Adsorption-Induced Deformation in Silica studied by In Situ Small-Angle Neutron Scattering

Using In Situ Small-Angle Neutron Scattering while adsorbing a zero scattering length density adsorbate allowed us to quantitatively measure adsorption-induced deformation of ordered meso-/microporous materials.

Adsorption-induced deformation of a series of silica samples with hierarchical porosity has been studied by in situ small-angle neutron scattering (SANS) and in situ dilatometry. Monolithic samples consisted of a disordered macroporous network of struts formed by a 2D lattice of hexagonally ordered cylindrical mesopores and disordered micropores within the mesopore walls. Strain isotherms were obtained at the mesopore level by analyzing the shift of the Bragg reflections from the ordered mesopore lattice in SANS data. Thus, SANS essentially measured the radial strain of the cylindrical mesopores including the volume changes of the mesopore walls due to micropore deformation. A H2O/D2O adsorbate with net zero coherent neutron scattering length density was employed in order to avoid apparent strain effects due to intensity changes during pore filling.

Link to publication:

pubs.acs.org/doi/10.1021/acs.langmuir.9b01375

zurück