, b ≥ 2) and so we remove ±(2,−2).
A similar reasoning allows to delete ±(1,−2), ±(0,−2).

Now, the vertex (2,−1) = (1,−1)+ (1, 0) is our object of scrutiny. The only way
of writing (2,−1) as sum of two elements of R is (1,−1)+(1, 0). Thus we focus on all
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edges leaving the vertices (1,−1) and (1, 0) in G(R), namely (1,−1)
−(a−1

b−1)−−−−−→ (0,−1),

(1, 0)
(0

0)−−→ (1,−1), (1, 0)
(1

0)−−→ (0,−1) and (1, 0)
−(0

1)−−−→ (1, 0). Thus, edges leaving
(2,−1) might lead to the vertices (1,−2), (0,−2) and (1,−1). However, (1,−2) and

(0,−2) are already deleted and there is no edge (2,−1)
−(a−1

b )−−−−−→ (1,−1) as we have
−
(

a−1
b

)

/∈ D −D. Hence, we delete ±(2,−1).
Now we have a closer look at the edges leaving (2, 0). Possible destinations for

these edges are the states s2 = s1 + s′1 with s1, s
′
1 ∈ {(1, 0), (0,−1), (1,−1)}. Apart

from (2, 0) and (1,−1), all of them have already been removed.

As we assumed
(

0
2

)

/∈ D−D, there is no edge (2, 0)
−(0

2)−−−→ (2, 0). Likewise the edge

(2, 0)
( 1

−1)−−−→ (1,−1) is not possible due to
(

1
−1

)

/∈ D −D. So we delete ±(2, 0).
Finally, edges starting at (1, 1) in B[1]⊗B[1] may lead to (2, 0), (2,−1) or (1,−1),

respectively. However, the first and second vertex are already deleted and the third
is not possible as

(

a
b−1

)

/∈ D −D.
At this moment, Algorithm 2.4 leaves the loop as B[2] = B[1] holds. We have

|G(S)| = 6 and Remark 5.4 tells us that the arising Z
2-tile T is disk-like.

5.2. Second type of matrix. We now investigate the graph G(R) associated

to a Z
2-tile T (A2,D) with A2 =

(

1 −a

−1 −(b − 1)

)

. G(R) is depicted in Figure 6

(dotted lines only occur for tiles for that their label is contained in D − D). Again,
we construct the graph G(S) by the help of Algorithm 2.4.
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Fig. 6. Second graph

The following states of the product–graph B[1] ⊗ B[1] = G(R) ⊗ G(R) are not
contained in G(R): ±(2, 2), ±(1, 2), ±(0, 2), ±(2, 1), ±(2, 0), ±(1,−1). As in the
previous subsection, we suppose

(

0
2

)

/∈ D − D because otherwise ±(2, 0) ∈ G(S)
implies that T is not disk-like.

Possible edges leaving from (2, 2) = (1, 1) + (1, 1) are (2, 2)
−(2a−4

2b−2)−−−−−→ (−2,−2),
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(2, 2)
−(2a−3

2b−2)−−−−−→ (−1,−2) and (2, 2)
−(2a−2

2b−2)−−−−−→ (0,−2). However, all the labels are not
elements of D−D and so the vertices ±(2, 2) are removed. A similar reasoning shows
that ±(1, 2) and ±(0, 2) have to be deleted.

Furthermore, edges leaving (2, 1) = (1, 1)+ (1, 0) may lead to (−2,−2), (−1,−2),
(0,−2), (1,−1) and (0,−1), respectively. However, the reduction process has already

deleted ±(2, 2), ±(1, 2) and ±(0, 2). So only the edges (2, 1)
−(a−1

b )−−−−−→ (1,−1) and

(2, 1)
−(a−2

b )−−−−−→ (0,−1) have to be checked. The labels −
(

a−1
b

)

and −
(

a−2
b

)

are not
elements of D − D. Thus there are no edges leaving the vertices ±(2, 1) and so we
remove them.

