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Abstract. The aim of the present paper is to generalize earlier work by Thuswaldner
and Tichy on Waring’s Problem with digital restrictions to systems of digital restrictions.
Let sq(n) be the q-adic sum of digits function and let d, s, al, ml, ql ∈ N. Then for
s > d2

(
log d + log log d +O(1)

)
there exists N0 ∈ N such that each integer N ≥ N0 has a

representation of the form

N = xd
1

+ · · · + xd
s where sql

(xi) ≡ al mod ml (1 ≤ i ≤ s and 1 ≤ l ≤ L).

The result, together with an asymptotic formula of the number of this representations,
will be shown with the help of the circle method together with exponential sum estimates.

1. Notation

Let N, Z and R denote the set of positive integers, integers and real numbers, respectively.
A set of the shape {n ∈ Z | a ≤ n ≤ b} will be called interval of integers. The notations
e(z) for exp(2πiz), ⌊x⌋ for the greatest integer less than or equal to x ∈ R, and ⌈x⌉ for the
smallest integer greater than or equal to x will be used frequently. For the sake of shortness,
we are going to make extensive use of vector and matrix notation throughout this paper.
For example, if v1, . . . , vd is a finite collection of indexed numbers, then v = (v1, . . . , vd)
will denote the corresponding vector.

Furthermore we will use the notations f(x) = O
(
g(x)

)
as well as f(x) ≪ g(x) to express

that |f(x)| ≤ c|g(x)| for some positive constant c and all sufficiently large x ∈ R.
A function f is said to be completely q-additive, if for any p, r, t ∈ N with 0 ≤ r < qt the

property f(p · qt + r) = f(p)+ f(r) holds. The classical example of a completely q-additive
function is the the q-adic sum of digits function sq which assigns to each positive integer
n the sum

sq(n) = c0 + · · · + cr

of digits in its (unique) q-adic representation

n = c0 + c1q + · · · + crq
r.

This function will play a prominent role throughout the paper.
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2. Main results and preliminaries

A fundamental problem in additive number theory is to decide whether a given set A ⊆ N
is a basis of N, that is, if each N ∈ N admits a representation of the form

N = x1 + · · · + xs with x1, . . . , xs ∈ A.

We call s ∈ N the order of the basis. If a representation of this shape only exists if N is
sufficiently large we call A an asymptotic basis of N. In Waring’s Problem the set A is to
be taken

A = Ad = {nd | n ∈ N} (d ∈ N fixed).

This problem and variants of it have been studied extensively. For details and references
we refer for example to Hua [5], Nathanson [8], Vaughan [10] or Vaughan and Wooley [11].

In [9], Thuswaldner and Tichy investigated the number of representations

(2.1) N = xd
1 + . . . + xd

s,

where the integers xi have been additionally restricted by sum of digits congruences of
the type sqi

(xi) ≡ ai mod mi for given ai, qi, and mi, 1 ≤ i ≤ s (cf. [9, Theorem 3.1]).
As consequence, they deduced that the set {nd | sq(n) ≡ a mod m} forms an asymptotic
basis of order 2d + 1 (cf. [9, Theorem 3.2]). In the present paper we go one step further
and generalize this work to systems of digital restrictions. In particular, for given positive
integer N ∈ N we consider the number rd,s,a,m(N) of representations (2.1) where each xi,
1 ≤ i ≤ s, simultaneously obeys a system of L ≥ 1 sum of digits congruences

sq1
(xi) ≡ a1 mod m1,

...

sqL
(xi) ≡ aL mod mL.

We are going to provide an asymptotic formula for rd,s,a,m(N) from which the fact that
the corresponding restricted set forms an asymptotic basis will follow. We will use the
abbreviation

sq(n) ≡ a mod m

if sql
(n) ≡ al mod ml holds for 1 ≤ l ≤ L, and denote the set of all integers that fulfill this

condition by

Ua,m = {n ∈ N | sq(n) ≡ a mod m}.
Sets of that kind have also been studied with different setups at first by Gelfond [3] and
subsequent authors as for example by Besineau [1], Mauduit and Sárközy [7] and Kim [6].

Our main result can be summarized as follows.

Theorem 2.1. Let d, s ∈ N and al, ml, ql ∈ N with ml ≥ 2, ql ≥ 2, gcd(ql − 1,ml) = 1
for 1 ≤ l ≤ L and gcd(ql, qk) = 1 for 1 ≤ l < k ≤ L. If rd,s,a,m(N) denotes the number of
representations of N in the form

N = xd
1 + · · · + xd

s (x1, . . . , xs ∈ Ua,m),
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then for s > d2
(
log d + log log d + O(1)

)
(the implied constant is absolute) there exists a

positive constant δ such that

rd,s,a,m(N) =
1

M s
S(N)Γ

(

1 +
1

d

)s

Γ
(s

d

)−1

N
s
d
−1 + O(N

s
d
−1−δ),

where M =
∏L

l=1 ml. The implied constant depends only on d, s, L and m. S is an
arithmetic function for which there exist positive constants 0 < c1 < c2 depending only on
d and s such that

c1 < S(N) < c2.

This implies that Ad,a,m = {nd | sq(n) ≡ a mod m} forms an asymptotic basis of order

d2
(
log d + log log d + O(1)

)
of N.

In order to establish this theorem, we will need the following higher correlation result
for sq(n) proved by Thuswaldner and Tichy in the aforementioned paper [9]. To formulate
it, let ∆d

(
f(n), k

)
denote the d-th iterated difference operator applied to an arithmetic

function f with differences k1, . . . , kd, i.e.,

∆1

(
f(n), k1

)
= f(n + k1) − f(n),

∆d

(
f(n), k1, . . . , kd

)
= ∆1

(

∆d−1

(
f(n), k1, . . . , kd−1

)
, kd

)

(d ≥ 2).

Proposition 2.1 ([9], Theorem 3.3). Let d, m, h, q and N be positive integers with m ≥ 2,
q ≥ 2 and m ∤ h(q − 1), and let

p(d, q) =
⌈

2
d(d + 2)

q − 1
+ 2d + 5

⌉

.

Let I1, . . . , Id, J be intervals of integers with
√

N ≤ |Ij|, |J | ≤ N for 1 ≤ j ≤ d. Then the
estimate

∑

k1∈I1

. . .
∑

kd∈Id

∣
∣
∣
∣
∣

∑

n∈J

e
( h

m
∆d

(
sq(n), k

))
∣
∣
∣
∣
∣

2

≪ |I1| · · · |Id||J |2N−η

holds with η = 1/m2qp(d,q) > 0.

With the help of this result we will derive the following estimate which is crucial in the
proof of Theorem 2.1.

Theorem 2.2. Let d, ml, hl, ql and N be positive integers with ml ≥ 2, ql ≥ 2 for
1 ≤ l ≤ L, gcd(ql, qk) = 1 for 1 ≤ l < k ≤ L and ml ∤ hl(ql − 1) for at least one 1 ≤ l ≤ L.
Then the estimate

N−1∑

n=0

e
(

θnd +
L∑

l=1

hl

ml

sql
(n)
)

≪ N1−γ

holds uniformly in θ ∈ [0, 1) with γ = η/(6DL2), where D = 2d, η = min ηl > 0 and

ηl = 1/m2
l q

p(d,ql)
l > 0 with p(d, q) as in Proposition 2.1.
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Kim [6, Proposition 2] proved a version of this result with θ = 0, i.e., where the term
θnd is missing. More precisely, he showed that under the same conditions as in Theorem
2.2 for all positive integers N

N−1∑

n=0

e
( L∑

l=1

hl

ml

fl(n)
)

≪ N1−δ,

where δ = 1/(120m2q3L2) with m = max ml, q = max ql, and the implied constant depends
only on q and L. In fact, Kim’s result is even more general since it admits arbitrary
completely ql-additive functions fl instead of the sql

.
On the other hand, Thuswaldner and Tichy [9, Theorem 3.4] provided the case L = 1 of

our result. They showed that if d,m, h, q and N are positive integers with m ≥ 2, q ≥ 2
and m ∤ h(q − 1), then the estimate

N−1∑

n=0

e

(

θnd +
h

m
sq(n)

)

= N1−ε

holds uniformly in θ ∈ [0, 1) with ε = η2−(d+1) and η as in Proposition 2.1. Comparing this
with the special case L = 1 of Theorem 2.2, their saving ε is obviously better than our γ,
which is inherently due to the different method (following Kim [6]) applied.