The remaining states are ±(2, 0) and ±(1,−1). Possible targets for edges leaving
(2, 0) are the vertices (−2,−2), (−1,−2), (0,−2), (1,−1), (0,−1) and (2, 0). However,

(−2,−2), (−1,−2) and (0,−2) are already removed. Moreover, the edges (2, 0)
( 1

−1)−−−→

(1,−1), (2, 0)
( 2

−1)−−−→ (0,−1) and (2, 0)
−(0

2)−−−→ (2, 0) do not exist as the labels are not
elements of D −D. As a consequence we remove ±(2, 0).

Finally we focus on edges leaving (1,−1) which may lead to (2, 1), (2, 0), (1,−1),
(0, 0), (0,−1) and (1, 0). We realize that the vertices (2, 1), (2, 0) are already removed.

The edges (1,−1)
( a

b−1)−−−→ (1,−1), (1,−1)
(a+1

b−2)−−−→ (0, 0), (1,−1)
(a+1

b−1)−−−→ (0,−1) and

(1,−1)
( a

b−2)−−−→ (1, 0) do not exist as the labels do not belong to D − D. Thus, we
remove ±(1,−1) and get |G(S)| = 6.

At this moment, we know that the resulting Z
2-tile T is disk-like (cf. Remark 5.4).

5.3. Third type of matrix. In this subsection the starting point are Z
2-tiles

T (A3,D) with A3 =

(

1 a − 1

−1 b

)

. The associated graph G(R) is depicted in

Figure 7. It turns out that this case is a bit more involved than the previous ones.

(

−1
−1

)

−(a−1

b−2)
��

−(a−1

b−1)

��

(

0
−1

)
−(a−2

b−1)oo
−(a−1

b−1)
yy (

0
1

) (a−2

b−1) //
(a−1

b−1)
** (

1
1

)

(a−1

b−2)




(a−1

b−1)

��
(

1
0

)

−(0

1)

44
(1

0)

>>}}}}}}}}

(2

0)
``AAAAAAAA

(

0
0

)

−(0

1)

55
(0

1)
ii

−(1

0)
oo

(1

0)
//

−(1

1)

JJ

(1

1)

TT

(0

0)

jj
(

−1
0

)

(0

1)

ee

−(1

0)

``AAAAAAAA

−(2

0)
>>}}}}}}}}

Fig. 7. Third graph

The following states of the product–graph B[1] ⊗ B[1] = G(R) ⊗ G(R) are not
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contained in G(R): ±(2, 2), ±(0, 2), ±(1, 2), ±(2, 0), ±(1,−1), ±(2, 1). Similar to the
previous subsection, the vertices ±(2, 2), ±(0, 2) are removed as edges starting there
would require that some of the labels

(

2a−2
2b−2

)

,
(

2a−2
2b−3

)

,
(

2a−2
2b−4

)

,
(

2a−3
2b−2

)

and
(

2a−4
2b−2

)

were
elements of D −D, which is not the case.

Due to the same reason there is at most one edge starting at (1, 2), namely

(1, 2)
(2a−3

2b−3)−−−−→ (2, 2). However, the state (2, 2) is already removed and therefore we
delete ±(1, 2).

Analogous to the previous subsections, we recall the assumption
(

0
2

)

/∈ D − D
which, also in this case, is a necessary condition for the tile to be disk-like.

For paths starting at (2, 0) there are six possible targets: (−2,−2), (−1,−2),
(0,−2), (2, 0), (1,−1), (0,−1). However, the first 3 states have just been extin-

guished, and the last 3 vertices are not feasible as all of the edges (2, 0)
( 1

−1)−−−→ (1,−1),

(2, 0)
( 2

−1)−−−→ (0,−1) and (2, 0)
−(0

2)−−−→ (2, 0) have labels that do not belong to D − D.
Thus, we delete ±(2, 0).