Theorem 2.2 constitutes a generalization of both of these results. Note that it even
remains valid if the term θnd is replaced by an arbitrary polynomial in n of degree d. In
order to establish Theorem 2.2 we have to adapt the proof of [6, Proposition 2] to our more
sophisticated situation. This will lead to exponential sums which can be estimated with
help of Proposition 2.1. Theorem 2.1 will then follow from Theorem 2.2 by an application
of the circle method.

Next we are going to provide two preliminary lemmata. The following is a generalization
of [6, Lemma 6].

Lemma 2.1. Let f be a completely q-additive function. Then

∆d

(
f(n), k

)
= ∆d

(
f(r), k

)

for all positive k1, . . . , kd and n with n ≡ r mod qt, where 0 ≤ r < qt − k1 − . . . − kd.

Proof. It is easy to see that the d-th iterated difference operator can be written explicitly
as

∆d

(
f(n), k

)
=

∑

I⊆{1,...,d}

(−1)d−|I|f
(

n +
∑

i∈I

ki

)

.
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Let n = p · qt + r. Since r +
∑

i∈I ki < qt for any selection of the subset of indices I, we
can exploit the q-additivity of f and obtain

∆d

(
f(n), k

)
=

∑

I⊆{1,...,d}

(−1)d−|I|f
(

pqt + r +
∑

i∈I

ki

)

=

= f(p)
∑

I⊆{1,...,d}

(−1)d−|I|

︸ ︷︷ ︸

=0

+
∑

I⊆{1,...,d}

(−1)d−|I|f
(

r +
∑

i∈I

ki

)

= ∆d

(
f(r), k

)
.

�

The following inequality is a variant of [4, Lemma 2.7] which is itself an iteration of the
ordinary Weyl-van der Corput inequality.

Lemma 2.2. Let D = 2d and K ≥ 1. Then the inequality

(2.2)

∣
∣
∣
∣

N−1∑

n=0

e
(
ϕ(n)

)
∣
∣
∣
∣

D

≤ 32D−1

(

ND

K
+

ND−1

Kd

K∑

k1=1

. . .

K∑

kd=1

∣
∣
∣
∣

N−k1−...−kd−1∑

n=0

e
(

∆d

(
ϕ(n), k

))
∣
∣
∣
∣

)

holds for any arithmetic function ϕ(n).

Proof. We only give a sketch of the easy proof. Let Aj be defined recursively by A1 = 1
and Aj = A2

j−1 · j for j ≥ 2. Starting from the ordinary Weyl-van der Corput inequality
(cf. [6, Lemma 4]), we obtain

∣
∣
∣
∣

N−1∑

n=0

e
(
ϕ(n)

)
∣
∣
∣
∣

D

≤

≤ Ad

(

ND

d∑

j=1

22D−3·2d−j

K2d−j
+ ND−1 22D−2

Kd

K∑

k1=1

. . .
K∑

kd=1

∣
∣
∣
∣

N−k1−...−kd−1∑

n=0

e
(

∆d

(
ϕ(n), k

))
∣
∣
∣
∣

)

by induction and iterated application of Cauchy-Schwarz’s inequality. Again by induction
one can show that Ad ≤ 22D−d−1 which is in turn ≤ 22D−2. Now

d∑

j=1

22D−3·2d−j

K2d−j
≤ maxj 22D−3·2d−j

minj K2d−j

d∑

j=1

1 =
d · 22D−3

K
.

Since we are only interested in a result similar to [4, Lemma 2.7], we generously estimate
the nominator by 23D−3. This yields inequality (2.2). �

3. Proof of Theorem 2.2

In this section we are going to derive Theorem 2.2 from Proposition 2.1 and we do this
by following the proof of [6, Proposition 2]. Let q = max ql. We have to investigate the
problem only for N ≥ q3L, because for 1 ≤ N ≤ q3L the estimate holds trivially. Set
K := ⌊N1/3L⌋ ≥ q ≥ 2, and let Ql = qel

l such that

(3.1) 2 ≤ K ≤ K2q−1
l ≤ Ql ≤ K2
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for 1 ≤ l ≤ L. This can be achieved by choosing el = ⌊2 log K/ log ql⌋.
We start from the iterated Weyl-van der Corput inequality (2.2) with