Edges starting at (1,−1) can lead to (−2,−2), (−1,−2), (0,−2), (1,−1) and

(0,−1). The first 3 vertices are already removed and so the edges (1,−1)
−(a−1

b )−−−−−→

(1,−1) and (1,−1)
−(a−2

b )−−−−−→ (0,−1) are to be analyzed. However, the labels −
(

a−1
b

)

and −
(

a−2
b

)

are not elements of D −D and so the vertices ±(1,−1) are removed.
Finally, the investigation of the states ±(2, 1) is left over. We have a look at all

possible edges leaving (2, 1). Their endpoints may be the following: (2, 0), (1,−1),
(0,−1), (1, 0), (0, 0) and (2, 1). Keep in mind that the states (2, 0) and (1,−1)

are already removed. We check the edges (2, 1)
(a+1

b−1)−−−→ (0,−1), (2, 1)
( a

b−2)−−−→ (1, 0),

(2, 1)
(a+1

b−2)−−−→ (0, 0) and (2, 1)
(a−1

b−3)−−−−→ (2, 1). As the labels
(

a+1
b−1

)

,
(

a
b−2

)

,
(

a+1
b−2

)

do not
belong to D−D, edges with endpoints (0,−1), (1, 0) and (0, 0) do not exist. The edge

(2, 1)
(a−1

b−3)−−−−→ (2, 1) exists, if and only if
(

a−1
b−3

)

∈ D−D. Thus we have two possibilities:

(A) The label
(

a−1
b−3

)

is not contained in D −D. Then the states ±(2, 1) are removed
and Algorithm 2.4 terminates. We get |G(S)| = 6 and know that the arising reptile
is disk-like (cf. Remark 5.4).

(B) The point
(

a−1
b−3

)

is an element of D−D. Then we have the cycles ±(2, 1)
±(a−1

b−3)−−−−−→
±(2, 1) and B[2] 6= B[1] in Algorithm 2.4. We compute the graph–product B[2] ⊗
B[1] and have a closer look at the states ±(3, 2),±(2, 0),±(2, 2),±(3, 1) that are not
elements of B[2] = Red (B[1] ⊗ B[1]). As

(

2a−2
2b−4

)

and
(

2a−2
2b−5

)

do not belong to D − D
there is no edge leaving ±(3, 2) and so we remove ±(3, 2). Besides, the vertices ±(2, 0)

may also be deleted as both of the edges (2, 0)
( 1

−2)−−−→ (1, 0) and (2, 0)
−(0

2)−−−→ (2, 0) are
not possible due to

(

1
−2

)

,
(

0
2

)

/∈ D − D. Now we focus on the state (2, 2). The edge

(2, 2)
(2a−2

2b−4)−−−−→ (2, 2) is not feasible as
(

2a−2
2b−4

)

/∈ D − D. Moreover, the state (3, 2)
is already removed and so there cannot be an edge from (2, 2) to (3, 2). Summing
up, there is no edge that leaves (2, 2) and therefore the states ±(2, 2) are removed.

Finally, we analyze the edges that leave (3, 1). We recognize that (3, 1)
(a−1

b−4)−−−−→ (3, 1)
is the only edge that seems to be possible at first sight. Other alternatives drop out
because the required labels do not belong to D−D. However, we recall the assumption
(

0
2

)

/∈ D −D that results in
(

a−1
b−4

)

/∈ D −D.
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Thus Algorithm 2.4 terminates and we get S = {±(1, 0),±(0, 1),±(1, 1),±(2, 1)}.
With the notation of Lemma 2.9 we have α = (1, 1), β = (1, 0). The set D is
{±α,±β}–connected if and only if (0, 2) /∈ D −D which holds troughout this subsec-
tion.

So we get a parallelogramic surrounding with a disk-like tile.

5.4. Fourth type of matrix. We consider Z
2-tiles T (A4,D) with A4 =

(

1 −(a − 1)

−1 −b

)

and get the graph G(R) in Figure 8.
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Fig. 8. Fourth graph

A short look at the product–graph B[1] ⊗ B[1] = G(R) ⊗ G(R) shows that it

contains the edges (2,−1)
(a−1

b−1)−−−−→ (2,−1) and (2, 0)
( 0

−1)−−−→ (2,−1).

As the first edge is a cycle and the second ends in it, the states (2, 0), (2,−1)
and their counterparts −(2, 0), −(2,−1) are elements of the graph G(S). So we
immediately deduce |G(S)| ≥ 10 and according to Proposition 2.6 the Z

2-tile T is not
disk-like.

5.5. Fifth type of matrix. The Z
2-tile T (A9,D) with matrix A9 =

(

a − 1 −a

b −(b − 1)

)

yields the graph G(R) in Figure 9. For this matrix the topo-

logical behaviour of the associated tile depends even more on the shape of the set D
than in the previous cases.

We apply Algorithm 2.4 to determine the graph G(S). The following states of
the graph B[1] ⊗ B[1] = G(R) ⊗ G(R) are not elements of G(R): ±(2, 0), ±(0, 2),
±(1,−1), ±(1, 2), ±(2, 1), ±(2, 2). Similar to the previous subsections it is clear that
±(2, 0), ±(0, 2) do not belong to Red (B[1] ⊗ B[1]), as no edge leaves these states.
This can be seen very easily as the labels

(

2a−2
2b−2

)

,
(

2a−3
2b−2

)

,
(

2a−4
2b−2

)

,
(

2a−2
2b−3

)

and
(

2a−2
2b−4

)

are not elements of D −D.

This is also the reason for there is at most one edge leaving the state (1,−1),

namely (1,−1)
(2a−3

2b−3)−−−−→ (2, 2). Note that this exactly occurs when a = b = 2. We will
soon recognize that ±(2, 2) ∈ G(S) implies that the associated tile is not disk-like. So
we focus on the case where ±(2, 2) /∈ G(S) holds. However, in this case there is no
edge leaving ±(1,−1) and so these states are removed.

For the remaining vertices ±(1, 2), ±(2, 1), ±(2, 2) we have to analyze the situ-
ation. We list all edges that leave the states (1, 2), (2, 1), (2, 2) and lead to vertices
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Fig. 9. Fifth graph

that are not removed until now:

(2, 2)
−(4

0)−−−→ (2, 2), (1, 2)
−(a−1

b−3)−−−−−→ −(2, 1), (1, 2)
−(a−1

b−4)−−−−−→ −(2, 2), (2, 1)
(a−4

b−1)−−−−→ (2, 2),

(2, 2)
(0

4)−−→ (−2,−2), (2, 1)
(a−3

b−1)−−−−→ (1, 2), (2, 2)
−(3

0)−−−→ (1, 2), (2, 2)
(0

3)−−→ (−2,−1).

(5.1)
If |G(S)| = 6 we know that we certainly get a disk-like tile (cf. Remark 5.4). In
case of |G(S)| ≥ 10 we deduce by Proposition 2.6 that the arising tile is not disk-
like. For the situation |G(S)| = 8 we make use of Proposition 2.6 and Lemma 2.9
to decide if T (A9,D) is disk-like or not. We know that G(R \ {0}) is a subgraph of
G(S). So {±(1, 0),±(0, 1),±(1, 1)} ⊂ S. Suppose that (2, 2) ∈ S and |G(S)| = 8, i.e.,
S = {±(1, 0),±(0, 1),±(1, 1),±(2, 2)}. Then T (A9,D) is not disk-like as the set S
cannot be written in the form S = {±α,±β,±(α+β),±(α−β)} (cf. Proposition 2.6).
The other two possibilities for |G(S)| = 8, i.e.,

{±α,±β,±(α + β),±(α − β)} = {±(1, 0),±(0, 1),±(1, 1),±(1, 2)}

and

{±α,±β,±(α + β),±(α − β)} = {±(1, 0),±(0, 1),±(1, 1),±(2, 1)}

do not occur in this subsection as the product–graph B[1] ⊗ B[1] does not contain
cycles of the form (2, 1) → (2, 1), (2, 1) → −(2, 1) → (2, 1), (1, 2) → (1, 2) and
(1, 2) → −(1, 2) → (1, 2). Here we recall the fact that G(S ∪ {0}) is the union of all
cycles and paths connecting two cycles in G(Z2).