ϕ(n) = θnd +
L∑

l=1

hl

ml

sql
(n),

so that the left hand side of inequality (2.2) is the D-th power of the exponential sum we
want to estimate. Since ∆d(θn

d, k) = θd! k1 . . . kd is constant with respect to n, and by
the linearity of ∆d,

∆d

(
ϕ(n), k

)
= θd! · k1 . . . kd +

L∑

l=1

hl

ml

∆d

(
sql

(n), k
)
,

we have for fixed k1, . . . , kd

(3.2)
∣
∣
∣
∣

N−k1−...−kd−1∑

n=0

e
(

∆d

(
ϕ(n), k

))
∣
∣
∣
∣
=
∣
∣e(θd! k1 . . . kd)

∣
∣

︸ ︷︷ ︸

=1

·
∣
∣
∣
∣

N−k1−...−kd−1∑

n=0

e
( L∑

l=1

hl

ml

∆d

(
sql

(n), k
))
∣
∣
∣
∣
.

At this point we distinguish in which residue class n mod Q lies. To accomplish this, let
the sets R and R0 be defined by

R = {r ∈ ZL | 0 ≤ rl ≤ Ql − 1 for 1 ≤ l ≤ L},
R0 = {r ∈ ZL | 0 ≤ rl ≤ Ql − d · K − 1 for 1 ≤ l ≤ L}.

Furthermore, for r ∈ R let

Pr = {n ∈ Z | n ≡ r mod Q},
where n ≡ r mod Q means that n ≡ rl mod Ql for 1 ≤ l ≤ L. With help of these sets we
rewrite the sum under the rightmost modulus of equation (3.2) in the following way:

(3.3)

N−k1−...−kd−1∑

n=0

e
( L∑

l=1

hl

ml

∆d

(
sql

(n), k
))

=
∑

r∈R

N−k1−...−kd−1∑

n=0
n∈Pr

e
( L∑

l=1

hl

ml

∆d

(
sql

(n), k
))

=

=
∑

r∈R0

+
∑

r∈R\R0

.

To the first sum we can now apply Lemma 2.1 to obtain

∑

r∈R0

N−k1−...−kd−1∑

n=0
n∈Pr

e
( L∑

l=1

hl

ml

∆d

(
sql

(n), k
))

=

=
∑

r∈R0

e
( L∑

l=1

hl

ml

∆d

(
sql

(rl), k
))

N−k1−...−kd−1∑

n=0
n∈Pr

1 =
∑

r∈R

−
∑

r∈R\R0

.
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Substituting this back into equation (3.3) leads to

(3.4)
N−k1−...−kd−1∑

n=0

e
( L∑

l=1

hl

ml

∆d

(
sql

(n), k
))

=
∑

r∈R

e
( L∑

l=1

hl

ml

∆d

(
sql

(rl), k
))

N−k1−...−kd−1∑

n=0
n∈Pr

1+

+
∑

r∈R\R0

N−k1−...−kd−1∑

n=0
n∈Pr

(

e
( L∑

l=1

hl

ml

∆d

(
sql

(n), k
))

− e
( L∑

l=1

hl

ml

∆d

(
sql

(rl), k
))
)

=

=
∑

1
+
∑

2
.

Now we argue along the same lines as Kim [6, p. 330]. Since the Ql are pairwise coprime
(as powers of the ql), the system of congruences that defines the set Pr is equivalent to a

single congruence mod
∏L

l=1 Ql by the Chinese Remainder Theorem, and therefore

∣
∣{n < N | n ≡ r mod Q}

∣
∣ =

N
∏L

l=1 Ql

+ O(1).

Hence for the first sum we get

∑

1
=

Q1−1
∑

r1=0

. . .

QL−1
∑

rL=1

L∏

l=1

e
( hl

ml

∆d

(
sql

(rl), k
))
(

N
∏L

l=1 Ql

+ O(1)

)

=

= N ·
L∏

l=1

1

Ql

Ql−1
∑

rl=0

e
( hl

ml

∆d

(
sql

(rl), k
))

+ O
( L∏

l=1

Ql

)

.