We specify which sets D induce tiles that are disk-like. The following four condi-
tions (A) to (D) are necessary for disk-likeness of the associated Z

2-tile T .
(A) We require

(

4
0

)

,
(

0
4

)

/∈ D − D so that (2, 2) is not an element of G(S). Otherwise
we had a cycle (2, 2) → (2, 2) or (2, 2) → −(2, 2) → (2, 2), respectively.
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(B) If there is an edge (1, 2)
−(a−1

b−3)−−−−−→ (−2,−1), we must not have the edge (2, 1)
(a−3

b−1)−−−−→
(1, 2) and vice versa. (Otherwise we had the cycle (1, 2) → (−2,−1) → (−1,−2) →
(2, 1) → (1, 2) and |G(S)| ≥ 10.) Thus {

(

a−1
b−3

)

,
(

a−3
b−1

)

} 6⊂ D −D.

(C) The condition {
(

a−1
b−4

)

,
(

3
0

)

} 6⊂ D −D assures that the cycles

±(2, 2) → ±(1, 2) → ∓(2, 2) → ∓(1, 2) → ±(2, 2)

do not occur.

(D) Finally we require {
(

a−4
b−1

)

,
(

0
3

)

} 6⊂ D −D in order to avoid the cycles

±(2, 1) → ±(2, 2) → ∓(2, 1) → ∓(2, 2) → ±(2, 1).

On the other hand, if (A), (B), (C) and (D) holds the vertices ±(1, 2), ±(2, 1)
and ±(2, 2) can be removed. Indeed, by inspecting (5.1) we see that (A) – (D) imply
that those vertices are not a starting point of an infinite walk in B[2].

In this case B[2] = Red (B[1] ⊗ B[1]) = B[1] and T is disk-like with hexagonal
surrounding because G(S) = B[1] \ {0} has |S| = 6.

Summing up we get the following characterization: The tile T = T (A9,D) is
disk-like if and only if D − D meets the conditions (A)–(D). In this case T has a
hexagonal surrounding.

5.6. Sixth type of matrix. The graph G(R) stemming from T (A10,D) with

matrix A10 =

(

a −(a − 1)

b − 1 −b

)

is shown in Figure 10. This is the most involved

case. We are going to compute the graph G(S) by the help of Algorithm 2.4. The
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Fig. 10. Sixth graph

following states of the product–graph B[1] ⊗ B[1] do not belong to G(R): ±(2, 0),
±(0, 2), ±(1,−1), ±(2, 1), ±(1, 2), ±(2, 2).

We start the reduction process and remove all states that are not starting points
of paths of infinite length, i.e., ±(2, 0), ±(0, 2), as the labels

(

2a−2
2b−2

)

,
(

2a−2
2b−3

)

,
(

2a−2
2b−4

)

,
(

2a−3
2b−2

)

and
(

2a−4
2b−2

)

are not elements of D −D.
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The only edge that leaves (1,−1) is (1,−1)
(2a−3

2b−3)−−−−→ (2, 2), provided that a = b = 2
holds. As we are going to exclude (2, 2) from belonging to G(S), we may remove
±(1,−1).

Now we write down all edges that leave the vertices (2, 1), (1, 2), (2, 2):

(2, 2)
(4

0)−−→ (−2,−2), (2, 1)
(a−1

b−4)−−−−→ (2, 2), (2, 1)
(a−1

b−3)−−−−→ (2, 1), (1, 2)
−(a−3

b−1)−−−−−→ (−1,−2),

(2, 2)
−(0

4)−−−→ (2, 2), (1, 2)
−(a−4

b−1)−−−−−→ (−2,−2), (2, 2)
−(0

3)−−−→ (2, 1), (2, 2)
(3

0)−−→ (−1,−2).

(5.2)
We remember the remarks of the previous subsection: If |G(S)| = 6 then T =
T (A10,D) is disk-like and for |G(S)| ≥ 10 it is certainly not. In case of |G(S)| = 8
the situation is quite involved:

Suppose ±(2, 2) ∈ G(S) then T is not disk-like by virtue of Proposition 2.6 and
Lemma 2.9. Note that it is not possible to choose α and β such that

{±α,±β,±(α + β),±(α − β)} = {±(1, 0),±(0, 1),±(1, 1),±(2, 2)}.

Now assume that S = {±(1, 0),±(0, 1),±(1, 1),±(2, 1)}. We set α = (1, 1), β = (1, 0)
in Lemma 2.9 and conclude that D is {±α,±β}–connected if and only if

(

0
2

)

/∈ D−D.
If this applies to D−D then T (A10,D) is disk-like with parallelogramic surrounding.
If S = {±(1, 0),±(0, 1),±(1, 1),±(1, 2)} we set α = (1, 1), β = (0, 1) in Lemma 2.9.
The set D is {±α,±β}–connected if and only if

(

2
0

)

/∈ D−D. If this is fulfilled we get
a disk-like tile T with parallelogramic surrounding.

Now we assure these results and give necessary and sufficient conditions for D such
that T (A10,D) is disk-like. We are going to use the notation from Algorithm 2.4. Like
in Subsection 5.5 we start with four necessary conditions (A) to (D) for disk-likeness
of T .
(A) We require

(

4
0

)

,
(

0
4

)

/∈ D −D, as otherwise ±(2, 2) ∈ B[2] = Red (B[1] ⊗ B[1]).

(B) The condition {
(

a−1
b−3

)

,
(

0
3

)

} 6⊂ D−D is necessary to avoid {±(2, 2),±(2, 1)} ⊂ B[2].

(C) The condition {
(

a−3
b−1

)

,
(

3
0

)

} 6⊂ D−D is necessary to avoid {±(2, 2),±(1, 2)} ⊂ B[2].

(D) The condition {
(

a−3
b−1

)

,
(

a−1
b−3

)

} 6⊂ D − D is necessary to avoid {±(2, 1),±(1, 2)} ⊂
B[2].

If the set D − D meets the conditions (A)–(D), then in view of (5.2) we either
have |B[2]| = 7 or |B[2]| = 9. In the first case Algorithm 2.4 terminates, we get
|G(S)| = 6 and the tile T is disk-like, cf. Remark 5.4. We have to take a closer look
at the possibility |B[2]| = 9 which is done in (E) and (F).
(E) If B[2] has the vertices {(0, 0),±(1, 0),±(0, 1),±(1, 1),±(2, 1)}, then a necessary
(and sufficient) condition for the disk-likeness of T (A10,D) is B[3] = B[2] and

(

0
2

)

/∈
D − D so that we have S = {±(1, 0),±(0, 1),±(1, 1),±(2, 1)}. We have already
explained in detail why this gives a disk-like tile. Keep in mind that in this case
the label

(

a−1
b−3

)

must be an element of D − D. Otherwise the cycle (2, 1) → (2, 1)
would not exist and as a consequence ±(2, 1) were not a vertex of B[2] contrary to
our assumption.

We are going to apply Algorithm 2.4 and verify B[3] = B[2]. The states of
B[2] ⊗ B[1] which are not elements of B[2] are ±(3, 1),±(2, 2),±(3, 2) and ±(2, 0).
We check if there are edges leaving the vertex (3, 1) in B[2]⊗B[1]. The only candidates

are (3, 1)
(2a−2

2b−4)−−−−→ (3, 1) and (3, 1)
(2a−2

2b−5)−−−−→ (3, 2). The labels
(

2a−2
2b−4

)

and
(

2a−2
2b−5

)

are not
elements of D − D and so there are no edges leaving (3, 1). We remove ±(3, 1). The
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states ±(2, 2) are also deleted as the edges (2, 2)
−(0

2)−−−→ (2, 0), (2, 2)
( 1

−2)−−−→ (1, 0) are
not feasible due to

(

0
2

)

,
(

1
−2

)

/∈ D − D. Now we investigate if there are edges leaving

(3, 2). We have to check (3, 2)
(a−1

b−5)−−−−→ (3, 2), (3, 2)
(a+1

b−3)−−−→ (1, 0), (3, 2)
( a

b−3)−−−→ (2, 0)

and (3, 2)
(a−1

b−4)−−−−→ (3, 1). It turns out that none of the labels is an element of D − D.
For