Since
∏L

l=1 Ql ≤ K2L ≤ N/K by (3.1), the error term in the last equation is of order
O(N/K). The second sum is bounded trivially by

∑

2
≤ 2 · |R\R0| ·

(
N

∏L
l=1 Ql

+ O(1)

)

≤ 2dqL
N

K
+ O

( 1

K

L∏

l=1

Ql

)

,

where we used the estimate from [6, p. 331] for R\R0. By the same argument as before
the final error term is of order O(N/K). Substituting these two estimates again back into
equation (3.4) we obtain

N−k1−...−kd−1∑

n=0

e
( L∑

l=1

hl

ml

∆d

(
sql

(n), k
))

= N ·
L∏

l=1

1

Ql

Ql−1
∑

rl=0

e
( hl

ml

∆d

(
sql

(rl), k
))

+ O
(N

K

)

.
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Now from the iterated Weyl-van der Corput inequality (2.2) we get

(3.5)

∣
∣
∣
∣

N−1∑

n=0

e
(

θnd +
L∑

l=1

hl

ml

sql
(n)
)
∣
∣
∣
∣

D

≤

≤ 32D−1

(

ND

K
+

ND

Kd

K∑

k1=1

. . .
K∑

kd=1

L∏

l=1

∣
∣
∣
∣

1

Ql

Ql−1
∑

rl=0

e
( hl

ml

∆d

(
sql

(rl), k
))
∣
∣
∣
∣

)

+ O
( ND

Kd+1

)

.

By setting

∑

3
=

1

Kd

K∑

k1=1

. . .

K∑

kd=1

L∏

l=1

∣
∣
∣
∣

1

Ql

Ql−1
∑

rl=0

e
( hl

ml

∆d

(
sql

(rl), k
))
∣
∣
∣
∣

and applying Hölder’s inequality to this term we obtain

∑

3
≤
(
Kd
) 1

L+1

Kd
·

L∏

l=1

(
K∑

k1=1

. . .
K∑

kd=1

∣
∣
∣
∣

1

Ql

Ql−1
∑

rl=0

e
( hl

ml

∆d

(
sql

(rl), k
))
∣
∣
∣
∣

L+1
) 1

L+1

≤

≤
L∏

l=1

(

1

K

K∑

k1=1

. . .
1

K

K∑

kd=1

∣
∣
∣
∣

1

Ql

Ql−1
∑

rl=0

e
( hl

ml

∆d

(
sql

(rl), k
))
∣
∣
∣
∣

2
) 1

L+1

,

where the last inequality is valid since the value under the modulus is at most 1. Now
the last term is a product of sums of the type being estimated in Proposition 2.1. By
assumption, for at least one 1 ≤ l ≤ L we have ml ∤ hl(ql − 1), say ℓ. Since K ≤ Ql ≤ K2

for any 1 ≤ l ≤ L by (3.1), or in other terms
√

Ql ≤ K ≤ Ql, this means that we can in
fact apply Proposition 2.1 to get

1

K

K∑

k1=1

. . .
1

K

K∑

kd=1

∣
∣
∣
∣

1

Qℓ

Qℓ−1
∑

rℓ=0

e
( hℓ

mℓ

∆d

(
sqℓ

(rℓ), k
))
∣
∣
∣
∣

2

≪ Q−ηℓ

ℓ ≪ K−ηℓ

with ηl > 0 as in Theorem 2.2. Setting η = min ηl > 0 yields K−ηℓ ≪ K−η, and this
is ≪ N−η/3L because K = ⌊N1/3L⌋ ≥ (1/2)N1/3L. Estimating the remaining factors
corresponding to l 6= ℓ trivially by 1, we obtain

∑

3
≪ N−η/(3L(L+1)) ≪ N−η/(6L2)

and, observing inequality (3.5), finally

∣
∣
∣
∣

N−1∑

n=0

e
(

θnd +
L∑

l=1

hl

ml

sql
(n)
)
∣
∣
∣
∣

D

≤ 32D−1ND
∑

3
+O

(ND

K

)
+ O

( ND

Kd+1

)
=

= O
(
ND−η/(6L2)

)
+ O

(
ND−1/3L

)
+ O

(
ND−(d+1)/(3L)

)
.

Setting γ = η/(6DL2), the three summands on the right hand side are all O
(
ND(1−γ)

)
,

and taking the D-th root yields Theorem 2.2.
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4. Application of the circle method

In this section we are going to prove Theorem 2.1. We will follow the lines of Thuswaldner
and Tichy [9, Section 9] to a great extent. Let P = ⌊N1/d⌋. Using the identity

L∏

l=1

1

ml

ml−1∑

hl=0

e
( hl

ml

(
sql

(n) − al

))

=

{

1 if sq(n) ≡ a mod m,

0 otherwise,

elementary methods of additive number theory yield

(4.1) rd,s,a,m(N) =

∫ 1

0

F (θ)se(−θN)dθ

for the number rd,s,a,m(N) in question, where

F (θ) =
P−1∑

n=0
n∈Ua,m

e(θnd) =
P−1∑

n=0

e(θnd)
L∏

l=1

1

ml

ml−1∑

hl=0

e
( hl

ml

(
sql

(n) − al

))

=

=
1

M

P−1∑

n=0

m1−1∑

h1=0

. . .

mL−1∑

hL=0

e
(

θnd +
L∑

l=1

hl

ml

(
sql

(n) − al

))

and M =
∏L

l=1 ml. With the help of the (L × s)-matrices H = (hli)1≤l≤L,1≤i≤s and M =
(ml)1≤l≤L,1≤i≤s we can express F (θ)s as

F (θ)s =
1

M s

s∏

i=1

P−1∑

ni=0

m1−1∑

h1i=0

. . .

mL−1∑

hLi=0

e
(

θnd
i +

L∑

l=1

hli

ml

(
sql

(ni) − al

))

=

=
1

M s

∑

0≤H<M

s∏

i=1

P−1∑

ni=0

e
(

θnd
i +

L∑

l=1

hli

ml

(
sql

(ni) − al

))

,

where the matrix inequality is to be understood as follows:

0 ≤ H < M = {H ∈ Z(L×s) | 0 ≤ hli < ml for 1 ≤ i ≤ s and 1 ≤ l ≤ L}.

Inserting this expression into (4.1) leads to

rd,s,a,m(N) =
1

M s

∑

0≤H<M

∫ 1

0

s∏

i=1

P−1∑

ni=0

e
(

θnd
i +

L∑

l=1

hli

ml

(
sql

(ni) − al

))

e(−θN)dθ

︸ ︷︷ ︸

IH

.

Concerning the integrals IH with H 6= 0 we observe that

(4.2) |IH| ≤
∫ 1

0

s∏

i=1

|Si(θ)|dθ ≤ sup
θ,i

(
|Si(θ)|s−2t

)
· max

j

(∫ 1

0

|Sj(θ)|2tdθ

)
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for any t with s > 2t, where

Si(θ) =
P−1∑

n=0

e
(

θnd +
L∑

l=1

hli

ml

sql
(n)
)

are the essential sums to which we can apply Theorem 2.2. Writing integral (4.2) as in the
proof of the classical Lemma of Hua (cf. [10, Lemma 2.5])

∫ 1

0

|Sj(θ)|2tdθ =
∑

n1,...,n2t<P
nd

1
+...+nd

t =nd
t+1

+...+nd
2t

e
( L∑

l=1

hlj

ml

t∑

k=1

(
sql

(nk) − sql
(nt+k)

))

and applying Ford [2, Equation 5.4], this integral can obviously be further bounded from
above by

∫ 1

0

|Sj(θ)|2tdθ ≤
∣
∣
{
n1, . . . , n2t < P | nd

1 + . . . + nd
t = nd

t+1 + . . . + nd
2t

}∣
∣≪ P 2t−d

for the currently best known lower bound t > (1/2)d2
(
log d + log log d +O(1)

)
(where the

implied constant is absolute). Substituting the last estimate together with the one from
Theorem 2.2 back into equation (4.2) we obtain

IH ≪
(
P 1−γ

)s−2t · P 2t−d = P s−d−δ

with δ = γ(s − 2t) > 0, which holds for s > 2t > d2
(
log d + log log d + O(1)

)
.

The integral I0 is well-known from the ordinary Waring’s Problem and can be evalu-
ated using the Hardy-Littlewood asymptotic formula, which also holds for s > d2

(
log d +

log log d + O(1)
)

(cf. Nathanson [8, Theorem 5.7], Vaughan and Wooley [11, p. 11] and

Ford [2]). Putting P = ⌊N1/d⌋ back into the estimates completes the proof.
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