(

a+1
b−3

)

and
(

a
b−3

)

this is easily seen, whereas
(

a−1
b−5

)

,
(

a−1
b−4

)

/∈ D − D is a direct

consequence of
(

0
2

)

/∈ D − D. This is why we remove ±(3, 2). Finally we focus on

(2, 0). The possibilities (2, 0)
(2a−3

2b−4)−−−−→ (3, 2) and (2, 0)
(2a−2

2b−4)−−−−→ (2, 2) drop out as the
states (3, 2) and (2, 2) are already removed. This means that B[3] = B[2] holds and
we are done.

Recapitulating we can make the following note: Assume that
(

a−1
b−3

)

∈ D − D
holds. Then the condition

(

4
0

)

,
(

0
2

)

/∈ D − D is necessary and sufficient for the tile
T (A10,D) to be disk-like. This immediately follows from (A)–(D) and the additional
condition

(

0
2

)

/∈ D −D based upon Lemma 2.9.

(F) Let S = {±(1, 0),±(0, 1),±(1, 1),±(1, 2)}, then
(

2
0

)

/∈ D −D is necessary so that
D is {±(1, 1),±(0, 1)}–connected. It turns out that this case bears analogy to (E).
Here we start with

(

a−3
b−1

)

∈ D − D and the condition
(

2
0

)

/∈ D − D. Again we apply
Algorithm 2.4 and show that B[3] = B[2] holds. Then it is easy to formulate the
following result:

Suppose that
(

a−3
b−1

)

∈ D − D holds. Then the condition
(

0
4

)

,
(

2
0

)

/∈ D − D is
necessary and sufficient for the tile T (A10,D) to be disk-like.

Altogether we get the following result: The tile T (A10,D) is disk-like if and only
if the following conditions are fulfilled:

•
(

4
0

)

,
(

0
4

)

/∈ D −D,

•
(

a−1
b−3

)

∈ D −D ⇒
(

0
2

)

/∈ D −D,

•
(

a−3
b−1

)

∈ D −D ⇒
(

2
0

)

/∈ D −D.

6. Examples. We finish this paper with some examples. Consider the tiles T1,
T2 and T3 corresponding to the matrix A10 with a = b = 4 and the digit sets given in
Figure 1, respectively. For T1 we see that

(

4
0

)

and
(

0
4

)

are not in D − D. The same

–1.5

–1

–0.5

0

0.5

1

1.5

2

–1 –0.5 0.5 1 1.5 2 2.5

Fig. 11. The tile T1 with its hexagonal surrounding

holds for
(

a−1
b−3

)

=
(

3
1

)

and
(

a−3
b−1

)

=
(

1
3

)

thus the tile is disk-like. From the proof in
Section 5.6 we even see that it has 6 neighbors, i.e., a hexagonal surrounding. The
tile T1 is depicted in Figure 11.
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Similarly, one can see that T2, which is depicted in Figures 12 is disk-like. In fact,

–1.5

–1

–0.5

0

0.5

1

1.5

–2 –1 1 2 3

Fig. 12. The tile T2 with its parallelogramic surrounding

again
(

4
0

)

,
(

0
4

)

and
(

a−3
b−1

)

=
(

1
3

)

are not in D−D. However,
(

a−1
b−3

)

=
(

3
1

)

∈ D−D. But

since
(

0
2

)

6∈ D − D disk-likeness follows. Again by inspecting the proof in Section 5.6
we see that T2 has a parallelogramic surrounding with 4 edge neighbors and 4 vertex
neighbors.

–2

–1

1

–3 –2 –1 1 2 3

Fig. 13. The tile T3 is not disk-like and has 8 neighbors

Finally, for T3 we see that
(

a−1
b−3

)

=
(

3
1

)

∈ D − D. But since also
(

0
2

)

∈ D we
conclude that T3 is not disk-like. It has 8 neighbors. Together with these neighbors
it is depicted in Figure 13.
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